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Abstract: This paper presents a model that deals with a vendor-buyer multi-product, 

multi-facility and multi-customer location selection problem, which subsume a set of 

manufacturer with limited production capacities situated within a geographical area. We 

assume that the vendor and the buyer are coordinated by mutually sharing information. 

We formulate Mixed Integer Linear Fractional Programming (MILFP) model that 

maximize the ratio of return on investment of the distribution network, and a Mixed 

Integer Program (MIP), used for the comparison. The performance of the model is 

illustrated by a numerical example. In addition, product distribution and allocation of 

different customers along with the sensitivity of the key parameters are analyzed. It can 

be observed that the increment of the opening cost decreases the profit in both MILFP 

and MIP models. If the opening cost of a location decreases or increases, the demand and 

the capacity of that location changes accordingly. 
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1. INTRODUCTION 

In the global competitive market, the importance of Supply Chain Management 

(SCM) increases day by day. To maximize the profit and minimize the cost are the main 



362  M.F.Udin, M.Mondal, K.A. Hussain / Vendor-Buyer Coordination 

goals, so it is important to make the model optimal for both consumer and a 

manufacturer. An efficient supply chain system operates under a strategy to minimize 

costs by integrating the different functions inside the system and by meeting customer 

demands in time.  

A vast amount of literature available on SCM research, was dealing with the different 

aspects of the subject. Numerous models, conceptual as well as quantitative, refer to 

planning and quantitative aspects of different business functions location, production, 

inventory and transportation considering these areas for combined optimization. 

Proposed models include combination of two, or more of these areas.  Facility Location 

Problems (FLP), which are typically used to design distribution networks, involve 

determining the sites to install resources, as well as the assignment of potential 

consumers to those resources. Drezner et al.[1] briefly described FLP the location of 

manufacturing plants, the assignment of ware houses to these plants, and finally the 

assignment of retailers to each warehouse. Other than geographical boundaries, Hung et 

al. [2] described the location allocation with balancing requirements among Distribution 

Centre (DC). They formulated a bi-level programming model to minimize the total cost 

of the distribution network, and balanced the work load of each DC for the delivery of 

products to its customer, solving the model by the genetic algorithm. 

Further, considering customer’s responsiveness, a two-echelon distribution network 

was modeled by Azad et al.[3], and a hybrid heuristic, combining Tabu search with 

Simulated Annealing (SA) sharing the same tabu list, was developed for solving the 

problem by Azad. In addition, a two-echelon inventory system was explained by Jakor 

and Seifbarghy [4], where the independent Poisson demand with constant transportation 

and lead time were considered. Finally, they developed an approximate cost function to 

find the optimal reorder points for given batch sizes in all installations and accuracy was 

assessed by simulation. Moreover, Nagurney [5] derived a relationship between supply 

chain network equilibrium and transportation network equilibrium. 

Jose et al. [6] presented mixed integer type linear programming to solve a capacitated 

vehicle routing problem minimizing number of vehicle and travelling time. They 

implemented the model to a real life problem of a distribution company and solved it 

numerically. They obtained a feasible solution to the formulated model considering six 

delivery points with some characteristics. Yamada et al.[7] investigated super network 

equilibrium model. They combined super network with supply chain networks and 

transport a network. They considered not only the behavior of freight carriers but also the 

transport network users, and determined the transport costs generated in the supply chain 

networks. They also investigated the interaction between transport networks and supply 

chain networks. By numerical example, they showed that by the development of transport 

network it is possible to improve the efficiency of supply chain networks.   

On the other hand, Dhaenens-Flipoand Finke [8] considered an integrated production-

distribution problem in multi-facility, multi-product and multi-period environment. They 

formulated a network flow problem with an objective to match products with production 

lines to minimize the related costs generated randomly, and solved it by using CPLEX 

software. Moreover, a MIP model for production, transportation, and distribution 

problem was developed, representing a multi-product tri-echelon capacitated plant and 

warehouse location problem by Pirkul and Jayaraman [9]. They minimized the sum of 

fixed costs of operating the plants and warehouses, and the variable costs of transporting 

multiple products from the plants to the warehouses and finally to the customers. In 
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addition, a solution procedure was provided based on lagrangian relaxation to find the 

lower bound, followed by a heuristic to solve the problem. There were copious 

researches on LFP to find the best solution approach.  

Among these, Charnes andCooper [10] described a transformation technique, which 

transforms the Linear Fractional Program (LFP) into equivalent linear program. This 

method is quite simple but needs to solve two-transformed model to obtain the optimal 

solution. Fractional programming problems have become a subject of wide interest since 

they arise in many fields like agricultural planning, financial analysis of a firm, location 

theory, capital budgeting problem, supply chain, portfolio selection problem, cutting 

stock problem, stochastic processes problem. From time to time survey papers on 

applications and algorithms on fractional programming were developed by various 

authors. In addition, fractional programming has benefited from advances in generalized 

convexity and vice versa. Further, Charnes and Cooper transformation reduces the linear 

fractional program into linear program and then an optimal solution to the problem could 

be obtained easily. 

In this study, vendor-buyer multi-product, multi-facility, and multi-customer location 

production problem is formulated as a MILFP which maximizes the ratio of return on 

investment, and at the same time optimizes location, transportation cost, and the 

investment. Further, a MIP model is derived from the same model so that the model 

determines the sites for vendor and the best allocation for both the buyer and the vendor. 

Using the suitable transformation of Charnes and Cooper [10], the formulated MILFP 

was solved by AMPL. Finally, a numerical example along with the sensitivity of opening 

cost is considered to estimate the performance of the models 

As described above, in previous research, the MILFP in vendor buyer system was not 

considered. Therefore, we believe that effect of coordination among the members, 

especially between vendor and buyer, should be introduced in the literature. 

Consequently, we have formulated coordinated vendor and buyer model that could 

improve the whole system, the individual profitability, the benefit for the end consumers. 

This integrated coordinated model, allow vendor and buyer to fully cooperate with each 

other when making decisions to maximize total system profit. 

The paper has introduced coordination mechanism along with MILFP in the 

literature. The main aim is to demonstrate the effect of coordination among the members, 

especially between vendor and buyer. For each vendor-buyer system studied, we 

investigate how the cooperation could improve the whole system, the individual 

profitability, the benefit for the end consumers, and the facility location problem. This 

integrated coordinated model, enable vendor and buyer to fully cooperate when making 

decisions that maximize total system profit. It deals with an integrated multi-product, 

multi-facility and multi-customer problem with deterministic demand function.  

The reminder of this paper is organized as follows. In Section 2, a mathematical 

formulation of the model as MILFP and MIP are presented. The section has four 

subsections, describing the concept of mixed integer linear fractional programming 

problem, notations, assumptions, prerequisites, and finally the MILFP and MIP model.  

In Section 3, a numerical example is considered. In Section 4, the results of these models 

are discussed. Finally, in Section 5, the conclusions and contributions of this study are 

discussed 
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2. MODEL FORMULATION 

In this section, we have formulated an integrated model that explores the trade off 

among the location, transportation cost and distribution, considering a multi-product, 

multi-facility, and multi-customer location-production-distribution system. Assume that a 

logistics center seeks to determine an integrated plan of a set of L locations of the vendor 

with production capability of m products and n buyers destinations as shown in Figure 

1.In Figure 1, the solid arrows represent the commodity flow, and the dotted arrows stand 

for the information flow. Each source has an available supply of the commodity to 

distribute in various destinations, and each destination has a forecast demand of the 

commodity to be received from various sources. The coordination contains a set of 

manufacturing facilities with limited production capacities situated within a geographical 

area. Each of these facilities can produce one or all of the products in the company’s 

portfolio. The buyer’s demands for multiple products are to be satisfied from this set of 

manufacturing facilities. Therefore, the production capacities of each of the facilities 

effectively represent its current and potential capacities. This work focuses on developing 

a MILFP and MIP programs to optimize the capacitated facility location and buyer 

allocation decisions, and production quantities at these locations to satisfy customer 

demands. 

 

2.1. Mixed integer linear fractional program 

Recently various optimization problems, involving the optimization of the ratio of 

functions, (for instance; time/cost, volume/cost, profit/cost, loss/cost), measuring the 

efficiency of the system were the subject of wide interest in non-linear programming 

problem. 
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Figure 1: Distribution pattern of a coordinated supply chain 

 

Fractional Programming problem is a mathematical programming problem in which 

the objective function is the ratio of two functions. If the numerator and denominator of 

the objective function and the constraints set are linear, then the fractional programming 

problem is called LFP problem. 

Mathematically the LFP problem can be represented as: 
T

T

C x α
Z

D x β





 

Subject to    

 : , 0nx X x R Ax B x      

Where, 

x  is the set of decision variables of 1n  

A  is the constraint matrix of order m n  

C  and D  are the contribution coefficient vector of order 1n  

B  is the constant or resource vector of order m n  

 ,   are scalar , which determines some constant profit and cost respectively 

n  and m  are the number of variables and constraints respectively. 

A MIP problem results when some variables in the model are real valued (can take on 

fractional values) and some are integer valued, the model is therefore mixed. When the 

objective function and the constraints set are all linear, then it is MIP. On the other hand, 

if the problem is of LFP types, then it is called MILFP problem.  

Charnes and Coorper Transformation Technique: 

There are numerous methods, such as iterative method, parametric method, genetic 

algorithm technique and fuzzy techniques, available in the literature, to solve LFP 

problem. In this work, we used the Charnes and Coorper transformation technique. 

Charnes and Cooper [11] considered the LFP problem defining that 

 1) The feasible region X is non–empty and bounded, 

 2) 𝐶 𝑥 + 𝛼 and 𝐷 𝑥 + 𝛽do not vanish simultaneously in X 

Introducing the variable transformation y =t x, where t  0, Charnes and Cooper 

proved that LFP problem could be reduced to either of the following two equivalent 

linear programs. 
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Figure 2: Flow chart for Charnes and Cooper algorithm 
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The Equivalent Positive (EQP) or Equivalent Negative (EQN) problems were solved 

by the well-known Dantzig [11] simplex method. If one of the problems, EQP and EQN, 

has an optimal solution (y*, t*) and the other is inconsistent, then the LFP problem has an 

optimal solution which can be obtained simply by */** tyx  . If any of the two 

problems is unbounded, then the LFP problem is unbounded. So, if the first problem is 

found unbounded, then one can avoid solving the other as described in Figure 2.  

 

2.2. Notations and assumptions 

In order to get the formulation of the model several assumptions, parameters 

declaration, decision variables and notations are required. In this subsection, we have 

described the notations, assumptions, parameters declaration and decision variables for 

the MILFP based vendor-buyer coordinated model. The notations are as follows. 
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Table 1: Notation for the multiproduct multicustomer and multi-facility vendor-buyer system 

 

Index and Parameters 

𝑖 Index for product, for all 𝑖 = 1, 2,……………… . . ,𝑚. 
𝑗 Index for buyer, for all 𝑗 = 1, 2,…………  . . ,𝑛. 
 𝑙  Index for location of the vendor, for all 𝑙 = 1, 2,…………  . . , 𝐿. 
𝑐𝑖𝑗  The price of  𝑖𝑡ℎ  product to 𝑗𝑡ℎ  buyer ($/unit). 
𝛼𝑙  The fixed cost for opening the vendor at location   𝑙 ($).    

ß Any positive scalar.  

𝑐𝑖
𝑙  The price of unit raw materials for 𝑖𝑡ℎ  product at 𝑙𝑡ℎvendor ($/unit).  

𝑎𝑖
𝑙  The amount of raw materials need to produce𝑖𝑡ℎ  product at  𝑙𝑡ℎvendor($/unit).   .  

𝑡𝑖
𝑙
 Unit transportation costof raw materials for 𝑖𝑡ℎ   product at  𝑙𝑡ℎ  vendor ($/unit).   

𝑝𝑖𝑗
𝑙  The production cost of   𝑖𝑡ℎ  product to 𝑗𝑡ℎ  buyer at 𝑙𝑡ℎ  vendor ($/unit).  

ℎ𝑖𝑗
𝑙

 Unit holding cost of 𝑖𝑡ℎ  product from 𝑙𝑡ℎ  vendor to buyer 𝑗 for some given unit 

of time ($/unit-time). 

𝑐𝑐𝑖𝑗
𝑙

 The shipment cost of  𝑖𝑡ℎ  product from 𝑙𝑡ℎ    vendor   to 𝑗𝑡ℎ  buyer ($/unit). 

𝑑𝑖𝑗  The total demand of 𝑖𝑡ℎ  product by 𝑗𝑡ℎ  buyer (unit). 

𝑤𝑖
𝑙  The capacity for  𝑖𝑡ℎproduct at 𝑙𝑡ℎ   vendor (unit). 

𝑡𝑗
𝑙  The time spent toreach of products from 𝑙𝑡ℎ    vendor   to buyer 𝑗 (unit). 

𝑡𝑗
∗𝑙   The actual time should required to deliverthe products from 𝑙𝑡ℎ  vendor to buyer

 𝑗 (unit).  

𝑝  Penalty cost for delay in delivery for one unit of demand in one unit of time 

($/unit). 

𝑐𝑗
∗𝑙  The transportation cost per unit product from 𝑙𝑡ℎ   vendor   to buyer 𝑗 ($/unit). 

 

 Penalty defining function 

 

 The function could be defined as 
l l

l j j

j

1, if t t* ,
g

0, else

 
 


       , where 𝑡𝑗
𝑙 is the time spent toreach of products from 𝑙𝑡ℎvendor   to 

buyer 𝑗 and 𝑡𝑗
∗𝑙 is the actual time should required to deliverthe products from 𝑙𝑡ℎ  vendor to 

buyer𝑗.  
Decision Variables 

l

j

1, if customer j is assaign to manufacturer l ,
y

0, else


 


 

l

1, if location l is used,
x

0,else


 


 
𝑄𝑖𝑗
𝑙 = the production quantity of product 𝑖 for buyer 𝑗 at 𝑙𝑡ℎ  vendor (unit). 
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Assumptions  

1. Each manufacturing facility is able to produce all products. The company may have 

different plants situated at different locations. Each location can produce same types of 

all the products of the company.  

2. The selling price for a product may vary from buyer to buyer depending on the 

discussions, order sizes, discounts, historical relationships, etc. Although the same inputs 

are required to produce a product at any plant, the costs required to obtain those inputs 

may vary for different plants depending on the location of the plant, its distance from the 

input sources, market rates in that area. As in the case of input costs, the manufacturing 

costs for the same product also may vary for different plants. This is because these costs 

depend on factors such as labor rates, overheads, etc. that may vary significantly for each 

plant. However, the transportation costs may or may not be exactly proportional to the 

travel times because the transportation costs per unit time per shipment may vary for each 

plant-customer pair depending on the route conditions, climate conditions, geographical 

factors, etc. Therefore, sales price for a product may vary from customer to customer.  

3. The company and the buyer have agreed beforehand on the inventory distribution 

pattern so the shipping plans would be formulated accordingly. Production/distribution 

supply chain is such that the products are manufactured at the plants and shipped to 

customers in multiple shipments at regular intervals until the demand is satisfied. It is 

possible to store the whole order and ship it at the end of production. However, this 

option would incur higher inventory cost for storing a large number of products for a 

long time. It will also incur penalty costs because the customer would have to wait till the 

end of production to receive the products. It is assumed here that the customer is ready to 

accept the products as and when the shipment takes place. The products would be stored 

in the inventory if the shipment is not possible immediately. There can be different cases 

of inventory distribution patterns based on the difference between production rate and 

shipping rate, continuous or intermittent production and/or shipping, and instantaneous or 

gradual shipping. These patterns will in turn influence the inventory costs, penalty costs 

and transportation costs. Hence, the player should agree with a certain distribution 

pattern. 

MILFP Model 

In this subsection, we have formulated the MILFP considering all prerequisites terms. 

The objective function is: 1

2

Z
Maximize

Z
  (1) 

Where, 

1

m n L
l

ij ij
i 1 j 1 l 1

Q c Z
  

  
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2
/ 2 *

L L m L m L n m L n m
l l l l l l l l

l l i i i i ij ij ij ij
l 1 l 1 i 1 l 1 i 1 l 1 j 1 i 1 l 1 j 1 i 1

L n m m L n L n
ll l l l *l l l

ij ij ij j j j j j j
l 1 j 1 i 1 i 1 l j 1 l 1 j 1

x α c a t a Q p Q cc

Q h p d z (t t ) g t c Z

          

       

    

   

    

  

 

Subject to          

L m m
l

ij ij
l 1 i 1 i 1

Q d , j

  

    (2) 

L n n
l

ij ij
l 1 j j 1

Q d , i

 

    (3) 

L
l

ij ij
l 1

Q d , i, j



   (4) 

n
l l

ij i
j 1

Q w i,l



   (5) 

n m
l

ij l
j 1 i 1

Q β x , l

 

   (6) 

L
l

j
l 1

y 1, j



   (7) 

*l l l l l l l l l l l l

ij ij l ij i ij ij ij i j j j i i l j
Q ,c ,α ,d , w ,cc , h , p ,t ,t ,t* , p,c ,a ,c 0, x , y

are binary i, j,l




 (8) 

The objective function (1) estimates the ratio of return and investment. Constraints (2) 

ensure that the total amount of products being manufactured at all plants for a particular 

buyer is equal to the total demand of that buyer. Similarly, constraints (3) guarantee that 

the total amount of a particular product being manufactured at all plants for all buyers is 

equal to the total demand of that product from all buyers. It is important to note here that 

the first two constraints are stated separately to show better accountability of the total 

demands from all buyers and for all products respectively. Constraints (4) assurance that 

the total amount of a specific product being manufactured for a particular buyer at all 

plants is equal to the demand of the specific product from that buyer. Constraints (5) 

present the capacity constraint. Constraints (6) premise that a plant is located when and 

only if there is a demand for any product. Constraints (7) show that each buyer is 

assigned to exactly one vendor. The last equation (8) is the nonnegative constraints. 
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MIP Model 

In this subsection, we have formulated the equivalent mixed integer programming 

problem that estimate the total profit as well as optimal allocation and distribution. The 

objective function is the difference between return and investment. 

The objective function is:   
1 2

Maximize Z Z   

Subject to  

The set of constraints described in the previous subsection. 

3. SOLUTION APPROACH 

In order to solve the formulated MILFP, we need to apply suitable transformation. In 

this section, we have applied the Charnes and Cooper transformation to solve the 

formulated MILFP as described in subsection (2.1).   

For any nonnegative r the new decision could be redefined as follows: 

1,...., ,

1,...., , 1,...., ,

l l

l l
j j

l l
ij ij

z rx , for r 0 and l 1,.....,L

z ry , for r 0 and j n l 1,........,L

z rQ , for r 0 and i m j n l 1,........,L

  

   

    
 

Since 𝑟 ≥ 0, 𝑦𝑗
𝑙  and 𝑥𝑙are binary; as a result, 𝑧𝑙  and 𝑧𝑗

𝑙become either zero or r. 

Further, since, 𝑄𝑖𝑗
𝑙  is non negative, consequently, 𝑧𝑖𝑗

𝑙  are also remaining non-negative. 

Therefore, MILFP can be reformulated into two equivalent linear problems as follows: 

( )
m n L

l

ij ij
i 1 j 1 l 1

EQP Maximize z c
  

  

Subject to 
 

L m m
l

ij ijl 1 i 1 i 1

z r d , j
  

     (9) 

L n n
l

ij ij
l 1 j j 1

z r d , i

 

    (10) 

L
l

ij ij
l 1

z r d , i, j



   (11) 

n
l l

ij i
j 1

z r w i,l



   (12) 
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n m
l

ij l
j 1 i 1

z 10000 z , l

 

   (13) 

L
l

j
l 1

z r, j



   (14) 

/ 2 *

L L m L m L n m L n m
l l l l l l l l

l l i i i i ij ij ij ij
l 1 l 1 i 1 l 1 i 1 l 1 j 1 i 1 l 1 j 1 i 1

L n m m L n L n
ll l l l *l l l

ij ij ij j j j j j j
l 1 j 1 i 1 i 1 l j 1 l 1 j 1

z α r t a r c a z p z cc

z h p d z (t t ) g r t c 1

          

       

    

   

    

  

 (15) 

   :   

m n L
l

ij ij
i 1 j 1 l 1

EQN Maxim z cize

  



 
Subject to 

L m m
l

ij ij
l 1 i 1 i 1

z r d , j

  

     (16) 

L n n
l

ij ij
l 1 j j 1

z r d , i
 

     (17) 

L
l

ij ij
l 1

z r d , i, j



    (18) 

n
l l

ij i
j 1

z r w i,l



    (19)

 

n m
l

ij l
j 1 i 1

z 10000 z , l

 

    (20)

 

L
l

j
l 1

z r, j



    (21) 

/ 2 *

L L m L m L n m L n m
l l l l l l l l

l l i i i i ij ij ij ij
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          

       
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    

  

 (22) 
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* , , , , ,l l l l l l l l l l l l

ij ij l ij i ij ij ij i j j j i i l j
z ,c ,α ,d , w ,cc , h , p ,t ,t ,t* , p,c ,a ,c z z 0 i i l   (23) 

In order to find the solution of the formulated MILFP model, first the EQP and EQN 

models were solved by employing AMPL (AMPL Student Version 20121021) with 

Bonmin and Couenne. The program was written according to the flow chart illustrated in 

Figure 2 for AMPL. The program consists of two main parts; the main module containing 

the actual program and the data file containing data of the various parameters. Further, 

the formulated MIP model was solved by the method of branch and bound algorithm 

deploying AMPL with CPLEX accordingly. Eventually, the solution of the EQN model 

became inconsistent, whereas, the solution of the EQP model is optimal. Therefore, by 

Charnes and Cooper algorithm, it is concluded that the optimal solution of the MILFP 

could be obtained by the optimal solution of the EQP problem. The program was 

executed on Pentium IV personal machine with a 1.73 GHz processor and 2.0 GB RAM.  

4. COMPUTATIONAL ANALYSIS 

In order to analyze the effectiveness of the proposed models, a numerical example 

was considered. It is assumed that a vendor has 5 locations sets, with 3 production 

forecast for 2 buyers. The deterministic demand of unit productsof buyers are (1700, 

3500, 2200) and (2300, 1500, 2800), selling prices of per unit products (in $)  of buyers 

are (40, 56, 82) and (42, 58, 75), penalty cost of per unit products (in $)  of buyers are 

(0.50, 0.60, 0.60) and (0.25, 0.40, 0.30) respectively. Further, Table 2 describes 

additional information regarding the parameters of the MILFP and MIP models.  

Table 2: Parameters of the MILFP model 

Parameters 
Locations of the vendor 

1 2 3 4 5 

Raw Materials(units) (130,120,130) (120,180,200) (150,200,170) (100,100,100) (100,100,100) 

Trans. Cost (input) ($) (0.3 ,0.2, 0.3) (0.2, 0.25, 0.2) (0.5, 0.45,0.6) (0.1, 0.1, 0.1) (0.1, 0.1, 0.1) 

Production cost ($) (10 ,17,15) (12,12,18) (14,15,16) (20,25,30) (5,10,15) 

Holding cost ($) (1 ,2,3) (3,2,2) (3,4,3) (5,4,5) (2,3,1) 

Shipping cost ($) (11,23,36) (25,27,32) (13,26,35) (25,27,32) (10,15,20) 

Capacity( in hund.) units (13,12,13) (12,18,20) (15,20,17) (10,10,10) (10,10,10) 

Travel time units (5,7) (9,10) (12,8) (15,20) (10,10) 

Required Delivery time (5,7) (10,10) (12,8) (15,20) (10,10) 

Obligatory Delivery time (5,7) (9,10) (12,8) (10,10) (15,20) 

Trans. cost ($/unit time) (0.5,0.7) (0.6,0.4) (0.6,0.5) (1.0,1.2) (0.5,0.5) 

 

In order to observe the effect of the key parameters, six sets of the vendor’s opening 

costs (in $) with same average value such as (50000, 30000, 40000, 60000, 20000), 

(40000, 40000, 40000, 40000, 40000), (60000, 30000, 40000, 50000, 20000), (50000, 

60000, 40000, 30000, 20000), (50000, 30000, 60000, 40000, 20000) and (50000, 30000, 
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40000, 20000, 60000) are considered. Whereas rest o the parameters are unchanged as 

shown in Table 2. Significant finding regarding the numerical example of the proposed 

MILFP and MIP models as well as the allocations and the distribution of different 

products for the two buyers has estimated. The values Return on Investment (RI in %) 

represent the gap in percentage between the total return on investment incurred by 

MILFP and MIP model, that is,  

 

100
(%) 1 2

2
RI RI RI

RI
  

, where, 

RI1 and RI2 is the ratio of return on investment obtained by MILFP and MIP algorithms 

respectively. Finally, in order to estimate the effect of the sensitivity of opening cost 

parameter we employ sensitivity on the opening cost ($) of location 3. It is assumed that 

the opening cost of the vendor located at location 3 are 50, 100, 1000,2000, 3000, 4000, 

5000 and 10000 while all other remaining parameters are  unchanged. 

Figures 3 and 4 describe the optimum allocation of different products for the first case 

and for both buyers. From the distribution pattern of different products, it is clear that 

MILFP provides optimal locations of the vendor for buyer-1 are 1, 2 and 5, whereas, MIP 

provides the optimal locations of the vendor for  buyer-1 are 1, 2, 3 and 5. The optimal 

locations are achieved by MILFP model of the vendor for buyer-2 is 1, 2, 3 and 5. 

Similarly, MIP model provides the optimal locations of the vendor for buyer-2 are 1, 2, 3 

and 5. Therefore, from the distribution of different products by MILFP and MIP models, 

it is apparently recommended that vendor-4 is not remained optimal for the first case. 

From the sensitivity analysis, it seems that by MILFP model for buyer-1 the vendor 

located at location 3 does not remain optimal except the second case. In addition, MILFP 

model has no optimum product distribution from the location 4 for buyer-1 for all six 

cases. At the same way, the entire six cases the vendor located at location-4 is not 

profitable for buyer-2 by MILFP model. Similarly, by MIP model for the both buyers the 

unselected vendor is located at location 4 for all cases. Therefore, the results of these 

algorithms indicate that vendors 1, 2, 3 and 5 should be located to satisfy buyer’s 

demands and vendor-4 could be removed without loss of the optimality. Further, it could 

be concluded that the optimal solutions of the MILFP algorithm are as good as the MIP 

algorithm. In addition, for the six cases, all the differences of the return on investment for 

both solutions are less than 0.94.  

Figures 5 and 6 describe the average demand of different products achieved by 

MILFP and MIP models for buyer-1. By both MILFP and MIP models, the highest 

demand of the product for buyer-1 is product 2 which is followed by product 3 and 

product 1 as shown in Figures 5 and 6. The MILFP and MIP models satisfy the optimal 

demand of buyer-1 by the manufactures located at the location points 1, 2, 3 and 5.  

MILFP model illustrates that vendor located at locations 1 is profitable for all three 

products. MIP model illustrates that locations 1 and 3 are profitable for all three products. 

Further, both MILFP and MIP models describe that vendor-4 is not anyhow optimum for 

buyer-1 for all three products.   
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Figure 3: Allocations for buyer-1 by (MILFP) and (MIP) models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Allocations for buyer-2 by (MILFP) and (MIP) Models 
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Figure 5: The demand of different products at different locations for buyer-1 by MILFP 

 
Figure 6: The demand of different products at different locations for buyer-1 by MIP 
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Figure 7: The demand of different products at different locations for buyer-2 by MILFP 

 

Figures 7 and 8 depict the average demand of different products have obtained by 

MILFP and MIP models for buyer-2. By both MILFP and MIP models, the maximum 

demand for the product of buyer-2 is product 2 which is followed by product 3 and 

product1 as shown in Figures 7 and 8. The MILFP and MIP models perform the optimal 

demand of buyer-2 by the manufactures located at the location points 1, 2, 3 and 5. 

MILFP model illustrates that vendor located at 3 is profitable and can satisfy the optimal 

demand of all three products. MIP model illustrates that location 3 and 5 are profitable 

for all three products. Further, both MILFP and MIP models explain that vendor-4 is not 

anyway profitable for buyer-2 for all the products.   

Figure 9 describes the sensitive of the opening cost on the total ratio of return on 

investment has obtained different cases by the MILFP and MIP models. The proportion 

of the return and investment obtained by both MILFP and MIP models are not differing 

much. In addition, all cases the profit achieved by MILFP model is slightly higher than 

that of by MIP model as shown in Figure 9 because the methodology of MILFP and MIP. 

The sensitivity of the opening cost demonstrates that all the cases the increases of the 

opening cost decreases the profit by both MILFP and MIP models since this additional 

cost increases the investment as well as cost. Figures 10 and 11 illustrate the influence of 

the opening cost on the demand and capacity of the each location. If the opening cost of a 

location decreases or increases, the demand and capacity of that location changes 

accordingly. The opening cost changes the demand dramatically than the capacity of the 

product. This can be interpreted that by additional opening cost, additional advertise and 

promotion can be offered that increase the demand. Similarly, opening cost that also 

concerns the reconstruction and expansion activity, so the capacity can be increased by 

increasing the opening cost. 
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Figure 8: The demand of different products at different locations for buyer-2 by MIP 

Figure 9: Comparison between return and investment obtained by MILFP and MIP models 
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Figure 10: Effect of the sensitivity analysis of fixed opening cost on demand 

 

Figure 11: Effect of the sensitivity analysis of fixed opening cost on capacity 
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the return on investment achieved by the both models are less than 0.94%.  Moreover, 

from the sensitivity analysis of the opening cost, it is concluded that opening cost is one 

of the momentous factors that increase and decrease the demand and capacity of a 

vendor. Further, the fixed opening cost has negative influence on the total profit. 

Therefore, MILFP model could be one of the relevant approaches in a logistic model 

which seeks to find the optimum manufacturer as well as optimum distribution with 

profit maximization and cost minimization.  

Nonetheless, additional work may be needed to show the applicability of the model in 

real life problems. In future work, this model might be applied to calibrate and validate 

for the real industrial survey data considering the scale and complexity.  
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