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1. INTRODUCTION

Count data which comprises of non-negative integer values that record the
number of discrete events frequently linked to explanatory values are encountered
in statistical research [10]. The Poisson distribution is extensively used in studying
count data but the constraint for Poisson distribution so that its mean and variance
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are identical is not fulfilled at all times in real life. Thus, the Negative Binomial
Distribution (NBD), which can manage overdispersion, is used [11]. There are
widespread applications of NBDs in a variety of substantive fields including
accident statistics, econometrics, quality control, biometrics, pharmacokinetics,
and pharmacodynamics [24] etc. For detailed description consult Johnson et al.
[12], Khurshid et al. [15], Ryan [26], and Krishnamoorthy [19], among others.

In industries, a conventional inspecting tool is to construct control charts to
realize whether a process is in control or not [9]. A control chart is a statistical sys-
tem developed with the objective of inspection after which,the statistical stability
of a process is checked. The traditional tool for this purpose is the Shewhart and
Cumulative sum control charts. While there is a vast literature on the construc-
tion of these control charts for continuous distributions (Mittag and Rinne [22],
Wadsworth et al. [29]), much less research has been focused on discrete distribu-
tions. The literature on the control charts for the NBD is scanty (Kaminsky et al.
[13], Ma and Zhang [20], Xie and Goh [30], Hoffman [11], and Schwertman [28]).

In several situations, however, the complete distribution of counts is not ob-
served. Zero-truncated models are those where the number of individuals falling
into zero class cannot be defined, or the observational apparatus becomes op-
erational only when at least one event happens. Chakraborty and Kakoty [3]
and Chakraborty and Bhattacharya [1,2] have constructed CUSUM charts for
zero-truncated Poisson distribution, doubly truncated geometric distribution, and
doubly truncated binomial distribution, respectively. Chakraborty and Singh [8]
constructed Shewhart control charts for zero-truncated Poisson distribution where
average length and operating characteristic function were obtained. Chakraborty
and Khurshid [4,5] have constructed CUSUM charts for zero-truncated binomial
distribution and doubly truncated binomial distribution, respectively. Recently,
Khurshid and Chakraborty [16, 18] have constructed CUSUM, and Shewhart
control charts for ZTNBD, respectively.

In the present article, measurement error effect on the power of control chart
for ZTNBD is investigated based on standardized normal variate. Numerical
calculations are presented as a means of appreciating the consequences of mea-
surement errors on the power curve. To examine the sensitivity of the monitoring
procedure, average run length (ARL) is also considered.

2. MATERIALS AND METHODS

2.1. Zero-Truncated Negative Binomial Distribution (ZTNBD)
A negative binomial distribution (NBD) arises in the following circumstances.

Assume a box contain np non-defective items and nq defective items. Items are
drawn at random with replacement. Now the probability that exactly (x + k) trials
are required to produce k non-defective items is (x+k−1)!

(k−1)!x! pkqx.
Thus, a random variable X is said to have a NBD with parameters k and p if
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its probability mass function is given by

P(X = x) =


k + x − 1

x

 pkqx, x = 0, 1, 2, · · ·

0, otherwise
(1)

where the parameters satisfy 0 < p < 1 and k = 1, 2, 3, · · · .
The distribution (Eq. 1) even remains meaningful when k is not an integer.

When k is an integer, the distribution is sometimes called a Pascal distribution,
or a discrete waiting time distribution. For k = 1 the distribution reduces to
geometric distribution.

The statistical literature shows that most of the probability distributions can
be parameterized in numerous ways, the NBD being no exemption. A commonly
used parameterization of the NBD can be achieved from the expansion of (Q−P)−k,
where Q = 1 + P, k is positive real and P > 0 with P not to be in (0, 1). Under this
parameterization, the probability mass function of NBD, given in Eq. 1, reduces
to [31, 25]

P(X = x) =

(
k + x − 1

x

) (
P
Q

)k (
1 − P

Q

)x
, (2)

where x = 0, 1, 2, · · · .
We consider a negative binomial distribution truncated at x = 0. The zero-

truncated form of Eq. 2

f (x; k, p) =

(
k + x − 1

x

) (
1 −Q−k

)−1 (
P
Q

)k (
1 − P

Q

)x
, x = 1, 2, 3, · · · (3)

which is probability mass function of the ZTNBD (Khurshid and Chakraborty
Khurshid2013).

The mean and variance of ZTNBD are given as
E(X) = kP

1−Q−k and V(X) = kPQ
1−Q−k

[
1 − k

(
P
Q

)]
{(1 −Q−k)−1

− 1}.
The significance of ZTNBD is illustrated by Johnson et al. [12] with real-life
applications.

3. MEASUREMENT ERROR

Measurement errors which are frequently observed in practice, may signif-
icantly affect the performance of control charts [26, 21]. The sources of error
may be due to natural variability of the process, and the error due to measure-
ment instrument. The efficiency and the ability of the control chart to observe
the shift of the process level will be affected if the measurement error is largely
associated to the process variability [6]. Sankle et al. [27] studied the cumula-
tive sum control charts for the truncated normal distribution under measurement
error. Chakraborty and Khurshid [7], as well as Khurshid and Chakraborty [17]
investigated measurement error effect on the power of control charts for various
truncated distributions. For the consequences of measurement error on the actual
functioning of various control charts see [6] and references therein.
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4. ASSUMPTIONS AND NOTATIONS

In this article, we evaluate power of control chart for standardized ZTNBD
under the following assumptions and notations:

(i) The measurement of items is considered to determine the magnitude of the
attribute characteristics in the lot;

(ii) The process has ZTNBD with mean µp and variance σ2
p;

(iii) The applied measurement process (which is independent of the manufac-
turing process) has a variance σ2

m. Thus, the complete variability is given by
σ2 = σ2

p + σ2
m;

(iv) Measurements of the items are taken to classify the produced units into
defective and non-defective ones;

(v) The process is in a state of statistical control at the time of determining
the control limits and the same measuring instrument is used for future
measurements;

(vi) When the process parameter changes, the data still comes from ZTNBD,
however, with mean µp′ and variance (σ2

p′ + σ2
m), where σ2

p′ is the process
variance when the process parameter shifts (For details see Chakraborty
and Khurshid [6, 7]).

Thus, considering the above assumptions, Shewhart control limits will be µp ±

K
√

(σ2
p + σ2

m)/n. Typically, we select K = 3 as it will give no false alarm with
probability of at least 99.73% [23] and where n is the size of the sample. The
power of detecting the change of the process parameter is given by

Pd = P{X ≥ µp + 3
√

(σ2
p + σ2

m)/n} + P{X ≤ µp − 3
√

(σ2
p + σ2

m)/n}. (4)

5. POWER OF CONTROL CHART FOR STANDARDIZED ZTBD

Under standardization procedure, Eq. 4 can be expressed in terms of standard-
ized normal variable Z (when sample size is large and varies):

Z

∣∣∣∣∣∣∣∣∣{(µp′ , σ
2
p′ , σ

2
m,n)} =

X − µp′√
((σ2

p′ + σ2
m)/n)

. (5)

Now, following Kanazuka [14], Chakraborty and Khurshid [6] and using Eq. 5,
when the process parameter changes from µp to µp′ , the power of the control chart
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for ZTNBD equation is

P
X
∣∣∣∣{(µp,µp′ ,σ

2
p,σ

2
p′ ,σ

2
m,n)}

= Pd

= P
{(

X

∣∣∣∣∣∣ X−µp′√
((σ2

p′+σ
2
m)/n)
≥

µp−µp′√
((σ2

p′+σ
2
m)/n)

+ 3
√

(σ2
p+σ2

m)√
(σ2

p′+σ
2
m)

)}
+ P

{(
X

∣∣∣∣∣∣ X−µp′√
((σ2

p′+σ
2
m)/n)
≤

µp−µp′√
((σ2

p′+σ
2
m)/n)
− 3
√

(σ2
p+σ2

m)√
(σ2

p′+σ
2
m)

)}
= P


Z

∣∣∣∣∣∣Z ≥ (
µp−µp′
σp

)
√

n√
(σ2

p′ /σ
2
p)+(σ2

m/σ
2
p)

+ 3
√

1+(σ2
m/σ

2
p)

(σ2
p′ /σ

2
p)+(σ2

m/σ
2
p)




+ P


Z

∣∣∣∣∣∣Z ≤ (
µp−µp′
σp

)
√

n√
(σ2

p′ /σ
2
p)+(σ2

m/σ
2
p)
− 3

√
1+(σ2

m/σ
2
p)

(σ2
p′ /σ

2
p)+(σ2

m/σ
2
p)




= P
{(

Z
∣∣∣∣∣Z ≥ −d

√
n

√
(S2+R2)

+ 3
√

1+R2
√

(S2+R2)

)}
+ P

{(
Z

∣∣∣∣∣Z ≤ −d
√

n
√

(S2+R2)
− 3

√

1+R2
√

(S2+R2)

)}
= P

{(
Z

∣∣∣∣∣Z ≥ √
1+R2

(S2+R2)

[
3 − d

√
n

√
(1+R2)

] )}
+ P

{(
Z

∣∣∣∣∣Z ≤ √
1+R2

(S2+R2)

[
−3 − d

√
n

√
(1+R2)

] )}
= Φ

{√
1+R2

(S2+R2)

(
−3 +

d
√

n
√

(1+R2)

)}
+ Φ

{√
1+R2

(S2+R2)

(
−3 − d

√
n

√
(1+R2)

)}
= Φ(M) + Φ(V),

(6)

where d =
µp−µp′

σp
, S2 = (σ2

p′/σ
2
p), R2 = (σ2

m/σ
2
p),

M =
{√

1+R2

(K2+R2)

(
−3 +

d
√

n
√

(1+R2)

)}
, N =

{√
1+R2

(S2+R2)

(
−3 − d

√
n

√
(1+R2)

)}
and

Φ = 1
√

2π

∫ z

−∞
e−(u2/2)du.

Using Eq. 6, the power of the control chart Pd can be found simply by solving
Φ(z) for various combinations of d, R2 and S2, as shown in Tables 1 - 11.

6. AVERAGE RUN LENGTH (ARL) FOR ZTNBD UNDER MEASUREMENT
ERROR

To explore the sensitivity of the monitoring procedure, one can also study
ARL, the average number of points that must be plotted before a point shows an
out of control condition(Khurshid and Chakraborty [17]).

For any Shewhart control chart, the ARL = [P]−1 where P is the probability of
a false alarm that a single point exceeds control limits.Thus ARL of ZTNBD under
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measurement error, just by reversing Eq. 6, is

ARL =
[
Φ

{√
1+R2

(S2+R2)

(
−3 +

d
√

n
√

(1+R2)

)}
+ Φ

{√
1+R2

(S2+R2)

(
−3 − d

√
n

√
(1+R2)

)}]−1
(7)

The values of ARL are shown in Table 12 .

7. CONCLUDING REMARKS

The effects of truncation as well as measurement errors on the power of de-
tecting the changes in the process parameters by 3σ control limits with the control
chart for ZTNBD are shown in Tables 1 - 11.

It has been observed, from Table 1, that as we go on increasing the shift of the
process parameter µp to µp′ , there is an increasing trend in the power of control
chart Pd for fixed values of K, p,n, µp, σp, σm. It can also be concluded that as the
ratio between µp and µp′ decreases, there is an increasing trend in the values of
Pd, the power of control chart.

It has also been observed from the Tables 1, 2 and 3, for fixed p, n, and 3σ2,
that if there is a change in the values of K, the corresponding values of µp, σp and
hence, R2 change accordingly. As we go on increasing the values of K, there is a
decreasing trend in the values of R2 and the corresponding changes, observed, in
the values of Pd.

For Tables 2 and 4, we observe that for fixed K and n, as we increase the value
of p, there is an increasing trend in the values of R2 and the corresponding values
of Pd increase, too.

Tables 4 and 5 depict an increasing trend in the values of Pd for fixed K and p
when the size of sample n is increased.

There is also an increasing trend in the values of R2, and hence, the corre-
sponding values of Pd decrease when the value of σm increases fixed K, p, and n;
this can be observed from Tables 5 and 6.

When K = 1, Eq. 3 becomes zero truncated geometric distribution and trend
of the values of Pd can be understood from the Tables 7 and 11.

Table 12 shows the values of ARL. It has been observed from the table that
ARL values decrease as there is an increase in the size of sample for fixed K, p, and
n, but they increase for fixed K, p, and n when the values of σm decrease. There is
also a decreasing trend in the values of ARL for fixed n, p, and σm when there is
an increasing trend in the values of K.

Thus, we observe that the larger the measurement error, the smaller the de-
tecting power. However, this can be overcomed by increasing the sample size n
and the process average deviation d.
Acknowledgements: The authors are grateful to referees and Branka Mladenovic
for their helpful comments and suggestions. Also the authors would like to thank
Dr. Khizar Hayat for his help.



A. B. Chakraborty, et al. / Measurement Error Effect on the Power 457

REFERENCES

[1] Chakraborty, A. B., and Bhattacharya, S. K., ”CUSUM control charts for doubly truncated ge-
ometric and Poisson distributions”, Proceedings of Quality for Progress and Development, Asian
Congress on Quality and Reliability, Wiley Eastern Limited, 1989, 509–512.

[2] Chakraborty, A. B., and Bhattacharya, S. K., ”Cumulative sum control chart for a doubly truncated
binomial distribution” The Egyptian Statistical Journal, 35 (1991) 119-124.

[3] Chakraborty, A. B., and Kakoty, S., ”Cumulative sum control charts for zero truncated Poisson
distribution” IAPQR Transacrions, 12 (1987) 17-25.

[4] Chakraborty, A. B., and Khurshid, A., ”One-sided cumulative sum (CUSUM) control charts for
the zero-truncated binomial distribution”, Economic Quality Control, 26 (2011) 41-51.

[5] Chakraborty, A. B., and Khurshid, A., ”Control charts for the doubly-truncated binomial distri-
bution”, Economic Quality Control, 27 (2012) 187–194.

[6] Chakraborty, A. B., and Khurshid, A., ”Measurement error effect on the power of control chart
for the ratio of two Poisson distributions”, Economic Quality Control, 28 (2013) 15–21.

[7] Chakraborty, A. B., and Khurshid A., ”Measurement error effect on the power of control chart for
zero-truncated Poisson distribution”, International Journal for Quality Research, 7 (2013) 411-419.

[8] Chakraborty, A. B., and Singh, B. P., ”Shewhart control chart for ZTPD”, Proc. Quality for Progress
and Development, Asian Congress on Quality and Reliability NIQR, Trivandrum, India, 1990, 18–24.

[9] Dou, Y., and Sa P., ”One-sided control charts for the mean of positively skewed distributions”,
Total Quality Management, 13 (2002) 1021-1033.

[10] Hilbe, J., M., Count Data, Cambridge University Press, Cambridge, New York, 2014.
[11] Hoffman, D., ”Negative binomial control limits for count data with extra-Poisson variation”,

Pharmaceutical Statistics, 2 (2003) 127-132.
[12] Johnson, N. L., Kotz, S., and Kemp, A. W., Univariate Discrete Distributions, Third Edition, Wiley-

Interscience, Hoboken, New Jersey, 2005.
[13] Kaminsky, F. C., Banneyan, J. C., Davis, R. D., and Burke, R. J., ”Statistical control Charts based

on a geometric distribution”, Journal of Quality Technology, 24 (1992) 63-69.
[14] Kanazuka, T., ”The effects of measurement error on the power of X̄-R charts”, Journal of Quality

Technology, 18 (1986) 91-95.
[15] Khurshid, A., Ageel, M. I., and Lodhi, R. A., ”On confidence intervals for the negative binomial

distribution”, Revista Investigacion Operacional, 26 (2005) 59-70.
[16] Khurshid A., Chakraborty, A. B., ”CUSUM control charts for zero-truncated negative binomial

and geometric distributions”, Revista Investigacion Operacional, 34 (2013) 195-204.
[17] Khurshid A., Chakraborty, A. B., ”Measurement error effect on the power of control chart for

zero-truncated binomial distribution under standardization procedure”, International Journal for
Quality Research, 8 (2014) 495-504.

[18] Khurshid A., Chakraborty, A. B., ”On Shewhart control charts for zero-truncated negative bino-
mial distributions”, Pakistan Journal of Engineering, Technology and Science, 4 (2014) 1-12.

[19] Krishnamoorthy, K., Handbook of Statistical Distributions, Second Edition, Taylor and Francis, Boca
Raton, 2016.

[20] Ma, Y., and Zhang, Y., ”Q control charts for negative binomial distribution” Computers and
Industrial Engineering, 31 (1995) 813-816.

[21] Maravelakis, P. E., ”Measurement error effect on the CUSUM control chart” Journal of Applied
Statistics, 39 (2012) 323-336.

[22] Mittag, H. J., and Rinne, H., Statistical Methods of Quality Assurance, Chapman & Hall, London,
New York, 1993.

[23] Montgomery, D. C., Introduction to Statistical Quality control, Seventh Edition, John Wiley, Chich-
ester, New York, 2013.

[24] Plan, E. L., Maloney A., Troconiz, I. F., and Karlsson, M. O., ”Performance in population models
for count data, part I: maximum likelihood approximations” Journal of Pharmacokinetics and
Pharmacodynamics, 36 (2009) 353-366.

[25] Promislow, S. D., Fundamentals of Actuarial Mathematics, Second Edition, John Wiley, New York,
2004.

[26] Ryan, T. P., Statistical Methods for Quality Improvement, Third Edition, John Wiley, Chichester, New
York, 2011.



458 A. B. Chakraborty, et al. / Measurement Error Effect on the Power

[27] Sankle, R., Singh, J. R., and Mangal, I. K., ”Cumulative sum control charts for truncated normal
distribution under measurement error”, Statistics in Transition, 13 (2012) 95-106.

[28] Schwertman, N. C., ”Designing accurate control sharts based on the geometric and negative
binomial distributions”, Quality and Reliability Engeneering International, 21 (8) (2005) 743-756.

[29] Wadsworth, H. M., Stephens, K. S., and Godfrey, A. B., Modern Methods for Quality Control and
Improvement: The Statistics of Quality Assurance, Second Edition, John Wiley, Chichester, New
York, 2002.

[30] Xie, M., and Goh, T. N., ”The use of probability limits for process control based on geomtric
distribution” International Journal of Quality and Reliability and Management, 16 (1997) 64-73.

[31] Zelterman, D., Discrete Distributions: Applications in the Health Sciences, John Wiley, New York,
2004.



A. B. Chakraborty, et al. / Measurement Error Effect on the Power 459

APPENDIX

Table 1: Values of Pd for controlling the parameter λ.
When K = 1, p = 0.15, n = 5, µp = 6.67, σp = 6.146, σm = 0.5, R2 = 0.006617
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd
6.70 6.16 0.005423261 1.0004442 0.001430 0.00132 0.0027608
6.74 6.24 0.011931175 1.0307010 0.001699 0.00143 0.0031342
6.79 6.29 0.020066067 1.0472850 0.001937 0.00146 0.0033990
6.89 6.34 0.036335852 1.1064001 0.002324 0.00141 0.0037307
7.00 6.40 0.054232614 1.0842350 0.002839 0.00136 0.0041987

Table 2: Values of Pd for controlling the parameter λ.
When K = 2, p = 0.15, n = 5, µp = 11.59, σp = 8.61, σm = 0.5, R2 = 0.003366
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd

11.60 8.70 1.019118 1.019118 0.001487 0.001473 0.0029604
11.68 8.72 1.023809 1.023809 0.001409 0.001409 0.0030336
11.70 8.79 1.040312 1.040312 0.001780 0.001497 0.0032775
11.76 8.84 1.052181 1.052181 0.001969 0.001505 0.0034739
11.84 8.90 1.066512 1.066512 0.002230 0.001504 0.0037340

Table 3: Values of Pd for controlling the parameter λ.
When K = 3, p = 0.15, n = 5, µp = 17.06, σp = 10.62, σm = 0.5, R2 = 0.002217
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd

17.10 10.70 0.00399 1.015566 0.001498 0.001414 0.0029612
17.16 10.74 0.00964 1.023173 0.001617 0.001407 0.0030245
17.22 10.79 0.01529 1.032722 0.001758 0.001414 0.0031723
17.29 10.84 0.02185 1.042316 0.001922 0.001410 0.0033328
17.35 10.90 0.02754 1.053886 0.002101 0.001430 0.0035317
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Table 4: Values of Pd for controlling the parameter λ.
When K = 2, p = 0.2, n = 5, µp = 8.33, σp = 6.24, σm = 0.5, R2 = 0.006428
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd
8.40 6.30 0.0106 1.0206 0.0016 0.00137 0.00298
8.46 6.37 0.0203 1.0434 0.0019 0.00143 0.00334
8.50 6.42 0.0267 1.0598 0.00214 0.00147 0.00362
8.59 6.48 0.0411 1.0797 0.00255 0.00145 0.00402
8.64 6.52 0.0491 1.0931 0.00284 0.00146 0.00431

Table 5: Values of Pd for controlling the parameter λ.
When K = 2, p = 0.2, n = 8, µp = 8.33, σp = 6.24, σm = 0.5, R2 = 0.006428
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd
8.40 6.30 0.0106 1.0206 0.00164 0.00135 0.00299
8.46 6.37 0.0203 1.0434 0.00198 0.00139 0.00335
8.50 6.42 0.0267 1.0598 0.00224 0.00140 0.00365
8.59 6.48 0.0411 1.0797 0.00275 0.00135 0.00401
8.64 6.52 0.0491 1.0931 0.00309 0.00134 0.00443

Table 6: Values of Pd for controlling the parameter λ.
When K = 2, p = 0.2, n = 8, µp = 8.33, σp = 6.24, σm = 1.5, R2 = 0.0578
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd
8.40 6.30 0.0106 1.0206 0.00163 0.00134 0.00297
8.46 6.37 0.0203 1.0434 0.00195 0.00137 0.003325
8.50 6.42 0.0267 1.0598 0.00224 0.00139 0.00360
8.59 6.48 0.0411 1.0797 0.00268 0.00134 0.00400
8.64 6.52 0.0491 1.0931 0.00300 0.00132 0.00437
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Table 7: Values of Pd for controlling the parameter λ.
When K = 1, p = 0.15, n = 5, µp = 6.67, σp = 6.146, σm = 0.5, R2 = 0.0595
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd
6.70 6.18 0.0054 1.01 0.00147 0.00136 0.00284
6.74 6.24 0.0119 1.03 0.00168 0.00142 0.0031
6.79 6.29 0.0200 1.047 0.00191 0.00145 0.00336
6.82 6.32 0.0249 1.057 0.0020 0.00146 0.003523
6.89 6.39 0.0363 1.080 0.00243 0.00149 0.00393

Table 8: Values of Pd for controlling the parameter λ.
When K = 1, p = 0.2, n = 5, µp = 5, σp = 4.47, σm = 1.5, R2 = 0.1125
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd

5.2 4.5 0.0447 1.0125 0.0019 1.043×10−3 0.00297
5.8 4.56 0.178 1.03968 0.005 4.49×10−4 0.00545
6.2 4.59 0.268 1.0534 0.0087 2.453×10−4 0.009
6.7 4.63 0.38 1.0718 0.0167 1.12×10−4 0.0168
6.9 4.69 0.424 1.0998 0.0221 9.32×10−5 0.02225

Table 9: Values of Pd for controlling the parameter λ.
When K = 1, p = 0.2, n = 10, µp = 5, σp = 4.47, σm = 1.5, R2 = 0.1125
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd

5.2 4.5 0.0447 1.0125 0.00218 9.14×10−4 0.0031
5.8 4.56 0.1788 1.03968 0.00774 2.55×10−4 0.0079
6.2 4.59 0.2683 1.0534 0.01599 1.01×10−4 0.016
6.7 4.63 0.3801 1.0718 0.03569 3.008×10−5 0.035
6.9 4.69 0.4248 1.0998 0.049 2.119×10−5 0.049
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Table 10: Values of Pd for controlling the parameter λ.
When K = 2, p = 0.2, n = 5, µp = 8.33, σp = 6.24, σm = 1.5, R2 = 0.05785
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd
8.43 6.30 0.0155 1.0206 0.0017 0.00127 0.00299
8.48 6.39 0.0235 1.0499 0.0021 0.00134 0.003345
8.53 6.43 0.0315 1.0631 0.0024 0.00131 0.00371
8.59 6.48 0.0411 1.0797 0.00279 0.00128 0.00408
8.65 6.54 0.0507 1.0998 0.003279 0.00127 0.00455

Table 11: Values of Pd for controlling the parameter λ.
When K = 1, p = 0.2, n = 10, µp = 5, σp = 4.47, σm = 0.5, R2 = 0.1125
µp′ σp′ d = (µt′ − µt)/σp S2 Φ(M) Φ(N) Pd

5.2 4.5 0.0447 1.0125 0.0024 9.001×10−4 0.00314
5.8 4.56 0.1788 1.03968 0.00839 2.375×10−4 0.008629
6.2 4.59 0.2683 1.0534 0.0177 8.99×10−5 0.017866
6.7 4.63 0.3801 1.0718 0.0405 2.525×10−5 0.040558
6.9 4.69 0.4248 1.0998 0.0561 1.76×10−5 0.056118

Table 12: Values of ARL.
µp′ σp′ K R2 n p σm Pd ARL
5.2 4.5 1 0.1125 5 0.2 1.5 0.00297 336.7
5.2 4.5 1 0.1125 10 0.2 1.5 0.0031 322.58
6.7 6.16 1 0.006617 5 0.15 0.5 0.00276 362.2
6.7 6.18 1 0.0595 5 0.15 1.5 0.00284 352.1
8.4 6.3 2 0.006428 5 0.2 0.5 0.00298 335.57
8.4 6.3 2 0.0064205 8 0.2 0.5 0.00299 334.11
8.4 6.3 2 0.0578 8 0.2 1.5 0.00297 336.7
11.6 8.7 2 0.00337 5 0.15 0.5 0.00296 337.84
17.1 10.7 3 0.002217 5 0.15 0.5 0.00291 343.38




