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1. INTRODUCTION

Semi-infinite multiobjective programming problems arise when more than
one objective function is to be optimized over feasible set described by infinite
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number of inequality constraints. If there is only one objective function, then
the problems are reduced to scalar semi-infinite programming problems. Semi-
infinite programming problems have been an active research topic due to their
applications in several areas of modern research such as in engineering design,
mathematical physics, robotics, optimal control, transportation problems, see
[8, 11, 16, 23]. Optimality conditions and duality results for semi-infinite program-
ming problems have been studied, see [9, 12, 17, 18, 20, 24, 34, 36]. Caristi et al. [3]
obtained optimality and duality results for semi-infinite multiobjective program-
ming problems that involved differentiable functions. Kanzi and Nobakhtian
[19] obtained several kinds of constraints qualifications, necessary and sufficient
optimality conditions for nonsmooth semi-infinite multiobjective programming
problems. Recently, Chuong and Kim [7] and Son and Kim [37] obtained op-
timality and duality for nonsmooth semi-infinite multiobjective programming
problems. Many authors have discussed optimality conditions and duality re-
sults for nonlinear programming problems containing the square root of a positive
semidefinite quadratic function, for example those discussed by Mond [31] and
Zang and Mond [38]. Mishra et al. [25] proved necessary and sufficient optimal-
ity conditions for nondifferential semi-infinite programming problems involving
square root of quadratic functions, see, for more details [6, 32, 33, 35]. Further-
more, the term with the square root of a positive semidefinite quadratic function
has been replaced by a more general function, namely, the support function of a
compact convex set, whose the subdifferential can be simply expressed. Mond
and Schechter [30] have constructed symmetric duality of both Wolfe and Mond-
Weir types for nonlinear programming problems where the objective contains the
support function. Husain et al. [13] have obtained optimality and duality for a
nondifferentiable nonlinear programming problem involving support function,
see for more details [1, 14, 21, 22] and references therein. Convexity and their
generalizations play an important role in optimization theory. The class of invex
functions was introduced by Hanson [10] and named by Craven [4] as a general-
ization of convexity. Jayekumar and Mond [15] generalized Hanson’s definition
to vectorial case. Later, several other generalizations of invex functions have been
introduced, for details see Mishra at el. [26, 27] and references therein.

This article is organized as follows: In Section 2, definitions and preliminaries
are given. In Section 3, we establish the sufficient optimality conditions for
multiobjective semi-infinite programming problems involving support functions.
In Section 4, we formulate Mond-Weir type dual for multiobjective semi-infinite
programming problems involving support functions and establish weak, strong
and strict-converse duality theorems under generalized convexity assumptions.
In Section 5, we discuss some special cases of the primal and dual problems.

2. DEFINITIONS AND PRELIMINARIES

In this section, we present some definitions and results which will be needed
in the sequel. Let Rn be the n-dimensional Euclidean space and Rn

+ be the non-
negative orthant of Rn. Let 〈., .〉 denotes the Euclidean inner product and ‖.‖ be
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Euclidean norm in Rn. Given a nonempty set D ⊆ Rn,we denote the closure of D
by D̄ and convex cone (containing origin) by cone(D). The native polar cone and
the strictly negative polar cone are defined respective by

D≤ := {d ∈ Rn
|〈x, d〉 ≤ 0, ∀x ∈ D},

D< := {d ∈ Rn
|〈x, d〉 < 0, ∀x ∈ D}.

Definition 2.1. [5] Let D ⊆ Rn. The contingent cone T(D, x) at x̄ ∈ D̄ is defined by

T(D, x̄) := {d ∈ Rn
|∃ tk ↓ 0, ∃ dk → d : x̄ + tkdk ∈ D ∀k ∈N}.

Definition 2.2. [5] A function f : Rn
→ R is said to be Lipschitz near x ∈ Rn, if there

exist a positive constant K and a neighborhood N of x such that for any y, z ∈ N, one has

| f (y) − f (z)| ≤ K ‖ y − z ‖

The function f is said to be locally Lipschitz on Rn if it is Lipschitz near x for every
x ∈ Rn.

Definition 2.3. [5] The Clarke generalized directional derivative [5] of a locally Lipschitz
function f at x ∈ Rn in the direction d ∈ Rn, denoted by f o(x; d), is defined as

f o(x; d) = lim sup
t↓0, y→x

f (y + td) − f (y)
t

where y is a vector in Rn.

Definition 2.4. [5] The Clarke generalized subdifferential of f at x ∈ Rn is denoted by
∂c f (x), defined as

∂c f (x) = {ξ ∈ Rn : f o(x; d) ≥ 〈ξ, d〉,∀d ∈ Rn
}.

Definition 2.5. [26] A locally Lipschitz function f : Rn
→ R is said to be invex at

x∗ ∈ Rn if there exists an n-dimensional vector valued function η : Rn
×Rn

→ Rn such
that

f (x) − f (x∗) ≥ 〈ξ, η(x, x∗)〉,

for each x ∈ Rn and every ξ ∈ ∂c f (x∗).
The function f is said to be invex near x∗ ∈ Rn if it is invex at each point of neighborhood
of x∗ ∈ Rn.

Definition 2.6. [26] A locally Lipschitz function f : Rn
→ R is said to be strictly invex

at x∗ ∈ Rn if there exists an n-dimensional vector valued function η : Rn
× Rn

→ Rn

such that
f (x) − f (x∗) > 〈ξ, η(x, x∗)〉,

for each x ∈ Rn, x , x∗ and every ξ ∈ ∂c f (x∗).
The function f is said to be strictly invex near x∗ ∈ Rn if it is strictly invex at each point
of neighborhood of x∗ ∈ Rn.
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Definition 2.7. [26] A locally Lipschitz function f : Rn
→ R is said to be pseudo

invex at x∗ ∈ Rn if for all x ∈ Rn, there exists an n-dimensional vector valued function
η : Rn

×Rn
→ Rn such that

〈ξ, η(x, x∗)〉 ≥ 0, for some ξ ∈ ∂c f (x∗)⇒ f (x) ≥ f (x∗).

Definition 2.8. [26] A locally Lipschitz function f : Rn
→ R is said to be strictly

pseudo invex at x∗ ∈ Rn if for all x ∈ Rn, x , x∗, there exists an n-dimensional vector
valued function η : Rn

×Rn
→ Rn such that

〈ξ, η(x, x∗)〉 ≥ 0, for some ξ ∈ ∂c f (x∗)⇒ f (x) > f (x∗).

Definition 2.9. [26] A locally Lipschitz function f : Rn
→ R is said to be quasi-invex

at x∗ if there exists an n-dimensional vector valued function η : Rn
×Rn

→ Rn such that

f (x) ≤ f (x∗)⇒ 〈ξ, η(x, x∗)〉 ≤ 0,

for each x ∈ Rn and every ξ ∈ ∂c f (x∗).
The function f is said to be quasi-invex near x∗ ∈ Rn if it is quasi-invex at each point of
neighborhood of x∗ ∈ Rn.

Remark 2.1. [26]

1. Every invex function is also quasi-invex for the same η, but not conversely.
2. Every invex function is also pseudo-invex for the same η, but not conversely.
3. Every strictly invex function is also strictly pseudo-invex for the same η, but not

conversely.

Let C be a nonempty compact convex set in Rn. The support function S(.|C) :
Rn
→ R ∪ {+∞} is given by

S(x|C) = max{〈z, x〉 : z ∈ C}.

Example 2.1. If C = [0, 1], then the support function S(·|C) : R → R ∪ {+∞} is given
by

S(x|C) = max{zx : z ∈ C}.

S(x|C) =
|x| + x

2

The support function, being convex and everywhere finite, has a Clark subd-
ifferential [5], in the sense of convex analysis. Its subdifferential is given by

∂S(x|C) = {z ∈ C : 〈z, x〉 = S(x|C)}.

For any nonempty set S ⊆ Rn, the normal cone to S at the point x ∈ S is denoted
by NS(x) and defined as follows:

NS(x) = {y ∈ Rn : 〈y, z − x〉 ≤ 0,∀z ∈ S}.
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It is easy to verify that for a compact convex set C, y ∈ Nc(x) if and only if
S(y|C) = 〈x, y〉 or equivalently, x is in the subdifferential of S at y.

In this paper, we consider the following nonsmooth semi-infinite multiobjec-
tive programming problem :

(MOSIP) min
(

f1(x) + S(x|C1), ..., fp(x) + S(x|Cp)
)

subject to 1i(x) ≤ 0, i ∈ I

x ∈ Rn,

where I is an index set which is possibly infinite, f j, j = 1, 2, ..., p and 1i, i ∈ I
are locally Lipschitz functions from Rn to R ∪ {+∞}. Let M denote the feasible
solutions of (MOSIP).

M := {x ∈ Rn
|1i(x) ≤ 0 ∀i ∈ I}.

Let x∗ ∈M. We denote I(x∗) =
{
i ∈ I : 1i(x∗) = 0

}
, the index set of active constraints

and let

F(x∗) :=
p⋃

j=1

∂c

(
f j(x∗) + S(x∗|C j)

)
,

G(x∗) :=
⋃

i∈I(x∗)

∂c1i(x∗).

The following constraint qualifications are generalization of constraint qualifi-
cations from [19] for multiobjective programming problem with support functions
(MOSIP).

Definition 2.10. We say that:

(a) The Abedie contraint qualification(ACQ) holds at x∗ ∈M if

G≤(x∗) ⊆ T(M, x∗).

(b) The Basic constraint qualification (BCQ) holds at x∗ ∈M if

T≤(M, x∗) ⊆ cone(G(x̄)).

(c) The Regular contraint qualification(RCQ) holds at x̄ ∈M if

F<(x∗) ∩ G≤x∗) ⊆ T(M, x∗).

Definition 2.11. A feasible point x∗ ∈ M is said to be weakly efficient solution for
(MOSIP) if there is no x ∈M such that

f j(x) + S(x|C j) < f j(x∗) + S(x∗|C j) for all j = 1, 2, ..., p.
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3. OPTIMALITY CONDITIONS

In this section, we prove the sufficient optimality conditions for considered
nonsmooth semi-infinite multiobjective programming problem (MOSIP). For this,
Theorem 3.4 (ii) from Kanzi and Nobakhtian [19] can be generalized for the mul-
tiobjective semi-infinite programming problem with support functions(MOSIP)
as follows:

Theorem 3.1. [Necessary optimality conditions] Let x∗ be a weakly efficient solution for
(MOSIP) and assume that a suitable constraints qualification from Definition 2.10 holds
at x∗. If cone(G (x*)) is closed, then there exist τ j ≥ 0 , z j ∈ C j ( for j = 1, 2, ..., p)and
λi ≥ 0 (for i ∈ I(x∗)) with λi , 0 for finitely many indices i, such that

0 ∈
p∑

j=1

τ j[∂c f j(x∗) + z j] +
∑

i∈I(x∗)

λi∂c1i(x∗), (1)

p∑
j=1

τ j = 1, (2)

〈z j, x∗〉 = S(x∗|C j), j = 1, ..., p. (3)

Theorem 3.2. [Sufficient optimality conditions] Let x∗ be feasible for (MOSIP) and I(x∗)
is nonempty. Assume that there exist τ j > 0, z j ∈ C j (for j = 1, 2, ..., p) and scalars
λi ≥ 0 for i ∈ I(x∗)) with λi , 0 for finitely many indices i, such that necessary optimality
conditions (1)-(3) hold at x∗. If τ j( f j(.) + 〈z j, .〉), for j = 1, 2, ..., p are pseudo-invex and
λi1i(·), i ∈ I(x∗) are quasi-invex at x∗ with respect to the same η, then x∗ is a weakly
efficient solution for (MOSIP).

Proof : We proceed by contradiction. Suppose, contrary to the result, that
x∗ ∈M is not a weakly efficient solution for (MOSIP). Then, there exists a feasible
point x ∈M for (MOSIP) such that

f j(x) + S(x|C j) < f j(x∗) + S(x∗|C j), for all j = 1, ..., p,

thus, we have
p∑

j=1

τ j

[
f j(x) + S(x|C j)

]
<

p∑
j=1

τ j

[
f j(x∗) + S(x∗|C j)

]
. (4)

Since 〈z, x〉 ≤ S(x|C) and the assumption 〈z j, x∗〉 = S(x∗|C j), j = 1, ..., p, we have

p∑
j=1

τ j

[
f j(x) + 〈z j, x〉

]
<

p∑
j=1

τ j

[
f j(x∗) + 〈z j, x∗〉

]
. (5)

From (1), there exist ξ j ∈ ∂c f j(x∗) and ζi ∈ ∂c1i(x∗) such that

p∑
j=1

τ j

(
ξ j + z j

)
+

∑
i∈I(x∗)

λiζi = 0. (6)
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Since x is a feasible point for (MOSIP) and λi1i(x∗) = 0, i ∈ I(x∗)∑
i∈I(x∗)

λi1i(x) ≤
∑

i∈I(x∗)

λi1i(x∗), (7)

Thus, from pseudo-invexity of τi
(

fi(·) + 〈zi, ·〉
)
, for i = 1, 2, ..., p we have

p∑
j=1

τ j

[
f j(x) + 〈z j, x〉

]
≥

p∑
j=1

τ j

[
f j(x∗) + 〈z j, x∗〉

]
,

which contradicts (5). This completes the proof.
The following corollary is a direct consequence of Remark 2.1 and Theorem

3.2.

Corollary 3.1. Let x∗ be feasible for (MOSIP) and I(x∗) is nonempty. Assume that there
exist τ j > 0, z j ∈ C j (for j = 1, 2, ..., p) and scalars λi ≥ 0 (for i ∈ I(x∗)) with λi , 0
for finitely many indices i, such that necessary optimality conditions (1)-(3) hold at x∗.
If τ j( f j(.) + 〈z j, .〉), for j = 1, 2, ..., p are invex and λi1i(·), i ∈ I(x∗) are invex at x∗ with
respect to the same η, then x∗ is a weakly efficient solution for (MOSIP).

We now give an example to illustrate the above theorem for a particular
multiobjective semi-infinite programming problem.

Example 3.1. We consider the following problem:

(MOSIP) min
(

f1(x) + S(x|C1), f2(x) + S(x|C2)
)

subject to 1i(x) ≤ 0, ∀i ∈ I
x ∈ R,

where, I := {2, 3, ...} and f1, f2, S(x|C1), S(x|C2) are functions defined as:
f1(x) = −x, f2(x) = x2,S(x|C1) = S(x|C2) = |x| for C1 = C2 = [−1, 1] and

1i(x) =

{
1
i x, x ≥ 0;
x, x < 0.

The feasible solution for problem (MOSIP) is M := (−∞, 0] and for x̄ = 0 ∈ M, I(x̄) = I.
It is easy to verify that all defined functions are locally Lipschitz at x̄ = 0. Also,
∂ f1(x̄) = −1, ∂ f2(x̄) = 0, ∂1i(x̄) = [ 1

i , 1], i = 2, 3, · · · .
Clearly necessary optimality conditions (1) − (3) of Theorem 3.1 hold at x̄ ∈ M, as there
exist τ1 = τ2 = 1

2 , z1 = −1, z2 = 0, λ = (1, 0, 0, ...), ξ1 = −1, ξ2 = 0, ζi = 1, for i ∈ I,
such that

2∑
j=1

τ j

(
ξ j + z j

)
+

∑
i∈I(x∗)

λiζi =
1
2

(−1 − 1) + 0 + 1 = 0.

It is verified that τi( fi(x) + 〈zi, x〉), for i = 1, 2 are pseudo-invex at x̄ and λi1i(x) are
quasi-invex at x̄ with respect to η(x, x̄) = x − x̄.
We observe that there is no x ∈M, such that

f j(x) + S(x|C j) < f j(x̄) + S(x̄|C j) for all j = 1, 2.

Hence, x̄ = 0 is a weakly efficient solution for (MOSIP).
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4. DUALITY

Many authors have formulated Mond-Weir type dual and established duality
results in various optimization problems with support functions; see [1, 2, 13,
21, 22, 30] and the references therein. Following the above mentioned works,
we formulate Mond-Weir type dual for nonsmooth semi-infinite programming
problem with support function (MOSIP) and establish duality theorems.

(MOSID) Max
(

f1(y) + 〈z1, y〉, ..., fp(y) + 〈zp, y〉
)

0 ∈
p∑

j=1

τ j

(
∂c f j(y) + z j

)
+

∑
i∈I

λi∂c1i(y), (8)

∑
i∈I

λi1i(y) ≥ 0, (9)

We now discuss the weak, strong and strict converse duality for the pair
(MOSIP) and (MOSID).

Theorem 4.1. [Weak Duality] Let x be feasible for (MOSIP) and (y, τ, λ, z1, ..., zp) be
feasible for (MOSID). If τ j( f j(·)+〈z j, ·〉) for j = 1, 2, ..., p are pseudo-invex andλi1i(·), i ∈ I
are quasi-invex at y with respect to the same η. Then the following cannot hold:

f j(x) + S(x|C j) < f j(y) + 〈z j, y〉 for all j = 1, ..., p.

Proof:
Let x be feasible for (MOSIP) and (y, τ, λ, z1, ..., zp) be feasible for (MOSID), then

0 ∈
p∑

j=1

τ j

(
∂c f j(y) + z j

)
+

∑
i∈I

λi∂c1i(y), (10)

∑
i∈I

λi1i(y) ≥ 0, (11)

According to (10), there exist ξ j ∈ ∂c f j(y) and ζi ∈ ∂c1i(y) such that

p∑
j=1

τ j

(
ξ j + z j

)
+

∑
i∈I

λiζi = 0 (12)
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We proceed to the result of the theorem by contradiction. Assume that

f j(x) + S(x|C j) < f j(y) + 〈z j, y〉 for all j = 1, ..., p.

Thus, we have

p∑
j=1

τ j

[
f j(x) + (S(x|C j)

]
<

p∑
j=1

τ j

[
f j(y) + 〈z j, y〉

]
. (13)

Using the inequality 〈z, x〉 ≤ S(x|C) , we have

p∑
j=1

τ j

[
f j(x) + 〈z j, x〉

]
<

p∑
j=1

τ j

[
f j(y) + 〈z j, y〉

]
. (14)

As x is feasible for (MOSIP) and (y, τ, λ, z1, ..., zp) is feasible for (MOSID), we
have ∑

i∈I

λi1i(x) ≤
∑
i∈I

λi1i(y).

From definition of quasi-invexity, we have

〈∑
i∈I

λiζi, η(x, y)
〉
≤ 0, (15)

for each x ∈ X and every ζi ∈ ∂c1i(x).
Multiplying (12) by η(x, y) and using (15), we get〈 p∑

j=1

τ j

(
ξ j + z j

)
, η(x, y)

〉
≥ 0,

for each x ∈ X and some ξ j ∈ ∂c f j(y).
Thus, from definition of pseudo-invexity, we have

p∑
j=1

τ j

[
f j(x) + 〈z j, x〉

]
≥

p∑
j=1

τ j

[
f j(y) + 〈z j, y〉

]
,

which contradicts (14). This completes the proof.

The following corollary is a direct consequence of Remark 2.1 and Theorem
4.1.
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Corollary 4.1. Let x be feasible for (MOSIP) and (y, τ, λ, z1, ..., zp) be feasible for (MOSID).
If τ j( f j(·) + 〈z j, ·〉) for j = 1, 2, ..., p and λi1i(·), i ∈ I are invex at y with respect to the
same η. Then the following cannot hold:

f j(x) + S(x|C j) < f j(y) + 〈z j, y〉 for all j = 1, ..., p.

The following example shows that the generalized invexity imposed in the
above theorem is essential.

Example 4.1. We consider the following problem:

(MOSIP) min
(

f1(x) + S(x|C1), f2(x) + S(x|C2)
)

subject to 1i(x) ≤ 0, i ∈ I

x ∈ R,

where, I :=N and f1, f2, S(x|C1), S(x|C2) are functions defined as:
f1(x) = −2x, f2(x) = x2,S(x|C1) = S(x|C2) = |x| for C1 = C2 = [−1, 1] and

1i(x) = −i|x|, for i ∈ I.

The feasible solution for problem (MOSIP) is M := R and let set x̄ = 1 ∈M.
The Mond-Weir dual for (MOSIP) can be given as:

(MOSID) max
(
−2y + z1, y2 + z2y

)
0 ∈

2∑
j=1

τ j

(
∂ f j(y) + z j

)
+

∑
i∈I

λi∂1i(y),

∑
i∈I

λi1i(y) ≥ 0,

y ∈ Rn, τ j ≥ 0,
∑2

j=1 τ j = 1, λi ≥ 0 with λ = (λi)i∈I , 0 for finitely many indices i ∈ N
and z j ∈ C j, for j = 1, 2.
By choosing ȳ = 0, τ1 = τ2 = 1

2 , z1 = 1, z2 = 0 and λ = (1, 0, ...). We have (y, τ, λ, z1, z2)
as a feasible point of (MOSID). Observe that λi1i(·) at y is not quasi-invex with respect
to η(y, ȳ) = y − ȳ and that f1(x̄) + S(x̄|C1) = −1 < f1(y) + 〈z1, y〉 = −y + y = 0 holds.
This means that quasi-invexity and pseudo-invexity are essential for weak duality as
described in Theorem 4.1 .

The following theorem gives strong duality relation between the primal prob-
lem (MOSIP) and the dual problem (MOSID).

Theorem 4.2. [Strong Duality] Let x be a weakly efficient solution for (MOSIP) at which
a suitable constraints from Definition 2.10 holds at x∗ and cone(G(x)) is closed. If the
pseudo-invexity and quasi-invexity assumptions of the weak duality theorem are satisfied,
then there exists (τ, λ, z1, ..., zp) such that (x, τ, λ, z1, ..., zp) is a weakly efficient solution
for (MOSID) and the respective objective values are equal.
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Proof: Since x is a weakly efficient solution for (MOSIP) at which the suitable
constraints qualification holds and cone(G(x)) is closed, from the Kuhn-Tucker
necessary conditions, there exists (τ, λ, z1, ..., zp) such that (x, τ, λ, z1, ..., zp) is feasi-
ble for (MOSID).
On the other hand by weak duality theorem (4.1), the following cannot hold for
any feasible y for (MOSID):

f j(x) + S(x|C j) < f j(y) + 〈z j, y〉 for j = 1, ..., p.

Since 〈z, x〉 ≤ S(x|C), we have

f j(x) + 〈z j, x〉 < f j(y) + 〈z j, y〉 for j = 1, ..., p.

Thus, (x, τ, λ, z1, ..., zp) is a weakly efficient solution for (MOSID) and the objective
values of (MOSIP) and (MOSID) are equal at x.

The following corollary is a direct consequence of Remark 2.1 and Theorem
4.2.

Corollary 4.2. Let x be a weakly efficient solution for (MOSIP) at which the suitable
constraints qualification from Definition 2.10 holds at x∗ and cone(G(x)) is closed. If
the invexity assumptions of the weak duality theorem are satisfied, then there exists
(τ, λ, z1, ..., zp) such that (x, τ, λ, z1, ..., zp) is a weakly efficient solution for (MOSID) and
the respective objective values are equal.

The following theorem gives strict converse duality relation between the pri-
mal problem (MOSIP) and the dual problem (MOSID).

Theorem 4.3. [Strict converse duality] Let x∗ be a weakly efficient solution for (MOSIP)
at which a suitable constraint from Definition 2.10 holds at x∗ and cone(G (x∗)) is closed.
Let τ j( f j(·) + 〈z j, ·〉) for j = 1, 2, ..., p be pseudo-invex and λi1i(·), i ∈ I be quasi-invex
with respect to the same η. If (x, τ, λ, z1, ..., zp) is a weak efficient solution for (MOSID)
and τ j( f j(·) + 〈z j, ·〉) for j = 1, 2, ..., p are strictly pseudo-invex at x, then x = x∗.

Proof: We prove the result of theorem by contradiction. Assume that x ,
x∗. Then by strong duality Theorem (4.2) there exists (τ, λ, z1, ..., zp) such that
(x∗, τ, λ, z1, ..., zp) is a weakly efficient solution for (MOSIP) and

f j(x∗) + S(x∗|C j) = f j(x) + 〈z j, x〉 f or j = 1, ..., p.

Using 〈z j, x∗〉 = S(x∗|C j), j = 1, ..., p, we have

p∑
j=1

f j(x∗) + 〈z j, x∗〉 =

p∑
j=1

f j(x) + 〈z j, x〉 for j = 1, ..., p. (16)

As x∗ is a weakly efficient solution for (MOSIP), λi ≥ 0 and (x, τ, λ, z1, ..., zp) is
a weakly efficient solution for (MOSIP), we have∑

i∈I

λi1i(x∗) ≤
∑
i∈I

λi1i(x).
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From definition of quasi-invexity of λi1i(.),i ∈ I

〈∑
i∈I

λiζi, η(x∗, x)
〉
≤ 0, (17)

for every x∗ ∈ X and every ζi ∈ ∂c1i(x).

Now from (12) and(17), we have〈 p∑
j=1

τ j

(
ξ j + z j

)
, η(x∗, x)

〉
≥ 0.

for each x∗ ∈ X and some ξ j ∈ ∂c f j(x).
Thus from strict pseudo-invexity of τ j( f j(·) + 〈z j, ·〉) for j = 1, 2, ..., p at x, we get

p∑
j=1

τ j

[
f j(x∗) + 〈z j, x∗〉

]
>

p∑
j=1

τ j

[
f j(x) + 〈z j, x〉

]
, (18)

which contradicts (16). Therefore, x∗ = x.
The following corollary is a direct consequence of Remark 2.1 and Theorem

4.3.

Corollary 4.3. Let x∗ be a weakly efficient solution for (MOSIP) at which a suitable
constraint qualification from Definition 2.10 holds at x∗ and cone(G (x∗)) is closed. Let
τ j( f j(·) + 〈z j, ·〉) for j = 1, 2, ..., p be pseudo-invex and λi1i(·), i ∈ I be quasi-invex with
respect to the same η. If (x, τ, λ, z1, ..., zp) is a weak efficient solution for (MOSID) and
τ j( f j(·) + 〈z j, ·〉) for j = 1, 2, ..., p are strictly pseudo-invex at x, then x = x∗.

5. SPECIAL CASES

Special cases of our problem and its dual problem are as follows:

• If C j = {0}, j = 1, 2, ..., p then (MOSIP) reduces to the problem considered by
Kanzi and Nobakhtain [19].

• If C j, j = 1, 2, ..., p are compact convex sets given by C j = {B jz j : 〈z j,B jz j〉 ≤

1, j = 1, ..., p}, where B j, j = 1, 2, ..., p are positive semi-definite matrices, then
we may write, S(x|C j) = 〈x,B jx〉1/2, j = 1, 2, ...p. If f j for j = 1, 2, ..., p and
1i, i ∈ I are differentiable, then the problems (MOSIP)and (MOSID) reduce
to the problems studied by Mishra et al. [25].

• Let p and q be conjugate exponents; i.e. 1
p + 1

q = 1, p ≥ 1, q ≥ 1. Let B

be matrix of appropriate dimension and ‖y‖p = [
∑

i |yi|
p]

1
p . If we take j=1
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in objective of primal problem and C1 = {BTz : ‖z‖q ≤ 1}, then following
Mond and Schechter [29], we may write S(x|C1) = ‖Bx‖p. Furthermore, if I is
finite set, then the problems (MOSIP) and (MOSID) reduce to the problems
considered by Mond and Schechter [28].
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