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Abstract: In this paper, low discrepancy consecutive k-sums permutation problem
is considered. A mixed integer linear programing (MILP) formulation with a
moderate number of variables and constraints is proposed. The correctness proof
shows that the proposed formulation is equivalent to the basic definition of low
discrepancy consecutive k-sums permutation problem. Computational results,
obtained on standard CPLEX solver, give 88 new exact values, which clearly
show the usefulness of the proposed MILP formulation.
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1. INTRODUCTION

Our description of the problem can start with the question, and its answer,
as given in [1]: ”Is it possible to arrange the integers 1 through n on a circle so
that, for a given k, any sum of k consecutive integers on the circle is close to the
expected value of k·(n+1)

2 ? We can do it remarkably well.”

1.1. Problem defintion
Let n and k be positive integers such that k ≤ n, and Sn is a set of all per-

mutations π = (π1, π2, ..., πn) of the set {1, 2, ...,n} viewed as a circle, i.e. indices
are always evaluated by modulo n. So, low discrepancy consecutive k-sums
permutation problem (LDCkSPP) can be formulated as follows.

disc(n, k) = min
π∈Sn

disc(π, k) (1)

where

disc(π, k) = max
1≤i≤n

∣∣∣∣∣∣∣∣−k · (n + 1)
2

+

k∑
j=1

πi+ j

∣∣∣∣∣∣∣∣ (2)

It is easy to see that the only case when disc(n, k) = 0 is if n = k, while
disc(n, k) > 0 for all k < n. Also, disc(n, k) and disc(n,n − k) are complementary, so
it is enough to consider only the case that k ≤ n

2 . Moreover, when n is even and k
is odd then disc(n, k) ∈ {0.5 + m |m ∈ Z,m ≥ 0}, while disc(n, k) ∈ N, otherwise.

Example 1. For n = 5 and k = 2, permutation π = (1, 4, 3, 2, 5) has the corresponding
consecutive 2-sums equal to 5, 7, 5, 7, 6, respectively. Since k·(n+1)

2 = 6 then, disc(π, 2) = 1,
which is obviously the optimal solution, since for odd n or even k, disc(n, k) ∈ N.

1.2. Previous work
Anstee et al. (2002) in [1] give many theoretical results about permutation

discrepancy. They find that, in general, the discrepancy is small, never more than
k + 6, and independent of n. For 1 = 1cd(n, k) > 1, they proved the upper bound
of 7

2 , while for 1 = 1, the result is more complicated, which is presented in Table
2. Their constructions show that disc(n, k) ≤ k

2 + 9 for large n, while it is at least
k
2 for infinitely many n. They also give some theoretical results regarding easier
case of linear permutations (non-cyclic).

Stefanović (2010) in [2] determined exact values of disc(n, k) for small n, k using
branch-and-bound technique. Exact values are reported, for k up to 10, and for n
up to several tenths. Additionally, upper and lower bounds, for k up to 10, and
for n up to 100, obtained by theoretical results from the literature are presented.

Stefanović and Živković (2015) in [3] proved that disc(6t+3, 3) = 2, completing
previously known results about disc(n, 3). They also found that disc(2kt, k) = 1.5,
for odd k and t > 1.
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Table 1: Theoretical exact values from the literature

Ref. Conditions disc(n, k)
[1] n = 2k, k odd 0.5

n = 3k, k odd 1
n ≥ 3, k = 2 1

n = 3k, k odd 1
k even, n = ±1(mod k) k

2
[3] n = 2kt, k odd, t > 1, t ∈ N 1.5

n = 6t + 3, k = 3, t ≥ 2, t ∈ N 2

Table 2: Theoretical bounds from the literature

Ref. Conditions Bound
[1] n ≥ 6 disc(n, 3) ≤ 2

disc(n, pq) ≤ p · disc(n, q)
k even disc(n, k) ≤ k

2
k odd disc(mk, k) ≤ 2

1 > 1, 1 even disc(n, k) ≤ 2
1 > 1, 1 odd disc(n, k) ≤ 3.5
1 > 1, 1 odd disc(n, k) ≤ disc( n

1
, k
1
)

1 = 1, n > 2k, r ≥ 1, disc(n, k) ≥ k
2s

k odd, 1 = 1 disc(n, k) ≤ k + 6
k odd, 1 = 1, n > n0(k) disc(n, k) ≤ k

2 + 9

1.3. Theoretical results from literature
The concise survey of theoretical exact values about disc(n, k) in the literature

is given in Table 1. The first column contains the reference to the paper in which
the theoretical result is introduced, the second column lists the conditions, while
the third column gives the exact values of disc(n, k).

Table 2, which is organized in a similar way as Table 1, contains the lower or
upper bounds of disc(n, k). In Table 2, the following denotations are used:

1 denotes 1cd(n, k), i.e. greatest common divisor of n and k;
r denotes the residue of division of n by k, i.e. r ≡ n (mod k);
s denotes the smallest positive integer for which holds r · s ≡ ±1 (mod k).

2. PROPOSED MILP FORMULATION

As it is suggested in literature, it is useful to represent various mathematical
problems as integer programming problems in order to use different well-known
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optimization techniques. Following that idea, we will introduce a mixed linear
programming (MILP) formulation of the present problem in order to give theoret-
ical and practical insights and to compare to with the previous branch-and-bound
techniques, proposed in the literature.

Let π be the permutation. Decision variables xi j can be defined as:

xi j =

1, j = πi

0, j , πi
(3)

and

z = disc(π, k) = max
1≤i≤n

∣∣∣∣∣∣∣∣−k · (n + 1)
2

+

k∑
j=1

πi+ j

∣∣∣∣∣∣∣∣ (4)

The mixed integer linear programming formulation for solving the low dis-
crepancy consecutive k-sums permutation problem can be stated as:

min z (5)

subject to:

n∑
j=1

xi j = 1 i = 1, ...,n (6)

n∑
i=1

xi j = 1 j = 1, ...,n (7)

k(n + 1)
2

+ z ≥
i+k∑

j=i+1

n∑
l=1

l · x jl i = 1, ...,n (8)

k(n + 1)
2

− z ≤
i+k∑

j=i+1

n∑
l=1

l · x jl i = 1, ...,n (9)

xi j ∈ {0, 1} i, j = 1...n (10)
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z ∈ [0,+∞) (11)

The objective function (5) minimizes the discrepancy, defined by constraints (8)
and (9). Constraints (6) and (7) ensure that variables xi j represent a permutation,
while (10) and (11) reflect the nature of decision variables xi j and variable z.

The presented MILP model has n2 binary variables, one continuous, and 4 · n
constraints. The equivalence of the proposed MILP model (5)-(11) with the basic
mathematical formulation (1)-(2) is proved in Theorem 1.

Theorem 1. A low discrepancy consecutive k-sums permutation defined by (1)-(2) is
optimal if and only if constraints (5)-(11) are satisfied.

Proof. (⇒) Suppose that π is an optimal low discrepancy consecutive k-sums
permutation for fixed n and k. Let variables xi j be defined as in (3), and z is
defined as in (4). It means that variables xi j are binary and z is continuous, so
constraints (10) and (11) are satisfied by default.

¿From the definition of variables xi j, and the fact thatπ is well-defined function,
it holds that (∀i)(∃1 j) j = πi,

xi,πi = 1 (12)

and

(∀ j , πi) xi j = 0, (13)

which means
n∑

j=1
xi j = 1 implying that constraints (6) are satisfied.

Similarly, π is permutation, so there exist the inverse permutation π−1. From
(∀ j)(∃1i) π−1

j = i, it follows xπ−1
j , j

= 1, while (∀i , π−1
j ) xi j = 0, which means

n∑
i=1

xi j = 1, so constraints (7) are satisfied.

Let fix j ∈ {1, 2, ...,n}. As it can be seen in (13), (∀l , π j) x jl = 0, so (∀l ,

π j) l · x jl = 0, implying
n∑

l=1,l,π j

l · x jl = 0. Since by (12) x j,π j = 1, then it holds

π j = π j · x j,π j =
n∑

l=1
l · x jl.

¿From z = max
1≤i≤n

∣∣∣∣∣∣− k·(n+1)
2 +

k∑
j=1
πi+ j

∣∣∣∣∣∣ (formula (4)), implying

(∀i)z ≥

∣∣∣∣∣∣− k·(n+1)
2 +

k∑
j=1
πi+ j

∣∣∣∣∣∣⇒ (∀i) z ≥ − k·(n+1)
2 +

k∑
j=1
πi+ j or

(∀i) z ≥ −

− k·(n+1)
2 +

k∑
j=1
πi+ j

. First term is equivalent to (∀i) k·(n+1)
2 + z ≥

k∑
j=1
πi+ j
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which means (∀i) k·(n+1)
2 + z ≥

i+k∑
j=i+1

π j. In the previous paragraph, it is proven that

π j =
n∑

l=1
l · x jl, so we can replace π j with

n∑
l=1

l · x jl. The first term is equivalent to

(∀i) k·(n+1)
2 +z ≥

i+k∑
j=i+1

n∑
l=1

l · x jl, which exactly represents constraints (8). Similarly, the

second term is equivalent to (∀i) z ≥ k·(n+1)
2 −

k∑
j=1
πi+ j, implying (∀i)

k∑
j=1
πi+ j ≥

k·(n+1)
2 −

z. Finally, when we replace π j with
n∑

l=1
l · x jl it holds (∀i)

i+k∑
j=i+1

n∑
l=1

l · x jl ≥
k·(n+1)

2 − z

which is equivalent to constraints (9). Moreover, from z = disc(π, k) and the fact
that the objective function (5) is minimum of z, it holds that objective function
value of MILP formulation (5)-(11) is less than or equal to the value of minimal
low discrepancy consecutive k-sums permutation.

(⇐) For fixed i ∈ {1, 2, ...,n}, letπi be defined asπi = j if xi j = 1. From constraints
(10) it follows that variable xi j has binary nature, which, with constraints (6),

implies that (∀i)
n∑

j=1
xi j = 1 ⇒ (∀i)(∃1 j) xi j = 1, so π is a well-defined function.

Similarly, from constraints (10) and (7), it follows (∀ j)
n∑

i=1
xi j = 1⇒ (∀ j)(∃1i) xi j = 1,

so π is bijection. Since π : {1, 2, ...,n} → {1, 2, ...,n}, it means that π is permutation.

From the definition of permutation π, it means that
n∑

l=1
l · x jl = π j · x j,π j = π j,

since x j,π j = 1. Therefore, from constraints (8) and (9), it holds (∀i) k(n+1)
2 − z ≤

i+k∑
j=i+1

π j ≤
k(n+1)

2 + z. The last term is equivalent to z ≥ k(n+1)
2 −

i+k∑
j=i+1

π j and

z ≥ − k(n+1)
2 +

i+k∑
j=i+1

π j, which means z ≥

∣∣∣∣∣∣− k(n+1)
2 +

i+k∑
j=i+1

π j

∣∣∣∣∣∣ =
∣∣∣∣∣∣− k(n+1)

2 +
k∑

j=1
πi+ j

∣∣∣∣∣∣. There-

fore, (∀i) z ≥

∣∣∣∣∣∣− k(n+1)
2 +

k∑
j=1
πi+ j

∣∣∣∣∣∣⇒
z ≥ max

1≤i≤n

∣∣∣∣∣∣− k·(n+1)
2 +

k∑
j=1
πi+ j

∣∣∣∣∣∣, implying z ≥ disc(π, k). Moreover, from disc(π, k) ≤

z ⇒ disc(n, k) = min
π∈Sn

disc(π, k) ≤ z, it holds that the value of minimal low dis-

crepancy consecutive k-sums permutation is smaller than or equal to the optimal
value of MILP formulation (5)-(11).

Therefore, the minimal value of low discrepancy consecutive k-sums permu-
tation is equal to the optimal value of MILP formulation (5)-(11).

3. COMPUTATIONAL RESULTS

In this section, experimental results obtained by the CPLEX 12.5.1 solver, using
proposed MILP formulation will be presented. All computations were executed
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Table 3: New exact values of disc(n, k)

n k Liter. MILP n k Liter. MILP n k Liter. MILP
LB UB Opt t[sec] LB UB Opt t[sec] LB UB Opt t[sec]

10 4 1 2 2 0.078 38 10 1 2 2 55.84 32 14 1 2 2 835.8
14 4 1 2 2 0.218 23 11 6 17 6 0.812 33 14 3 7 3 18.84
18 4 1 2 2 0.562 24 11 1.5 16.5 1.5 2.500 34 14 1 2 2 193.5
14 6 1 2 2 0.203 25 11 2 17 2 20.83 35 14 1 1 1 397.3
16 6 1 2 2 0.250 27 11 3 17 3 5.296 38 14 1 2 2 994.5
40 6 1 2 2 10131 29 11 2 17 2 127.6 39 14 2 7 2 372.3
35 7 1 2 1 512.9 31 11 2 17 2 3.218 40 14 1 2 2 8.390
18 8 1 2 2 0.312 34 11 5.5 16.5 5.5 4.171 31 15 8 10 8 5.140
34 8 1 2 2 23.03 35 11 2 17 2 3.687 32 15 1.5 7.5 1.5 8.687
35 8 2 4 2 655.9 39 11 3 17 3 388.6 33 15 1 3 2 5.531
37 8 2 4 2 171.5 26 12 1 2 2 2.390 35 15 1 2 1 112.9
38 8 1 2 2 366.7 27 12 1 2 2 2.734 36 15 0.5 3.5 1.5 28.36
24 9 0.5 1.5 1.5 1.890 28 12 1 2 1 110.5 37 15 4 10 4 2734
25 9 2 6 2 1.625 29 12 2 6 2 3.578 39 15 1 3 1 5.625
29 9 2 6 2 107.3 30 12 1 2 1 7.265 34 16 1 2 2 4.562
31 9 3 6 3 7.078 31 12 2 6 2 61.84 35 16 2 8 2 673.9
33 9 1 2 1 32.66 32 12 1 2 2 1467 36 16 1 2 1 183.2
34 9 1.5 4.5 1.5 128.0 33 12 1 2 2 7.656 38 16 1 2 2 1104
35 9 5 6 5 65.17 34 12 1 2 2 7.906 39 16 2 8 2 6.406
39 9 1 2 2 346.5 38 12 1 2 2 47.56 40 16 1 2 1 940.3
22 10 1 2 2 1.906 40 12 1 2 2 9461 35 17 9 23 9 5.187
23 10 2 5 2 2.000 27 13 7 19 7 1.609 36 17 1.5 22.5 1.5 37.50
24 10 1 2 2 14.31 28 13 1.5 18.5 1.5 1.328 37 17 2 23 2 797.0
26 10 1 2 2 5.718 29 13 2 19 2 47.70 39 17 2 23 2 927.3
27 10 2 5 2 33.75 31 13 2 19 2 97.23 38 18 1 2 2 7.468
28 10 1 2 2 1.859 33 13 4 19 4 61.38 40 18 1 2 2 7231
32 10 1 2 2 3.000 35 13 3 19 3 1449 39 19 10 25 10 6.578
33 10 2 5 2 219.7 37 13 2 19 2 423.5 40 19 1.5 24.5 1.5 246.9
34 10 1 2 2 377.2 30 14 1 2 2 4.265
36 10 1 2 2 340.6 31 14 2 7 2 42.09

on HP i5-3470, 3.2GHz PC with 8GB RAM, using single core. The MILP model
used by CPLEX 12.5.1 solver was coded in C programming language.

In order to clearly present the effectiveness of the proposed MILP formulation,
all previously known exact solutions are omitted, so Table 3 contains only data
for new exact values of disc(n, k). It should be mentioned that branch-and-bound
approach [2] obtained optimal value disc(56, 4) = 1, while CPLEX based on the
presented model could not obtain an exact result in 7200 seconds. In the first two
columns the n and k are given. The third and fourth columns are labeled with
LB and UB and present the values of lower and upper bound, taken from the
literature. The fifth and the sixth column are labeled with Opt and t, containing
the corresponding optimal solution values and total running time (in seconds),
obtained by CPLEX 12.5.1 solver. The following six columns have the same
meaning as the first six columns.

Experimental results given in Table 3 show that 88 new exact values of disc(n, k),
with various n and k, are obtained. Although running time can be large (for
example, in the case n = 40, k = 6 CPLEX needs 10131 seconds which is almost
3 hours), many results are obtained in less than 10 seconds. Advantages of the
presented model over the previous exact approaches are more visible for large k
values.

4. CONCLUSIONS

This paper is devoted to the low discrepancy consecutive k-sums permutation
problem. The mixed integer linear programing formulation with a moderate
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number of variables and constraints is introduced. We also give the formal proof
that the proposed model is equivalent to the basic problem definition. From
computational results, it is evident that the proposed model has theoretical and
practical significance.

One direction for future work can be to design an exact method by using the
proposed MILP formulation. The second direction may be solving some similar
problems.
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