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Abstract: Given a network G(V,A, c) and a collection of origin-destination pairs
with prescribed values, the reverse shortest path problem is to modify the arc
length vector c as little as possible under some bound constraints such that the
shortest distance between each origin-destination pair is upper bounded by the
corresponding prescribed value. It is known that the reverse shortest path prob-
lem is NP-hard even on trees when the arc length modifications are measured
by the weighted sum-type Hamming distance. In this paper, we consider two
special cases of this problem which are polynomially solvable. The first is the case
with uniform lengths. It is shown that this case transforms to a minimum cost
flow problem on an auxiliary network. An efficient algorithm is also proposed for
solving this case under the unit sum-type Hamming distance. The second case
considered is the problem without bound constraints. It is shown that this case is
reduced to a minimum cut problem on a tree-like network. Therefore, both cases
studied can be solved in strongly polynomial time.
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1. INTRODUCTION

Suppose that G(V,A, c) is a directed and connected network where V is the set of
nodes, A is the set of arcs and c is the nonnegative arc length vector. Let S ⊆ V×V
be a collection of origin-destination pairs (si, ti), i = 1, . . . , k. The well-known
shortest path problem is to find the shortest paths between each (si, ti) ∈ S on G.
This problem has a wide variety of applications in practice such as transportation
systems, computer networks. It is also theoretically interested because there exists
several efficient algorithms to solve the problem and furthermore, the problem
arises frequently as a subproblem when solving many combinatorial and network
optimization problems [1].
For any optimization problem, one can introduce some inverse problems. We
refer readers to the survey paper [11] for more details on inverse optimization
problems. Two general classes of the inverse shortest path problems are studied
in the literature: the inverse shortest path (ISP) problem and the reverse shortest
path (RSP) problem. The ISP problem is to adjust the arc lengths minimally such
that each given path from si to ti becomes a shortest path. The RSP problem
consists of modifying the arc lengths as little as possible so that the shortest
distance between each pair (si, ti) is upper bounded by a prescribed value di ≥ 0.
The RSP problem is also called as ”the shortest path improvement problem” and
”the inverse shortest path lengths problem” by some authors [7, 16]. The inverse
and reverse shortest path problems have attracted great attention due to its broad
applications in practice such as the traffic modeling, the seismic tomography, and
the design of computer networks [3, 4, 6, 10].
Zhang et. al [19] showed that the ISP problem is equivalent to solving a minimum-
weight circulation problem when the modifications are measured by the l1 norm.
In [18], a column generation scheme is developed to solve the ISP problem under
the l1 norm. Ahuja and Orlin [2] showed that the ISP problem under the l1 norm
can be solved by solving a new shortest path problem. For the l∞ norm, they
showed that the problem reduces to a minimum mean cycle problem. In [15], it is
shown that all feasible solutions of the ISP problem form a polyhedral cone and
the relationship between this problem and the minimum cut problem is discussed.
Duin and Volgenant [8] proposed an efficient algorithm based on the binary search
technique to solve the ISP problem under the bottleneck-type Hamming distance.
In [12, 13], we extended their method to solve the inverse minimum cost flow
problem and the inverse linear programming problem.
The concept of the inverse optimization problems was introduced by Burton and
Toint [3, 4]. They studied the RSP problem under the l2 norm and proposed a
method based on nonlinear optimization techniques to solve the problem. In [5],
it is shown that the RSP problem under the l2 norm is NP-hard. A similar result
is obtained for the l1 norm in [7, 20] and also, efficient algorithms are proposed
in some special cases. Fekete et. al [9] studied the complexity of obtaining a
feasible solution to the RSP problem. They showed that it is intractable even in
very restricted cases.
The RSP problem under the weighted sum-type Hamming distance is formulated
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as follows [16]:

min z =
∑
e j∈A

w jH(c j, ĉ j)

s.t. dĉ(si, ti) ≤ di ∀(si, ti) ∈ S, (1)
0 ≤ ĉ j ≤ c j ∀e j ∈ A,

where dĉ(si, ti) is the length of the shortest path from si to ti with respect to
the length vector ĉ; H(c j, ĉ j) is the Hamming distance between c j and ĉ j (i.e.,
H(c j, ĉ j) = 0 if ĉ j = c j and H(c j, ĉ j) = 1, otherwise); w j ≥ 0 is a penalty for
modifying the length of each arc e j and di ≥ 0 is the prescribed distance for each
origin-destination pair (si, ti).
Two cases of the problem (1) are proved to be NP-hard in [16]:

• The RSP problem with a single origin in which c j = w j = 1 for every e j ∈ A:
We call this problem as the RSP (URSP) problem with uniform data.

• The RSP problem on trees with a single origin: This problem is referred to
as the RSP (TRSP) problem on trees.

The second result is interested because the RSP problem on trees under the l1
norm is polynomially solvable [20]. This is a reason why the behaviour of the RSP
problem under the Hamming distances is different from that of the problem un-
der norms. An alternative reason is that the Hamming distances unlike to norms
are nonconvex and discontinuous. Therefore, the known approaches for norms
cannot be applied for solving the RSP problem under the Hamming distances.
As the RSP problem on trees under the sum-type Hamming distance is NP-hard,
this aspect is worthwhile to further study special cases which the problem is
polynomially solvable. In [17], the authors proposed polynomial-time algorithms
to solve the problem under the unit Hamming distance on chain networks and
star-tree networks. Then, they designed an efficient algorithm for solving the
TRSP problem with a very special constraint on paths.
In this article, we first consider the TRSP problem when c j = 1 for each e j ∈ A. It
is shown that the problem transforms to an instance of the minimum cost flow
problem due to the special form of its coefficient matrix. As a special case, we
propose a simple algorithm to solve the problem that is in the intersection of
the ULRSP and TRSP problems. We also consider the TRSP problem without
nonnegativity constraints and show that the problem can be reduced to solving
a minimum cut problem on a tree-like network. Figure 1 provides a diagram to
compare the complexities of these problems.

The rest of this article is organized as follows: Section 2 focuses on the TRSP
problem with uniform lengths. Section 3 considers the TRSP problem with uni-
form penalties and uniform lengths. Section 4 discusses the RSP problem without
nonnegativity restrictions. Section 5 presents some computational experiments of
our proposed algorithms. Finally, some concluding remarks are given in Section
6.
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Figure 1: Complexity of the RSP problem

2. REVERSE SHORTEST PATH PROBLEM ON TREES WITH UNIFORM
LENGTHS

Suppose that T(V,A) is a tree where V is the set of n nodes, A = {e1, e2, . . . , en−1} is
the set of arcs. In this section, we consider the TRSP problem when all arc lengths
are equal to 1. The problem contains a single origin s and multiple destinations
ti, i = 1, 2, . . . , k. We assume that T is a directed out-tree rooted at node s, i.e., the
unique path in the tree from node s to every other node is a directed path. This
problem can be formulated as follows:

min z =
∑
e j∈A

w jH(1, ĉ j) (2a)

s.t.
∑
e j∈Pti

ĉ j ≤ di ∀i = 1, . . . , k, (2b)

0 ≤ ĉ j ≤ 1 ∀e j ∈ A, (2c)

where Pti is the unique path from s to each destination node ti and the other
parameters are defined as in the problem (1). Note that the problem (2) is feasible
because ĉ = 0 is a feasible solution to the problem.
In T, we denote the head node of each e j ∈ A as ve j . For every arc e j ∈ A, we denote
the subtree of T rooted at ve j as Te j and the unique path from s to ve j by Pe j .

Lemma 2.1. The problem (2) has a zero-one optimal solution.
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Proof. Since the set of objective values of the problem is finite, the problem has at
least one optimal solution ĉ∗. Define the solution ĉ∗∗ as follows:

ĉ∗∗j =

{
1 ĉ∗j = 1,
0 ĉ∗j , 1, ∀e j ∈ A.

We show that ĉ∗∗ is also optimal to the problem (2). It is obvious that the objective
values of both the solutions are the same because ĉ∗j , 1 if and only if ĉ∗∗j , 1
for each e j ∈ A. On the other hand, ĉ∗∗ ≤ ĉ∗ based on the definition of ĉ∗∗. This
guarantees that ĉ∗∗ is also feasible to the problem because∑

e j∈Pti

ĉ∗∗j ≤
∑
e j∈Pti

ĉ∗j ≤ di ∀i = 1, 2, . . . , k.

Therefore, the problem has the zero-one optimal solution ĉ∗∗.

By using Lemma 2.1, we can restrict our attention to zero-one solutions. Therefore,
the problem is converted into the following problem:

min z =
∑
e j∈A

w j(1 − ĉ j) =
∑
e j∈A

w j −
∑
e j∈A

w jĉ j

s.t.
∑
e j∈Pti

ĉ j ≤ di ∀i = 1, . . . , k,

ĉ j = 0 or 1 ∀e j ∈ A,

In matrix form, this problem is rewritten as

min z = wĉ (3a)
s.t. Bĉ ≤ d, (3b)

ĉ ∈ {0, 1}n−1, (3c)

where w = [−w1,−w2, . . . ,−wn−1], d = [d1, d2, . . . , dk]T, ĉ = [ĉ1, ĉ2, . . . , ĉn−1]T and
B = (b1,b2, . . . ,bn−1) is a k× (n− 1) matrix whose jth column is defined as follows:

bi j =

{
1 e j ∈ Pti ,
0 e j < Pti ,

∀i = 1, 2, . . . , k.

As an immediate consequence, we can assume that the prescribed values di are
integral because the left-hand side of each constraint (3b) is an integer between 0
and [di] for each zero-one feasible solution ĉ.
We next show that 1’s of each column of the coefficient matrix B are consecutive if
its rows are arranged in a special fashion. This result guarantees that the problem
can transform to an instance of the minimum cost flow problem on an auxiliary
network.
Since each row of B corresponds to a destination node, it is sufficient to sort the
destination nodes. The Depth-First-Search (DFS) algorithm is used to traverse
nodes of T starting from the origin node s. Assume that D = {t1, t2, . . . , tk} is the
set of destinations sorted in the order of their traversal by the DFS algorithm.
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Theorem 2.2. 1’s of each column of the matrix B are consecutive whenever the constraints
(3b) are arranged in the order of D.

Proof. For each column bj, bi j = 1 if e j ∈ Pti . Equivalently, bi j = 1 if ti ∈ Te j . Since
nodes of Te j are visited consecutively by the DFS algorithm, it follows that 1’s of
b j are consecutive.

Based on Theorem 2.2, we can transform the problem (3) into a minimum cost flow
problem due to the special form of the coefficient matrix [1]. Let the constraints
(3b) be arranged in the order of D. We first introduce a slack variable si for each
constraint (3b) to bring it into an equality form and also, add a redundant equality
constraint 0.ĉ = 0. Therefore, the problem has k + 1 equality constraints. We next
subtract the ith constraint from the (i + 1)th constraint for each i = 1, 2, . . . , k.
Suppose that B′ and d′ are the new coefficient matrix and the new right hand
vector, respectively. Theorem 2.2 implies that B′ is a matrix whose each column
has exactly one +1 and exactly one−1 (i.e., B′ is an incidence matrix). On the other
hand, it can easily seen that

∑k+1
i=1 d′i = 0. Therefore, the problem (3) is converted

into the following equivalent problem:

min z = wĉ

s.t. B′
[

ĉ
s

]
= d′, (4)

ĉ j = 0 or 1 ∀e j ∈ A,
si ≥ 0 ∀i ∈ {1, 2, . . . , k},

Note that the relaxation 0 ≤ ĉ ≤ 1 converts the problem into a minimum cost
flow problem because B′ is an incidence matrix. Since each minimum cost flow
problem with integral data has at least an optimal integer solution and most
minimum cost flow algorithms obtain such the optimal solutions [1], we can use
this relaxation. Therefore, the problem (3) reduces to an instance of the minimum
cost flow problem on the auxiliary network G′(V′,A′,w,d′) which is defined as
follows:

• The node set is V′ = {t1, t2, . . . , tk, tk+1} where tk+1 corresponds to the redun-
dant equality constraint 0.ĉ = 0.

• The arc set is A′ = A ∪ {s1, . . . , sk}. Each arc e j ∈ A emanates from tu and
terminates at tv where u is the row corresponding to the first 1 of b j and v is
the row corresponding to the first 0 of b j after u. Each arc si emanates from
ti and terminates at ti+1.

• The cost of each arc e j is −w j and the cost of each arc si is zero.

• The upper bound of each arc e j is 1 and each arc si has an infinite upper
bound.

• Node ti has a supply or demand equal to d′i = di−di−1 for each i ∈ {2, 3, . . . , k+
1} and the supply of t1 is d1 ≥ 0.
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Figure 2: (a) A network G(V,A,w); (b) the auxiliary network G′(V′,A′,w,d′)

We illustrate this transformation using an example.

Example 2.3. Consider an instance of the problem (2) defined on the network shown in
Figure 2.a. The coefficient matrix B is as follows:

ĉ1 ĉ2 ĉ3 ĉ4 ĉ5
t1 1 1 0 0 0

B = t2 1 1 1 0 0 .
t3 1 0 0 1 1

Note that rows of B are sorted by the DFS algorithm and hence, Theorem 2.2 holds. The
new coefficient matrix is

ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 s1 s2 s3
t1 1 1 0 0 0 1 0 0

B′ = t2 0 0 1 0 0 -1 1 0
t3 0 -1 -1 1 1 0 -1 1 .
t4 -1 0 0 -1 -1 0 0 -1

The auxiliary network G′ is shown in Figure 2.b. By solving the minimum cost flow
problem defined on G′, we obtain the optimal solution

ĉ2 = ĉ3 = ĉ5 = 1, ĉ1 = ĉ4 = s1 = s2 = s3 = 0, z = −1 − 3 − 5 = −9.

Therefore, the optimal solution of the problem (2) is to change only the cost of e1 and e4
from 1 to 0. Its objective value is 4 =

∑
j∈e j

w j −
∑

w jĉ j = 13 − 9.

The auxiliary network contains k + 1 nodes and n + k − 1 arcs. One can use the
enhanced capacity scaling algorithm to solve the associated minimum cost flow
problem in O(n2 log k+nk log2 k) time [1]. Therefore, the problem (2) can be solved
in the same time.
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Remark 2.4. In the problem (2), we have assume that c j = 1 for each e j ∈ A. It is easy
to see that this transformation is valid for the problem with uniform lengths, and not
necessarily unit lengths.

3. REVERSE SHORTEST PATH PROBLEM ON TREES WITH UNIFORM
PENALTIES AND UNIFORM LENGTHS

In this section, we consider the TRSP problem when w j = c j = 1 for every
e j ∈ A. The TRSP problem with uniform penalties and uniform lengths is simply
convertible to this special case. Note that this problem is a special type of the
problem (2) with unit penalties and consequently, it can be solved efficiently
by the transformation stated in Section 2. However, we here present a simple
algorithm to solve the problem with a better complexity. Similar to the problem
(2), we can formulate the TRSP problem with unit penalties as well as unit lengths
as follows:

min z =
∑
e j∈A

H(1, ĉ j)

s.t.
∑
e j∈Pti

ĉ j ≤ di ∀i = 1, . . . , k, (5)

0 ≤ ĉ j ≤ 1 ∀e j ∈ A,

where the parameters are defined as in the problems (1) and (2).
Based on Lemma 2.1, we restrict our attention to solutions ĉ with ĉ j = 0 or 1 for
every e j ∈ A. Any such solution is determined by an arc set S ⊆ A as follows:

ĉ j =

{
0 e j ∈ S,
1 e j ∈ A\S, ∀e j ∈ A. (6)

A solution ĉ corresponding to S has the objective value equal to |S|. Our proposed
algorithm begins with S = ∅ and checks whether or not the corresponding solution
is feasible. If the solution is feasible, the algorithm terminates and otherwise, it
goes to the next iteration by adding one arc eq to S. This process is repeated until
a feasible solution is obtained.
For a given set S, if the value

d′i =
∑
e j∈Pti

ĉ j − di = (
∑

e j∈Pti∩S

0 +
∑

e j∈Pti \S

1) − di = |Pti\S| − di

is nonpositive for each i = 1, 2, . . . , k, then the solution ĉ corresponding to S is
feasible to the problem (5). In other words, the solution corresponding to S
is feasible if S contains at least |Pti | − di elements of Pti for each i = 1, 2, . . . , k.
Therefore, the problem (5) is reduced to the following problem:

min
S⊆A
|S| (7)

s.t. d′i ≤ 0, ∀i = 1, 2, . . . , k.
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For obtaining the optimal solution S to the problem (7), we put arcs closer to the
origin s into S because such arcs belong to more sets Pti . For this purpose, we use
the Breadth-First-Search algorithm to traverse arcs starting from the origin node
s (see Algorithm 1).
The set S obtained by Algorithm 1 has obviously the following property: if e j

1 Input: A tree T(V,A), an origin node s and a collection of destination nodes
ti , i = 1, 2, . . . , k, with nonnegative prescribed distances di.

2 Initialization: Apply the BFS algorithm to traverse the tree starting from
the origin s. Suppose that A = {e1, e2, . . . , en−1} is the sorted set of arcs in the
order of their appearance.

3 S = ∅.
4 j = 1.
5 For j=1 to n-1 do
6 For i=1 to k do
7 If e j ∈ Pti and d′i > 0, then S = S ∪ {e j}.
8 For l=1 to k do
9 If e j ∈ Ptl , then d′(l) = d′(l) − 1.

10 Output The solution corresponding to S defined by (6) is optimal to the
problem (5) with the optimal objective value |S|.

Algorithm 1: Reverse problem with uniform penalties and uniform lengths

belongs to S, then each arc on the unique path from the origin s to e j also belongs
to S. The following lemma guarantees the existence of an optimal solution with
this property.

Lemma 3.1. There exists an optimal solution S∗ to the problem (7) so that if e j ∈ S∗, then
el ∈ S∗ for each el ∈ Pe j .

Proof. The problem (7) is feasible because S = A is a feasible solution to the
problem. Since the problem (7) has a finite number of feasible solutions, it follows
that the problem has at least an optimal solution. Suppose that S∗ is an optimal
solution to the problem. If S∗ does not satisfy the desired property, then e j ∈ S∗

and el < S∗ for some e j ∈ A and some el ∈ Pe j . Define S̄ = (S∗\{e j}) ∪ {el}. The
relation e j ∈ Tel together with the feasibility of S∗ guarantee that S̄ is feasible to
the problem (7). Therefore, S̄ is also an optimal solution because |S∗| = |S̄|. By
repeating this process, we can obtain an optimal solution S̄ satisfying the desired
property.

Theorem 3.2. Algorithm 1 solves the problem (5) in O(nk) time.

Proof. Suppose that ĉ is the solution corresponding to the set S obtained by the
algorithm. For proving the correctness of Algorithm 1, we show that ĉ is feasible
and optimal to the problem (5). Suppose that ĉ is not feasible by contradiction.
Then, there exists some index i0 ∈ {1, 2, . . . , k} such that d′i0 > 0. Consequently,
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|S ∩ Pti0
| < |Pti0

|. This implies that there exists at least one arc e j0 belonging to
Pti0
\S. This contradicts the process of line 7 of Algorithm 1 because e j0 < S while

e j0 ∈ Pti0
with d′i0 > 0.

Assume that S∗ is an optimal solution of the problem (7) satisfying the conditions
of Lemma 3.1. Suppose that S is the set obtained by Algorithm 1 and |S| > |S∗|
by contradiction. Then, S\S∗ , ∅. Select one arc e j0 ∈ S\S∗ with the property that
S ∩ Te j0

= ∅. Based on Lemma 3.1, S∗ ∩ Te j0
= ∅. Hence,

d′i = |Pti\S| − di < |Pti\S
∗
| − di ≤ 0 ∀ti ∈ Te j0

. (8)

Consider the iteration that e j0 is added to S. In this iteration, d′i0 = |Pti0
\S| − di0 > 0

for some ti0 ∈ Te j0
. Adding e j0 to S decreases d′i0 by one unit. In the next iterations,

d′i0 remains unchanged because S ∩ Te j0
= ∅. Therefore, d′i0 is nonnegative which

contradicts (8).
Now, we analyze the complexity of Algorithm 1. The number of iterations is
n− 1 because the algorithm examines one arc in each iteration. We show that line
6 of Algorithm 1 can be done in O(k) time. This implies that the complexity of
Algorithm 1 is O(kn). For each arc e j ∈ A, suppose that the accessible list L(e j)
is the set of destination nodes ti so that e j ∈ Pti . The algorithm maintains each
accessible list L(e j) as a linked list. In each iteration, an accessible list is traversed
to check the existence of an index i ∈ {1, 2, . . . , k} with e j ∈ Pti and d′i > 0. When
arc e j is added to S, d′i is decreased by 1 for each ti ∈ L(e j). Both these operations
require at most O(k) time. This completes the proof.

Example 3.3. Consider the problem (5) defined on the network shown in Figure 2.a.
Algorithm 1 gives us the optimal solution corresponding to S = {e1, e4}.

4. REVERSE PROBLEM WITHOUT NONNEGATIVITY RESTRICTIONS

In this section, we consider the TRSP problem without nonnegativity restric-
tions, and show that the problem is transformable to a minimum cut problem on
a tree-like network. Consequently, it can be solved in strongly polynomial time.
For a given tree T(V,A) with length vector c, the problem (1) on trees without
nonnegativity restrictions is stated formally as follows:

min z =
∑
e j∈A

w jH(c j, ĉ j)

s.t.
∑
e j∈Pti

ĉ j ≤ di ∀i = 1, . . . , k, (9)

ĉ j ≤ c j ∀e j ∈ A,

where the parameters are defined as in the problems (1) and (2).

Remark 4.1. In the previous sections, we have assumed that the arc lengths and the
prescribed distances are nonnegative. Here, we drop this assumption.
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Suppose that V′ is the subset of {1, 2, . . . , k} so that i ∈ V′ if and only if d′′i =∑
e j∈Pti

c j − di is positive. We construct the tree-like network Ḡ(V̄, Ā, w̄) in the
following manner.

• The node set V̄ is V ∪ {t}.

• Ḡ contains the same arcs of T plus additional arcs (ti, t), called artificial arcs,
for each i ∈ V′, i.e., Ā = A ∪ {(ti, t) : i ∈ V′}.

• Each arc e j ∈ A has a capacity w̄ j equal to w j and a fixed capacity W =
∑

e j∈A w j

is associated with each artificial arc.

Suppose that C∗ is a minimum s − t cut of Ḡ(V̄, Ā, w̄). Obviously, C∗ has not any
artificial arc. Consider the solution ĉ∗ defined by

ĉ∗j =

{
c j e j < C∗,
c j −maxti∈Tej

{d′′i } e j ∈ C∗, ∀e j ∈ A. (10)

We show that ĉ∗ is an optimal solution to the problem (9). First, note that there
exists at least one destination ti ∈ Te j with d′′i > 0 for each e j ∈ C∗. If not, we
can remove e j from C∗ and however, C∗ remains an s − t cut which contradicts to
the definition of a cut. This implies that the objective value of ĉ∗ is equal to the
capacity of C∗, i.e.,

∑
e j∈A w jH(c j, ĉ∗j) =

∑
e j∈C∗ w j. The fact that there exists an arc e ji

belonging to C∗ for each i ∈ V′ guarantees that ĉ∗ is feasible because∑
e j∈Pti

ĉ∗j ≤
∑
e j∈Pti

c j −max
tl∈Teji

{d′′l }

≤

∑
e j∈Pti

c j − d′′i = di ∀i ∈ V′.

Suppose that ĉ∗ is not optimal by contradiction. Then, there exists a feasible
solution ĉ0 so that

∑
e j∈A w jH(c j, ĉ0

j ) <
∑

e j∈C∗ w j. Let C0 be the set of modified arcs
of ĉ0, i.e., C0 = {e j ∈ A : ĉ0

j , c j}. It is easy to see that C0 separates s and t. Therefore,
C0 contains an s− t cut whose capacity is less than that of the cut C∗. This leads to
a contradiction. We have thus established the following result.

Lemma 4.2. If C∗ is a minimum s − t cut of Ḡ(V̄, Ā, w̄), then ĉ∗ defined by (10) is an
optimal solution to the problem (9).

Now we are ready to state the proposed algorithm (see Algorithm 2) for solving
the problem (9).

Theorem 4.3. Algorithm 2 solves the problem (9) in O(n) time.

Proof. The correctness of Algorithm 2 is immediate by Lemma 4.2. We analyze its
complexity. Obviously, the bottleneck operation is to find a minimum cut on the
tree-like network Ḡ. This can be done in linear time by solving the corresponding
maximum flow problem (refer to Theorem 2 of [14]). Therefore, Algorithm 2 can
solve the problem (9) in linear time.
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1 Input: A tree T(V,A) with length vector c and penalty vector w, an origin
node s and a collection of destination nodes ti , i = 1, 2, . . . , k, with
prescribed distances di.

2 For i ∈ {1, 2, . . . , t} do d′′i =
∑

e j∈Pti
c j − di.

3 flag= true.
4 For i ∈ {1, 2, . . . , t} do
5 If d′′i > 0 then flag=false.
6 If flag==true then ĉ∗ = c and stop else V′ = {i : d′′i > 0}.
7 Construct the tree-like network Ḡ(V̄, Ā, w̄) in the following manner:
8 V̄ = V ∪ {t}.
9 Ā = A ∪ {(ti, t) : i ∈ V′}.

10 If e j ∈ A then w̄ j = w j else w̄ j =
∑

e j∈A w j.
11 Find a minimum s − t cut C∗ of Ḡ(V̄, Ā, w̄).
12 Obtain ĉ∗ by (10) using C∗.
13 Output: ĉ∗ is an optimal solution to the problem (9).

Algorithm 2: Reverse problem without nonnegativity restrictions

5. COMPUTATIONAL EXPERIMENTS

In this section, we have conducted a computational study to observe the per-
formance of Algorithms 1 and 2. The following computational tools were used
to develop algorithms: Python 2.7.5, Matplotlib 1.3.1 and NetworkX 1.8.1. All
computational experiments were conducted on a 32-bit Windows 7 with Proces-
sor Intel(R) Core(TM) i5 − 3210M CPU @2.50GHz and 4 GB of RAM.

For computational experiments, we first generate a random tree with n nodes.
We suppose that trees are rooted in an origin node s and their arcs are orientated
such that a unique path exists from s to each other nodes. In generated instances,
we use random data generated using a uniform random distribution as follows:

ci j ∼ U(1,n) ∀(i, j) ∈ A,
wi j ∼ U(1,n) ∀(i, j) ∈ A,
di ∼ U(1,n) ∀i ∈ V.

We count the average number of modified arcs and calculate average CPU time
on a series of instances. We have tested the algorithms on five classes of networks
which differ from the number of nodes, varying from 10 to 1000. There are 100
random instances generated for each class of networks. Tables 1 and 2 present
average performance statistics of Algorithms 1 and 2, respectively. The running
times of Algorithms 1 and 2 grow linearly as the size of instance increases. It
is remarkable that the number of modified arcs in the reverse problems with
uniform data increases faster than that in the unconstrained reverse problems.
This is a reasonable result because in the unconstrained problem, arc costs can
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Table 1: Average performance statistics of Algorithm 1
Number of nodes Average running time (second) Average number of modified arcs
10 0.0065 1.88
50 0.0083 8.92
100 0.0139 15.28
500 0.0413 40.65
1000 0.1004 73.6

Table 2: Average performance statistics of Algorithm 2
Number of nodes Average running time (second) Average number of modified arcs
10 0.0050 1.87
50 0.0090 2.1
100 0.0182 2.22
500 0.1133 2.28
1000 0.2102 2.30

be decreased in any arbitrary amount and consequently, the lesser number of
modifications can satisfy the constraints (2b).

As a special case of trees, we perform experiments on star-tree networks G
where any two origin-destination paths of G have no common arcs [17]. Through-
out experiments, we assume that the origin node s is a leaf of G, i.e., one node with
degree 1. Table 3 presents experimental results. As seen in Table 3, Algorithm
2 often needs to modify capacity of one arc for solving the problem. This arc is
the one with least penalty among all the arcs on the path from s to a node whose
degree is greater than 2.

6. CONCLUSION

It is known that the reverse shortest path problem on trees under the sum-type
Hamming distance is NP-hard [16]. In this article, we studied the special cases of
the problem which are polynomially solvable. First, we considered the case with
uniform lengths and showed that this problem can be transformed to a minimum

Table 3: Average performance statistics of Algorithms 1 and 2 for star-tree networks
Number of nodes Average running time (second) Average number of modified arcs

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2
10 0.0020 0.0031 1.72 1.12
50 0.0035 0.0035 8.17 1.01
100 0.0063 0.0073 11.45 1
500 0.0822 0.0971 32.12 1
1000 0.1024 0.1542 68.21 1
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cost flow problem. We also proposed an efficient algorithm for the special case
with unform lengths as well as uniform penalties. Finally, we considered the
problem without nonnegativity restrictions and showed that the problem can be
reduced to a minimum cut problem on a tree-like network and consequently, it
can be solved in linear time.
Due to NP-hardness of the reverse shortest path problem under the sum-type
Hamming distance, it is meaningful to design heuristic and approximation algo-
rithms for obtaining satisfying solutions and to consider other cases where the
problem is polynomially solvable such as the problem with multiple origins and
multiple destinations and the problem on general networks.
Acknowledgments: The authors wish to thank the anonymous referees whose
valuable comments allowed us to improve the paper.
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[10] Gódor, I., Harmatos, J. and Jüttner, A., ”Inverse shortest path algorithms in protected UMTS
access networks”, Computer Communications, 28 (2005) 765–772.

[11] Heuberger, C., ”Inverse optimization: A survey on problems, methods, and results”, Journal of
Combinatorial Optimization, 8 (2004) 329–361.

[12] Tayyebi, J. and Aman, M., ”On inverse linear programming problems under the
bottleneck-type weighted Hamming distance”, Discrete Applied Mathematics, (2015) DOI:
10.1016/j.dam.2015.12.017.

[13] Tayyebi, J. and Aman, M., ”Note on inverse minimum cost flow problems under the weighted
hamming distance”, European Journal of Operational Research, 234 (2014) 916–920.

[14] Vygen, J., ”On dual minimum cost flow algorithms”, Math. Meth. Oper. Res., 56 (2002) 101–126.
[15] Xu, S. and Zhang, J., ”An Inverse Problem of the Weighted Shortest Path Problem”, Japan Journal

of Industrial Applied Mathematics, 12 (1995) 47–59.
[16] Zhang, B. W., Zhang, J. Z. and Qi, L. Q., ”The shortest path improvement problems under

Hamming distance”, Journal of Combinatorial Optimization, 12 (4) (2006) 351–361.
[17] Zhang, B., Guan, X., He, C. and Wang, S., ”Algorithms for the Shortest Path Improvement

Problems under Unit Hamming Distance”, Journal of Applied Mathematics, Article ID 847317
(2013) 8 pages.



60 J. Tayyebi, M. Aman / Efficient Algorithms for the Reverse Shortest Path Problem

[18] Zhang, J. Z., Ma, Z. and Yang, C., ”A column generation method for inverse shortest path
problems”, Zeitschrift fr Operations Research, 41 (3) (1995) 347–358.

[19] Zhang, J. Z. and Ma, Z., ”A network flow method for solving some inverse combinatorial
optimization problems”, Optimization: A Journal of Mathematical Programming and Operations
Research, 37 (1) (1996) 59–72.

[20] Zhang, J. Z. and Lin, Y. X., ”Computation of the reverse shortest path problem”, Journal of Global
Optimization, 25 (2003) 243–261.


	1 INTRODUCTION
	2 REVERSE SHORTEST PATH PROBLEM ON TREES WITH UNIFORM LENGTHS
	3 REVERSE SHORTEST PATH PROBLEM ON TREES WITH UNIFORM PENALTIES AND UNIFORM LENGTHS
	4 REVERSE PROBLEM WITHOUT NONNEGATIVITY RESTRICTIONS
	5 COMPUTATIONAL EXPERIMENTS
	6 CONCLUSION

