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Abstract: This article presents an integer linear model for the hop constrained node survivable
network design problem. The formulation is focused on networks represented by undirected graphs
with not rooted demands, considering costs in arcs and in optional (Steiner) nodes, too. The pro-
posed model allows setting different values of parameters for constraints between each pair of termi-
nal nodes, including hop length and number of node disjoint paths constraints. This work includes
calculating lower and upper bounds to the optimal solution. Since this kind of problems are NP-
hard, it is useful to combine the presented formulation with heuristic methods in order to solve
effectively large problem instances. The model was tested over the graphs with up to 85 nodes and
148 arcs, in order to validate it in cases with known solution.

Keywords: Network Design, Hop Constrained, Survivability.

MSC: 90B06, 90C05, 90C08.

1. INTRODUCTION

In network design, the survivability property enables the network to maintain a certain
level of network connectivity and quality of service under failure conditions. Survivability
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has been considered as one of the critical requirements in network planning and design [5].
It often involves considering design requirements on the network topology, or in the case
of communication networks, constraints could be associated with protocol, bandwidth
allocation, etc. For instance, a topology requirement would achieve a design that keeps
a minimum two-connected network against any failure of a single link or node. This
concept can be applied to multiple types of networks, such as communication, power,
transportation network, etc. (see for instance [3] [8]).

Formally, survivability is defined as the capacity of a network to remain operational
after disturbances or failures in some components [1]. The survivable network design
problem has been extensively studied [5, 3, 8, 10] and it is known to be NP-hard[6].
Survivability properties are usually modeled by requiring a minimal number of node -or
edge- disjoint paths between certain pairs of nodes.

In this article, we combine survivability and quality of service concepts for the prob-
lem that imposes additionally hop-constraints when designing survivable networks. This
approach ensures that for every distinct pair of nodes, there exists a predefined number of
edge/node disjoint paths, so that each such path does not exceed a given hop limit.

Recent literature calls this kind of problems as Hop Constrained Survivable Network
Design Problem (HCSNDP) [5, 2, 7]. The HCSNDP proposes finding the optimal net-
work design with survivability requirements and effectiveness in quality of service (e.g.,
the maximum length of paths is bounded).

We focus on solving a variant of the HCSNDP that is applied to model networks
represented by undirected graphs with not rooted demands, considering costs in arcs and
in optional (Steiner) nodes, too. Different values of parameters for constraints between
each pair of terminal nodes are allowed in the problem formulation, including hop length
and number of node disjoint paths constraints. This is a generalization of HCSNDP that
we named as ”Generalized Steiner Problem with weighted Steiner nodes and diameter
constrained” (GSPWDC).

We introduce an integer linear model for the GSPWDC. The exact model is tested
over some graphs in order to perform a validation in cases with known solutions. Since
this kind of problems is NP-hard, we propose and test some procedures to calculate lower
and upper bounds to the optimal solution, which allow to approach effectively an optimal
solution. These bounds are very useful when facing large problem instances.

The paper is organized as follows. Next section introduces the main concepts and
definitions releted to the problem model and formulations. The proposed problem for-
mulation is presented in Section 3. Lower and upper bounds to the optimal solution are
analyzed in Section 4. The experimental evaluation is reported and discussed in Section
5. Finally, Section 6 presents the conclusions and the main lines for future work.

2. BACKGROUND

A network is represented as a graph, G = (V,E). We consider only two possible types
of nodes: terminal nodes, for which connectivity requirements are defined (set T), and
optional or Steiner nodes (set S).

There are two models to specify the survivability conditions [6]. In this work we
follow the Generalizad Steiner Problem (GSP) approach by Winter [11]: given a network
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represented by a graph G = (V,E), with costs associated to edges, let T ⊆ V be the set
of terminal nodes and let Q = {q = (i, j),∀i, j ∈ T} be the set of all pairs of nodes in
T ⊆ V; the problem is to find a subgraph with minimal cost so that ∀q ∈ Q at least
rq ∈ N node -or edge- disjoint paths exist. In the case where T = V and rq = k,∀q ∈ Q ,
with cost associated to the edges and node disjoints paths, the problem is also known as
NCON(G, k) [9]

In order to model the HCSNDP, we use a variant of the GSP, that we call “General-
ized Steiner Problem with weighted Steiner nodes and diameter constrained (GSPWDC)”,
which is formulated as follows:

Given a undirected simple graph G = (V,E), with: (i) a set of edge cost or weights
C = {ci j ∈ R+},∀(i, j) ∈ E; (ii) a set of terminal nodes T ⊆ V; (iii) Q = {q} the set of
pairs of nodes in T ⊆ V, (iv) a matrix with node (or arc) connectivity requirements R =
{Rq}∀q ∈ Q; (v) a vector with node weights A = {ai ∈ R+, i ∈ S = V\T}; and (vi) a matrix
of maximum length of paths allowed (hop requirements) L = {Lq ≥ 0, inte1er,∀q ∈ Q};
the GSPWDC consist in finding a minimal cost subgraph H ⊆ G such that it covers T
and ∀q ∈ Q exist at least Rq node or arc disjoint paths linking a pair of terminal nodes
q = (i, j) in H, so that each one has no more than Lq hops or arcs.

Calling a pair of terminal nodes q as a demand, if all q have a common node, then
the demand is called rooted, otherwise it is unrooted. According to Mahjoub [7], when
| Q |= 1, the HCSNDP can be solved in polynomial time for L ≤ 3, and it is NP-hard for
L ≥ 4. When | Q | is not constrained, the problem is NP-hard, even in simplest case when
Q is rooted, R=1 and L=2 ∀q ∈ Q.

The review of related work about models and formulations for the hop-constrained
survivable network design problem allows identifying four existing models. The first three
models are all variants of the same approach, initially proposed by Gouveia in 1998 [4]
and later completed by Botton [1]. All of them were proposed to solve HCSNDP and were
also implemented and tested over different networks. The fourth model was presented as
an ILP model to solve SNDP in the survey by Kerivin and Mahjoub [6]. This model does
not have practical results reported, but it was used to extract some interesting properties
of polytopes corresponding to constraints space instead.

All the existing models for hop-constrained survivable networks use the same main
idea to represent hop constraints. A set of auxiliary graphs are introduced: an auxiliary
graph Gq—also called layered graph due to the method applied for building it— is defined
for each q ∈ Q. Each graph Gq contains all existing paths between each pair of terminal
nodes q = (o, d) with length not greater than Lq (being Lq the number of hops allowed for
q = (o, d)). The survivability constraints are formulated over these auxiliary graphs and
hop constraints are implicitly considered because in the auxiliary graphs all paths have
lengths shorter than Lq.

3. AN ILP FORMULATION FOR THE HCSNDP

The proposed formulation is a variant of the existing models known as “Hop-indexed
formulation”, presented by Gouveia et al. [5] and “Hop multi-commodity flow formula-
tion (HOP-MCF)” introduced by Botton [1]. The proposed model also incorporates some
concepts used in recent works [6, 7, 4]. The model presented here allows considering
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constraints with different maximal length of paths between each pair of terminal nodes,
as well as different numbers of required node-disjoint paths between each pair of termi-
nal nodes (i.e., allowing heterogeneous survivability conditions). The model includes the
cost of edges and nodes, too. In order to represent hop constraints, just like in the afore-
mentioned previous works, we use extended layered graphs (one for each q ∈ Q) that
implicitly guarantees satisfying the maximum path length constraints.

The main idea behind the proposed formulation is to decompose the problem into |Q|
subproblems, one for each pair of terminal nodes q ∈ Q. Let (o(q), d(q)) be a pair of
origin–destination nodes corresponding to q. Fixed q, each subproblem is modeled with
a directed graph composed of L + 1 layers (according to the transformation proposed by
Gouveia [4]): being G = (V,E) the original undirected graph, the alternative represen-
tation is Gq = (Vq,Aq) where Vq = Vq

1 ∪ . . . ∪ Vq
L+1 / Vq

1 = o(q), Vq
L+1 = d(q) and

Vq
l ⊆ {V \ {o(q)} such that there are a simple path between o(q) and each v ∈ Vq

l with
length at most l, with l = 2 . . . L.

Using the same notation proposed by Botton [3], let vq
l be the copy of v ∈ V in the

l-th layer of graph Gq, then Aq = {(iql , jql+1)/(i, j) ∈ E, iql ∈ Vq
l , jql+1 ∈ Vq

l+1, l ∈ {1, . . . ,L}}∪
{d(q)l, d(q)l+1, l ∈ {2, . . .L}}. Details and graphical examples of the extended layered
graphs were already provided by Botton [3, 1].

An edge in E with end points i and j is denoted as i j, while the arc between iql ∈ Vq
l

and jql+1 ∈ Vq
l+1 in the directed graph is denoted as (i, j, l).

When using the proposed transformation, all paths from o(q) to d(q) in Gq fulfill hop-
constraints.

Consider the following set of parameters:

i) ai denotes the cost associated to each Steiner node i;

ii) ci j is the cost associated to edge i j,∀i j ∈ E;

iii) Rq is the minimal number of node-disjoint paths required between o(q) and d(q),
∀q ∈ Q;

iv) Lq is the maximum length allowed for paths (hops) between o(q) and d(q), ∀q ∈ Q.

Also, consider the following set of variables:

i) zi j is a binary variable that indicates if edge i j ∈ E is in the solution;

ii) xl,q
i j is the flow through arc (i, j, l), for each q in the layer l of Gq;

iii) Ni is a binary variable that indicates ∀i ∈ S if the Steiner node i is included or not in
the solution. Each Ni is used to allow at most one active outgoing arc from a node
i over all layers of Gq, guaranteeing not to repeat nodes in a path between o(q) and
d(q).
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The ILP-HCSNDP formulation is presented next.

(ILP-HCSNDP) min
∑

(i, j)∈E

ci j.zi j +
∑
i∈V

ai.Ni with: (1)∑
j:(o(q), j,1)∈Aq

x1,q
o(q), j = Rq (2)∑

j:( j,d(q),Lq)∈Aq

xL(q),q
j,d(q) = −Rq (3)

∑
j:( j,i,l−1)∈Aq

xl−1,q
i j −

∑
j:(i, j,l)∈Aq

xl,q
ji = 0, f or all q ∈ Q, l ∈ {2, . . . ,Lq}, i ∈ Vq

l (4)∑
l=1,...,Lq

xl,q
i j + xl,q

ji ≤ zi j, f or all (i, j) ∈ E, q ∈ Q (5)

zi j ∈ {0, 1}, f or all (i, j) ∈ E (6)

xl,q
i j ≥ 0 inte1er f or all (i, j, l) ∈ Aq, q ∈ Q (7)∑

l=1,...,Lq

∑
j∈δ(i)

xlq
i j ≤ Ni f or all q ∈ Q, (i, j) ∈ E, and i ∈ S (8)

Ni ∈ {0, 1}, f or all i ∈ S (9)

In the ILP-HCSNDP formulation, Equation (1) is the objective function: it proposes
minimizing the costs associated to arcs and Steiner nodes. Regarding the constraints, the
network flow over Gq (Equations (2), (3), and (4)) assure that there are Rq paths from
o(q) to d(q). Equation (5) does not enable using multiple times a given edge i j on a path
in Gq, thus guaranteeing the edge-disjointness property, while they also link variables z
and flow variables of copies of the same arc in different layers, which means that the
total unimodularity property of matrix restriction is lost [1]. As a consequence, a set of
constraints (defined in Equation (7)) must be explicitly introduced to obtain a feasible
solution.

Equations (2)–(7) are present in the model by Botton; our formulation includes new
constraints (defined in Equation (8) and Equation (9)) in order to guarantee the existence
of node-disjoint paths and to allow the model to represent the costs associated to Steiner
nodes. Note that xl,q

i j ≤ 1, i , j, as stated by Equation (5) and Equation (6).
Constraints (stated in Equations (2), (3), and (4)) represent |Q| independent sets of

network flow constraints, one set defined for each q ∈ Q. Then, if constraints defined
in Equations (5)–(9) are relaxed, there will be |Q| independent network flow problems
to solve, and the solution for each variable xlq

i j will be integer. So, the model can take
advantage of following a constraint decomposition approach, but in this case, the difficulty
is that in the objective function, variables xlq

i j have no costs.
A simple idea to easily test the feasibility of constraints related to maximum number

of node-disjoint paths allowed, is to consider for each q∈Q a set CS(q) where CS(q) ⊆
V\{o(q), d(q)} such that nodes o(q) and d(q) are not connected by a path in subgraph G′⊆G
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induced by V′=V\CS(q). So, CS is a cut set between o(q) and d(q) nodes. Applying
Menger’s theorem [6], for each q, the minimum size of CS(q) indicates the maximum
number of node-disjoint o(q)-d(q) paths.

4. LOWER AND UPPER BOUNDS

Due to the intrinsic complexity of ILP-HCSNDP, heuristic and approximate approaches
have to be used to cope with general and real-world instances of medium and large di-
mension. This section proposes and describes a set of procedures to calculate bounds to
the exact solution of the problem.

We propose computing two lower bounds (called LB1, LB2) and four upper bounds
(called UB1, UB2, UB3,UB4), which are defined and explained below. The proposal for
computing upper bounds is based on a general idea: when fixing values of all variables zi j
and Ni, then only xi j variables remain, and the original problem can be separated in | Q |
independent subproblems, which can be solved independently, too.

Lower bounds:

• LB1: it is an optimal solution of the ILP-HCSNDP integer relaxation. Here we
work over Gq, but it is a linear program working in real variables.

• LB2: it is an optimal solution of the ILP-HCSNDP relaxing constraints of maximal
length of paths. Here we work over original graph G, and integer variables.

Upper bounds:

• UB1: it fixes all boolean variables zi j and Ni to one. For each one of | Q | indepen-
dent subproblems, we find the optimal solutions. Then, we calculate which arcs we
must include in a global feasible solution in order to support all optimal solutions of
the subproblems. If some of this subproblems are not feasible then, global problem
is not feasible.

• UB2: it fixes all boolean variables zi j and Ni, some to one and other to zero. For
each one of | Q | subproblems, we find optimal solutions and then we calculate
which arcs must be included in a global solution in order to support all optimal so-
lutions of the subproblems. If some of this subproblems are infeasible, the solution
is discarded.

• UB3: it is an improvement of UB1 and UB2 computed using a Dantzig-Wolfe de-
composition (DW) applied over ILP-HCSNDP problem. Equations (2) are included
in DW subproblem (network flow problem) and remaining constraints are in the
main problem. Integer conditions should be included in the main problem, because
the subproblem always has integer solutions. In this work we do not include inte-
ger conditions in the main problem, so we used results of DW decomposition only
when solutions or upper bounds are integer and improve UB1 or UB2.

• UB4: A greedy heuristic algorithm that builds a feasible solution.
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In UB1 and UB2 cases, as zi j and Ni variables are fixed, we can work with separate
| Q | independent subproblems, so we could profit this condition working in parallel. In
UB3, the subproblem of DW decomposition can be separated, too. For UB1,UB2, and
UB3 we work over Gq, then may be hard to calculate a feasible solution due to high
dimensions.

Algorithm 1 presents a pseudo-code of the heuristic applied to compute UB4. It is a
greedy algorithm that include a diversification phase

The proposed heuristic for computing UB4 starts by calculating a minimum float cost
problem over Gd, with capacity arcs constraints and one additional constraint (lines 12-
13). In this float problem, the pair of nodes in q are taken as source and destination. All
edges have maximal capacity equal to one, except the edge that links sink to source that
has minimal capacity Rq. This assures to find Rq node-disjoint paths between nodes in q.

Let xi, j,∀(i, j) ∈ E be decision variables. The constraint added in line 13,
∑

i j∈E xi j ≤ b,
with b = Rq*Lq bounds the total path length. This constraint does not ensure that all paths
have length lower than Lq, but it decreases the search domain in order to find a feasible
solution. For solving this extended float problem, an integer linear programming can be
used. It is even necessary because the last constraint breaks integrality property of the
float solution.

After that, the float solution s(q) found, which is a binary vector with |E| elements,
is tested in order to determine if hop constraints are satisfied (line 17). If there are some
path that do not satisfy hop limits in last finding solution s(q), then b is decreased by one
(line 18) and the procedure is repeated. If the procedure does not attain a feasible solution
and the extended float problem is infeasible for some value of b, the procedure adds cuts
in order to exclude paths that do not satisfy hop limits.

The heuristic procedure finishes when it finds an infeasible problem for some q (line
24), i.e., the global problem does not have a solution, or when it finds a global feasible
solution. In effect, as b is an integer and it is decreased by one at each iteration where the
feasibility test for Lq fails, the procedure does finish in a finite number of steps. If cuts
must be added, they are also performed in a finite number of steps.
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Algorithm 1 Proposed heuristic algorithm A:
Require: V, E,T, S, Q,C = {ci j,∀(i, j) ∈ E}, A = {ak,∀k ∈ S}, p, R, L
Ensure: 1s . 1s is a binary vector with dimension |E|

1: Build data structures: incidence matrix node-node, incidence matrix node-arcs
2: Convert undirected graph to directed, where each arc is replaced by a pair of edges

with opposite senses.
3: Replace each Steiner node S by a pair of nodes (S1,S2) linked by an edge going from

S1 to S2, such that all incoming edges to S are incoming to S1 and all outgoing edges
of S are outgoing edges of S2. Let Gd be this directed graph.

4: Build incidence matrix node-node and incidence matrix node-arcs NEa for Gd.
5: Order Q by preferences: Sort list Q according to our R and L values in descendent

order (first pairs q of terminal nodes with high R(q) and L(q)) that is, we process first
those pair of terminal nodes that allow the longest paths, which requires more path
linkings between them.

6: Build an ordered list of Steiner nodes ListS, based on preferences calculated accord-
ing to cost of nodes divided by our degree. Order it by increassing preferences

7: for all q ∈ Q do
8: if ListS , ∅ then, . Diversification step
9: extract first element r of ListS with probability p

10: cr = −1
11: end if

. Search a candidate solution
12: Build a minimum float cost problem over Gd, with capacity arcs constraints
13: Add a constraint

∑
i j∈E xi j ≤ b, where b = Rq*Lq

14: while b > 0 do
15: Solve a linear program built in the previous points. Let s(q) be this solution.
16: if s(q) , ∅ then
17: if some path s(q) does not satisfy hop limits Rq then
18: b← b − 1
19: else
20: b = 0
21: end if
22: else
23: if b = Rq*Lq then
24: Display ”infeasible problem”
25: Stop
26: else
27: Add a cut excluding paths that do not satisfy hop limits in s(q)
28: end if
29: end if
30: end while
31: Set to 0 all costs associated with edges in feasible solution corresponding to s(q)
32: Modify ListS, extracting all elements with cost ≤ 0
33: 1s = 1s ∨ s(q) . In order to build a global feasible solution
34: end for
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5. COMPUTATIONAL EXPERIMENTS AND RESULTS

This section presents the experimental evaluation of the proposed ILP-HCSNDP model.
The analysis is oriented to validate in cases with known solution and to research their be-
havior on large instances.

5.1. Development and execution platform
The model was implemented in CPLEX 12.51 MIP solver, and the executions were

performed on a eight-cores Intel i7 processor at 3.07 GHz having 16GB RAM.

5.2. Problem instances
The proposed formulation was tested over eight graphs, using different values for the

size of sets Q, R, and L. This methodology also allows having heterogenous values in
matrices R and L.

We decided to work with simple undirected graphs. Table 1 summarizes the main
characteristics of the graphs used in the experimental analysis. Column D is the graph
density, defined for this type of graphs as 2|E|/|V|(|V|−1). Note that the maximal value
for D is 1 when solving a complete graph with 1

2 |V|(|V|−1) edges.

Table 1: Graphs and instances used in the experimental evaluation

graph | V | | E | D instance

FR1 19 43 0.2515 I1
FR2 11 30 0.5454 I2,I3,I4,I10,I11,I12
EON 19 36 0.2105 I5, I13
NFSNET 14 52 0.5714 I6, I14
TA1 24 55 0.1993 I7
B1 50 63 0.0514 I8
B2 50 63 0.0514 I9
RAU2 85 148 0.0415 I15

Instance I1 is built from FR1, a simple graph for which it is easy to find a solution.
This problem instance is used to tune the model. Instance FR2 has been studied as a
NCON(G, r) instance, with ri j= 2, f or all (i, j) ∈ E,

where the edge costs satisfy the triangle inequality. We use this example to test our
model in a case with known optimal solution. EON and NFSNET are graphs used in the
article by Gouveia et al. [5]. The remaining graphs are taken from libraries of test sets
available at Internet: TA1 is from Survivable fixed telecommunication Network Design
library (SNDlib, http://sndlib.zib.de), B1 and B2 are instances of the Steiner Tree Problem
from SteinLib (http://steinlib.zib.de)

Finally, RAU2 graph is a real-life scenario based on the current Uruguayan academic
network (www.rau.edu.uy).

A given graph can be associated with several instances that differ in their parameter
values. The last column in Table 1 indicates the problem instances created from each
considered graph.
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5.3. Numerical results and discussion

Table 2 reports the parameter values and the results obtained for each instance solved.
A given value in columns labeled L, R, ci j or ai means that the respective parameter is
constant for all paths between each pair of nodes in T. Otherwise, the “diff” label is used
to report when using different values. Instances marked with * are cases with R = 1,
where optimal solutions or upper bounds are known. Columns labeled opt, const, bin,
int and time report for each instance the optimal value (when attained), the number of
constraints, the number of binary variables, the number of integer variables, and the time
(in seconds) to solve each instance, without including the time taken to calculate Vq, the
set of nodes in the layered graph Gq. The number of constraints and variables before
the CPLEX presolve stage are reported; applying a presolve method could significantly
reduce that number.

Table 2: Instances details and experimental results

instance | T | | Q | L R ci j ai opt const bin int time (s)

I1 2 1 5 4 1 1 32 820 60 431 0.04
I2 11 55 7 2 diff 0 25 4497 30 25396 2.58
I3 11 55 8 2 diff 0 24 4992 30 29191 1.45
I4* 11 55 7 1 diff 0 20 4497 30 25396 137.13
I5* 10 45 3 1 1 1 10 16980 45 9887 0.04
I6 6 15 2 2 diff 1 9 7164 60 3169 0.03
I7* 24 396 4 1 1 0 23 24553 51 117201 2.35
I8* 9 36 50 1 diff 0 82 174268 104 238090 1319.00
I9* 13 78 50 1 diff 0 83 339570 79 515729 63177.00
I10 11 55 diff 2 diff 0 24 4713 30 27133 1.55
I11 11 55 diff 2 diff 0 26 4704 30 26983 3.33
I12 11 55 diff diff diff 0 25 4704 30 26983 14.28
I13 10 45 diff diff diff diff 12 16909 45 9374 0.06
I14 10 45 diff diff diff diff 18 25519 67 11696 0.14
I15 20 190 diff diff diff diff 6583 1944361 213 582187 8198.33

The experimental evaluation was performed over graphs with up to 85 nodes and 148
arcs. Most instances are solved in a few seconds, only two cases demanded more than an
hour: instance I9 (about 20 hours) and instance I15 (about two hours). Instances I8 and
I9 took longer to find the optimal solution; these are cases with R=1, and large sets L and
T. According to the cases studied, the parameters that most influence the resolution time
are |L| and |T|; the first is related to the dimensions of Gq and the second to the number of
graphs. In effect, the quantity of x variables, which are the most numerous, depends on
|Q|, |L| and 2×|E|, since each Gq is a directed graph. The number of remaining variables
(all binary) depends on the number of Steiner nodes and the quantity of undirected edges.

For a given specific instance (I15), we explored several values of |T| in the experi-
ments. The largest value of |T| for which we were able to obtain results in reasonable
execution times (less than 24 hours) was |T|= 20. This is a relevant result for our research
community since all variants of I15 problem instance are built over the real infrastruc-
ture of our Uruguayan academic network, allowing to explore different configurations for
survibability and quality of service for academic and research projects.
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Table 3 reports the lower and upper bounds computed for each instance solved. The
column labeled Bound, indicates the kind of bound reported. Possible values are: LB1,
LB2, UB1, UB2, UB3, or UB4, whose meaning has already been described in 4.

Table 3: Lower and upper bounds

instance optimum LB1 LB2 UB1 UB2 UB3 UB4

I1 32 32 32 32
I2 25 24.14 24 70
I3 24 24 24 70
I4* 20 12.07 20 84 79 26 42
I5* 10 9 9 21 18 15 25
I6 9 9 6 17 24 19
I7* 23 20.8 22 51 51 43 65
I8* 82 72 82 131 141 131
I9* 83 72.5 83 148
I10 24 24 24 62
I11 26 24.36 24 62
I12 25 22.5 22 60
I13 12 11.5 10 24
I14 18 18 17 20
I15 6583 6278.25 4308 13211

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented and evaluated a formulation for the Hop Constrained Sur-
vivable Network Design Problem.

We focused on the node survivability case for networks represented by simple and
undirected graphs, not rooted demands, and considering costs in arcs and Steiner nodes.
Based on the related previous works, we have developed a new formulation that accounts
for specific quality of service and survivability constraints. The proposed model allows a
heterogeneous setting for the network by including different values for the length of paths
(related to the quality of service) and the number of paths (related to the connectivity
demands), between each pair of terminal nodes.

The proposed formulation was evaluated for medium-size instances with up to 85
nodes and 148 arcs. The evaluation accounted for a significantly large number of de-
cision variables. The CPLEX implementation of the proposed formulation was able to
effectively solve all but one instance to optimality. Most of the problems were solved in
a few seconds. Instance I15, which is based on a real network, was solved in about two
hours. No optimal solution was computed for instance I9. The results for instance I15 are
relevant, as this case study models the current Uruguayan academic network.

We used relaxation methods to compute lower bounds for the problem. In addition,
decomposition techniques and heuristic methods were proposed to find upper bounds.
This approach allowed to find accurate lower bounds that are close to the optimal solution
for the set of problem instances considered in this article.
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In the case of upper bounds, results allowed to conclude that UB1, UB2, UB3 are hard
to calculate for some instances. Nevertheless, UB4 can be computed faster and it allows
computing results for all instances in less than one hour. In this last case, we find that the
proposed heuristic is sensible to preference order in Q, but rather insensitive to chosen
diversification technique.

The main lines for the actual and future work are related to: (i) improving UB4, trying
to introduce an effective diversification technique or to develop a local search phase that
explores neighborhoods of global feasible solutions, (ii) improving the techniques for
constructing and managing the graph Gq and applying decomposition algorithms in order
to be able to solve significantly larger instances applying the proposed ILP formulation,
(iii) try to measure and to assure the distance to optimum of approach solutions, (iv)
introducing new instances of graph with special topologies that put to test the algorithms
or other instances, particular cases of HCSNDP problems, with known optimal solutions.
Being the HCSNDP a NP-hard problem, this kind of (relaxed) exact algorithms may be
useful when combined with heuristic methods in order to effectively solve large instances
modeling real-life situations.
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