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Abstract: In this paper, three level production inventory models for deteriorative items 

are considered under the variation in production rate. Namely, it is possible that 

production started at one rate, after some time, switches to another rate. Such a situation 

is desirable in the sense that by starting at a low rate of production, a large quantum stock 

of manufacturing items at the initial stage are avoided, leading to reduction in the holding 

cost. The variation in production rate results in consumer satisfaction and potential profit. 

Two levels of production inventory models are developed, and the optimum lot size 

quantity and total cost are derived when the production inventory model without 

shortages is studied first and a production inventory model with shortages next. An 

optimal production lot size, which minimizes the total cost, is developed. The optimal 

solution is derived and a numerical example is provided. The validation of the results in 

this model was coded in Microsoft Visual Basic 6.0. 
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1. INTRODUCTION  

Тo be cost competitive and to acquire decent profit in the market, means that a firm 

needs good inventory management. Inventory management has been developing for 

decades both in the academic fields and in real practice to achieve these objectives. The 

problem of deteriorating inventory has received considerable attention in recent years. 

This is a realistic trend since most products such as medicine, dairy products, and 

chemicals start to deteriorate once they are produced. The economic order quantity 

(EOQ) model, introduced by Harris [1], was the first mathematical model to assist 

corporations in minimizing total inventory costs. It balances inventory holding and setup 

costs and derives the optimal order quantity. Regardless of its simplicity, the EOQ model 

is still applied in industry. Schrader and et. [2] concluded that the consumption of 

deteriorating items was closely relative to a negative exponential function of time.  They 

proposed the following deteriorating items inventory model: 
( )

( ) ( )
dI t

I t f t
dt

   . In 

the function,   stands for the deteriorating rate of an item, I (t) refers to the inventory 

level at time t, and f (t) is the demand rate at time t. This inventory model laid 

foundations for the follow-up study. Sharma [3] developed a deterministic inventory 

model for a single deteriorating item which is stored in two different warehouses, and 

optimal stock level for the beginning of the period is found. The model is in accordance 

with the order level model for non deteriorating items with a single storage facility. Linn 

(4) derived a production model for the lot-size, order level inventory system with finite 

production rate, taking into consideration the effect of decay. The objective is to 

minimize total cost by selecting the optimal lot size and order level, using a search 

algorithm to obtain the optimal lot size and order level. Achary (5) developed a 

deterministic inventory model for deteriorating items with two warehouses when the 

replenishment rate is finite, the demand is at a uniform rate, and shortages are allowed.  

Wee [6] studied an inventory management of deteriorating items with decreasing demand 

rate and the system allows shortages alone. Benkherouf [7] presented a method for 

finding the optimal replenishment schedule for the production lot size model with 

deteriorating items, where demand and production are allowed to vary with time in an 

arbitrary way, and the shortages are allowed. Balan [8] described an inventory model in 

which the demand is considered as a composite function consisting of a constant 

component and a variable component, which is proportional to the inventory level in the 

periods when there is a positive inventory buildup, and the rate of production is 

considered finite while the decay rate is exponential. Yang [9] assumed that the demand 

function is positive and fluctuating with time (which is more general than increasing, 

decreasing, and log-concave demand patterns), and he developed the model with 

deteriorating items and shortages. Papachristos [10] studied a continuous review 

inventory model with five costs considered as significant-deterioration; holding, 

shortage, and the opportunity cost due to the lost sales, and the replenishment cost per 

replenishment, which is linear dependent on the lot size. Wee [11] developed an 

integrated two-stage production-inventory deteriorating model for the buyer and the 

supplier with stock-dependent selling rate, considering imperfect items and JIT multiple 

deliveries as well, deriving the optimal number of inspection optimal deliveries and the 

optimal delivery-time interval. Cardenas-Barron [12] presented a simple derivation of the 
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two inventory policies proposed by [Jamal, A.A.M., Sarker, B.R., & Mondal, S.(2004), 

Optimal manufacturing batch size with rework process at a single-stage production 

system, Computers and Industrial Engineering, 47(1), 77-89]. In order to find the optimal 

solutions for both policies, they used differential calculus. Their simple derivation is 

based on an algebraic derivation, and the final results are simple and easy to compute 

manually and results are equivalent. Wang [13] studied the inventory model for 

deteriorating items with trapezoidal type demand rate (the demand rate is a piecewise 

linearly function), and he proposed an inventory replenishment policy for this type of 

inventory model. Cardenas-Barron [14] developed an EPQ type inventory model with 

planned backorders for deteriorating the economic production quantity for a single 

product, which is manufactured in a single-stage manufacturing system that generates 

imperfect quality products, reworked in the same cycle. Cardenas-Barron (2009) 

corrected some mathematical expressions in the work of Sarkar, B.R., Jamal, A.M.M., 

Chern [15]. He proposed a partial backlogging inventory lot-size model for deteriorating 

items with stock-dependent demand and showed that not only the optimal replenishment 

schedule exists uniquely, but also that the total profit, associated with the inventory 

system, is a concave function of the number of replenishments. Wang [16] studied the 

inventory model for time-dependent deteriorating items with trapezoidal type demand 

rate and partial backlogging that is, the demand rate is a pricewise time-dependent 

function and an optimal replenishment policy of inventory model is proposed. Wee 

(2011) a deteriorating inventory problem with and without backorders is developed and 

this study is one of the first attempts by researchers to solve a deteriorating inventory 

problem with a simplified approach. The optimal solutions are compared with the 

classical methods for solving deteriorating inventory model, and the total cost of the 

simplified model is almost identical to the original model. Bozorgi [17] developed 

location of distribution centers with inventory or transportation decision, which plays an 

important role in optimizing supply chain management, by using a genetic algorithm.  

Hsu [18] developed an inventory model for vendor-buyer coordination under an 

imperfect production process and the proportion of defective items in each production lot 

is assumed to be stochastic and follows a known probability density function. Cardenas-

Barron [19] presented an alternative approach to solve a finite horizon production lot 

sizing model with backorders using Cauchy-Bunyakovsky-Schwarz Inequality. The 

optimal batch size is derived from a sequence number of batches and that a constant 

batch size policy with one fill rate is proved to be better than the variable batch sizes with 

variable fill rates. Finally, a practically approach is proposed to find the optimal solutions 

for a discrete planning horizon and discrete batch sizes. Cardenas-Barron [20] revisited 

the work by Cardenas-Barron [Cardenas-Barron (2009), Economic production quantity 

with rework process at a single-stage manufacturing system with planned backorders, 

Computers and Industrial Engineering, 57(3), 1105-1113]. The optimal solution 

condition is analyzed using the production time and the time to eliminate backorders as 

decision variables instead of the classical decisions variables of lot and backorder 

quantities. The new approach leads to an alternative inventory policy for imperfect 

quality items when the optimal production is less than the optimal time. Hsu [21] 

developed a mathematical model to determine an integrated vendor-buyer inventory 

policy, where the vendor’s production process is imperfect and produces a certain 

number of defective items with a known probability density function. Sivashankari and 

Panayappan [22] developed a production inventory model with planned backorders for 
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determining the optimum quantity for a single product manufactured in a single stage 

manufacturing system that generates imperfect quality products where a proportion of the 

defective products are reworked into a same cycle. Sivashankari and Panayappan [23] 

integrated a cost reduction delivery policy into a production inventory model with 

defective items in which three different rates of production are considered. Sivashankari 

and Panayappan [24] introduced a multi-delivery policy into a production inventory 

model with defective items in which two different rates of production are considered. 

Kianfar [25] developed a production planning and marketing model in unreliable flexible 

manufacturing systems with inconstant demand rate such that its rate depends on the 

level of advertisement on that product; the proposed model is more realistic and more 

useful from a practical point of view. Sadegheih [26] proposed an integrated inventory 

management model within a multi-item, multi-echelon supply chain; he developed three 

inventory models with respect to different layers of supply chain in an integrated manner, 

seeking to optimize total cost of the whole supply chain. Aalikar [27] modeled a seasonal 

multi-product multi-period inventory control problem in which the inventory costs are 

obtained under inflation and all-unit discount policy; furthermore, the products are 

delivered in boxes of known number of items and in case of shortage, a fraction of 

demand is considered so as backorder and a fraction lost sale. Besides, the total storage 

space and total available budget are limited. The objective is to find the optimal number 

of boxes of the products in different periods to minimize the total inventory cost 

(including ordering, holding, shortage and purchasing costs). Sivashankari and 

Panayappan [28] introduced the rate of growth; the rate of growth in the production 

period is (1 )nD i  and the consumption period is (1 )nD i . The relevant model is built, 

solved and closed formulas are obtained. In this paper, a production inventory model for 

deteriorating items in which three levels of production are considered and the possibility 

that production started at one rate, after some time, may be switched to another rate. Such 

a situation is desirable in the sense that by starting at a low rate of production, a large 

quantum stock of manufactured item at the initial stage is avoided, which leads to 

reduction in the holding cost. Two models are developed considering shortages, with and 

with out shortages, and the model with shortages is discussed in detail. The remainder of 

the paper is organized as follows. Section 2 presents the assumptions and notations. 

Section 3 is devoted to mathematical modeling and numerical examples. Finally, the 

paper summarizes and concludes in section 4.  

 
2. ASSUMPTIONS AND NOTATIONS 

a)  Assumptions: the assumptions of an inventory model are as follows:  

The production rate is known and constant. 

The demand rate is known, constant and non negative. 

Items are produced and added to the inventory. 

Three rates of production are considered. 

The item is a single product; it does not interact with any other inventory items. 

The production rate is always greater than or equal to the sum of the demand 

rate.  

The inventory system involves only one item and the lead time is zero. 
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Shortages are allowed and there is sufficient capacity and capital to procure the 

desired lot size. 

b) Notations:   

P  – Production rate in units  time 

D  – Demand rate in units per unit time 

  – deterioration rate is constant 

1Q  – on hand inventory level at time 1T  

2Q  – on hand inventory level at time 2T  

3Q  – on hand inventory level at time 3T  

B  – Maximum shortage level  

*Q  – production lot size considered as a decision variable 

pC  – Production  Cost per unit 

hC  – Holding cost per unit/ per unit time 

0C  – Setup cost per production cycle at 0T   

Cs  – Shortage cost per unit/per unit time 

T  – length of the inventory cycle 

iT  – unit time in periods ( 1,2,3,4,5)i i   

TC  – Total cost 

 

 
3. MATHEMATICAL MODELS 

3.1. Production inventory model for three levels of production 

The changes in inventory level against time are represented in Figure 1. The first 

production setup starts with zero inventory at 0t  . During time 1T , the inventory level 

increases due to production less demand and deterioration until the maximum inventory 

level at 1t T  is reached 
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Therefore, the maximum inventory level equal to   1P D T . During time 2T , 

Production and Demand increases at the rate of “a” time of P-D i.e. a (P-D) where “a” is 

a constant. Therefore, the maximum inventory level equal to   2a P D T . During time 

3T , Production and Demand increases at the rate of “b” time of P-D i.e. ( )b P D  where 

“b” is a constant. Therefore, the maximum inventory level equal to   3b P D T . During 

decline time, the inventory level starts to decrease due to demand at a rate D up to time 

T . Let ( )I t  denote the inventory level of the system at time T. The differential 

equations describing the system in the interval (0,T) given by 

( )
( )

dI t
I t P D

dt
   ; 10 t T 

 
(1) 

( )
( ) ( )

dI t
I t a P D

dt
   ; 1 2T t T   (2) 

( )
( ) ( )

dI t
I t b P D

dt
   ; 2 3T t T   (3) 

( )
( )

dI t
I t D

dt
   ; 3T t T   (4) 

The boundary conditions are 

1 1(0) 0, ( )I I T Q  ; 2 2( )I T Q , 3 3( )I T Q  , ( ) 0I T   (5) 

The first order differential equations can be solved by using the bound conditions are 

From the equation (1), , ( ) 1 tP D
I t e 




    ; 10 t T   (6) 

From the equation (2),  
( )

( ) 1 ta P D
I t e 




   (7) 
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From the equation (3),  
( )

( ) 1 tb P D
I t e 




   (8) 

From the equation (4),  ( )( ) 1T tD
I t e



   (9) 

Maximum inventory 1Q : The maximum inventory during time 1T
 

is calculated as 

follows. From equations (5) and (6),  1

1 1 1( ) 1
TP D

I T Q e Q





     

In order to facilitate analysis, we do an asymptotic analysis for ( )I t . Expanding the 

exponential functions and neglecting second and higher power of   for small value of     

Therefore, 1 1( )Q P D T   (10) 

Maximum inventory 2Q : The maximum inventory during time 2T  is calculated as 

follows. From the equations (5) and (7),  2

2 2 2

( )
( ) 1

Ta P D
I T Q e Q






     

Again, in order to facilitate analysis, we do an asymptotic analysis for ( )I t .  

Expanding the exponential functions and neglecting second and higher power of   for 

small value of  .   

Therefore, 2 2( )Q a P D T   (11) 

Maximum inventory 3Q : The maximum inventory during time 3T  is calculated as 

follows. From equations (5) and (8),  3

3 3 3( ) 1
tP D

I T Q e Q





     

In order to facilitate analysis, we do an asymptotic analysis for ( )I t . Expanding the 

exponential functions and neglecting second and higher power of   for small value of     

Therefore, 3 3( )Q b P D T   (12) 

Total Cost: The total cost comprises of the sum of the Production cost, ordering cost, 

holding cost, and deteriorating cost. They are grouped together after evaluating the above 

cost individually. 

(i)Production Cost  = PDC  (13) 

(ii) Setup cost per set = 0C

T
 (14) 

(iii) Holding Cost per unit time: =  
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       

31 2

1 2 3

31 2

1 2 3

1 2

1

0

( )

0

0

( ) ( ) ( ) ( )

( ) ( )
1 1 1 1

( ) (

TT T T

h

T T T

TT T T

t t t T th

T T T

T T
t t

h

T

C
I t dt I t dt I t dt I t dt

T

C P D a P D b P D D
e dt e dt e dt e dt

T

C P D e a P D e b P
t t

T

   

 

   

   

   

 

 
   

  



   
       
 
 



     
      
    

   

   

   

 
   

3
3

2 3

1 2 1

3 32

( )

1 2 12 2

( )

3 2 32 2

)

( )
1 ( )

( ) 1 ( )

TT
T tt

T T

T T T

h

T T TT

D e D e
t t

P D a P D
T e T T e e

C

b P DT D
T T e e e T T



  

 

   

 
 

 
 



  

 

   
     

      



  
      

 
 

        
 

 

Expanding the exponential functions and neglecting second and higher power of   

for small value of   

= 

2 2 2
2 21

2 12 2

2 2 2 2 2

3 2 3

2 2

( )
(

2 2

( ) ( )( )

2 2

h

TP D a P D
T T

C

T T T T Tb P D D

 

 

 

 

      
     

    
 

                  

 

= 
2 2 2 2 2 2

1 2 1 3 2 3( ) ( )( ) ( )( ) ( )
2

hC
P D T a P D T T b P D T T D T T

T
            (15) 

(iv) Deteriorating Cost per unit time: Deteriorating cost 

= 
31 2

1 2 30

( ) ( ) ( ) ( )

TT T T

d

T T T

C
I t dt I t dt I t dt I t dt

T

  
   

  
    = 

       
31 2

1 2 3

( )

0

( ) ( )
1 1 1 1

TT T T

t t t T td

T T T

C P D a P D b P D D
e dt e dt e dt e dt

T

   

   

   
   

       
  
   

 

Expanding the exponential functions and neglecting second and higher power of   

for small value of  . 

=
2 2 2 2 2 2

1 2 1 3 2 3( ) ( )( ) ( )( ) ( )
2

dC
P D T a P D T T b P D T T D T T

T


            (16) 
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TC = Production Cost + Ordering Cost + (Holding Cost + Deteriorating Cost)   

 = PDC + 0C

T
+

2 2 2

1 2 1

2 2 2

3 2 3

( ) ( )( )( )

2 ( )( ) ( )

h d
P D T a P D T TC C

T b P D T T D T T

     
 
      

 (17) 

Let 1 3T T   and 2 3T T  (18) 

Therefore, the total cost  

= PDC + 0C

T
+

2 2 2 2 2

3 3

2 2 2

3 3

( ) ( )( )( )

2 ( )(1 ) ( )

h d
P D T a P D TC C

T b P D T D T T

  



    
 
      

 (19) 

Partially differentiate the equation (19) with respect to 3T , 

2 2 2 2

3 3 3 3

3

( ) ( ) ( )( ) ( )(1 ) ( ) 0h dC C
TC P D T a P D T b P D T D T T

T T


   


            

2
2 2 2 2

32

3

( ) ( ) ( )( ) ( )(1 ) 0h dC C
TC P D a P D b P D DT

TT


   


           

Therefore, 3 2 2 2 2( ) ( )( ) ( )(1 )

DT
T

P D a P D b P D D   


       
 

3T
= 

 2 2 2 2( ) ( ) (1 )

DT

D P D a b        
 (20) 

Partially differentiate the equation (19) with respect to T 
2 2 2 2 2

20 3
32 2 22

( ) ( )( )( ) ( )( )

2 2( )(1 )

h d h d
P D a P DC C C D C C T T

T
T T T Tb P D

   



       
   

     

= 

0 

2 2 22
20

32 3 3 2

( ) ( )( )2 2( ) ( )
0

2 ( )(1 )

h d h d
P D a P DC C C D C C

T
TT T T b P D

   



     
    

     

 

2 2 2 2 2 2 2

3 0 3( )( ) 2 ( ) ( ) ( )( ) ( )(1 )h d h dD C C T T C C C T P D a P D b P D                  

 

2
2

2 2 2 2

( )
( )

( ) ( ) (1

h d
h d

D C C
T D C C

D P D a b




   

 
  
      
 

= 02C  

 

2 2
2

0 2 2 2 2

( )
( ) 2

( ) ( ) (1 )

h d
h d

C C D T
C C DT C

D P D a b




   


  

     
 

 
 

2 2 2 2 2 2

2

2 2 2 2

( ) ( ) (1 )
( )

( ) ( ) (1 )
h d

D D P D a b D
T C C

D P D a b

   


   

       
 
     
 
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 

 

2 2 2 2

0
2

2 2 2 2

2 ( ) ( ) (1 )

( ) ( ) ( ) (1 )h d

C D P D a b
T

C C D P D a b

   

    

      
 


     

,  

Therefore, 
 

 

2 2 2 2

0

2 2 2 2

2 ( ) ( ) (1 )

( ) ( ) ( ) (1 )h d

C D P D a b
T

C C D P D a b

   

    

      
 


     

 (21) 

Note: When 
Q

T
D

  then  

 

 

2 2 2 2

0

2 2 2 2

2 ( ) ( ) (1 )

( ) ( ) ( ) (1 )h d

DC D P D a b
Q

C C D P D a b

   

    

      
 


     

 

(22) 

Numerical Example 

Let us consider the cost parameters P = 5000 units, D = 4500 units, hC =10, 
pC = 100,  

0C =100,   = 0.01 to 0.10, 100dC  ,  a = 2, b= 3, 0.8  , 0.9   

Optimum solution 

From the equations (21), (10), (11), (12), (22), (13), (14), (15) and (16) Cycle Times: T = 

0.1658; 1T = 0.1132; 2T = 0.1273; 3T = 0.1415; Optimum Quantity Q* = 746.25, 1Q = 

56.59; 2Q = 63.66; 3Q = 70.73; 

Production cost =450,000, Setup cost = 603.01, Holding cost = 548.19, Deteriorating cost 

= 54.82, Total cost = 451206.03 

Table 1: Variation of Rate of Deteriorating Items with inventory and total Cost 

 

  

 

T 

 

Q 

Production 

Cost 

Setup 

Cost 

Holding 

Cost 

Deteriorating 

Cost 

Total Cost 

0.01 0.1658 746.25 450000 603.01 548.19 54.82 451206.03 

0.02 0.1588 714.48 450000 629.83 524.86 104.97 451259.65 

0.03 0.1525 686.45 450000 655.55 504.27 151.28 451311.09 

0.04 0.1470 661.48 450000 680.29 485.92 194.37 451360.58 

0.05 0.1420 639.05 450000 704.17 469.45 234.72 451408.34 

0.06 0.1375 618.76 450000 727.26 454.54 272.72 451454.52 

0.07 0.1334 600.28 450000 749.64 440.97 308.68 451499.29 

0.08 0.1296 583.37 450000 771.38 428.54 342.83 451542.76 

0.09 0.1262 567.81 450000 792.52 417.11 375.40 451585.03 

 
From the above table, a study of rate of deteriorative items with production time 1( )T , 

and cycle time T is given and conclud that when the rate of deteriorative items increases, 

then the optimum quantity and cycle time decrease; also a study of rate of deteriorative 

item with setup cost, holding cost, deteriorative cost and total cost is given and conclud 

that when the rate of deteriorative items increases, then the holding cost decreases, but 

setup cost, deteriorative cost and Total cost increas.   
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The total cost functions are the real solution in which the model parameters are 

assumed to be a static value. It is reasonable to study the sensitivity, i.e. the effect of 

making chances in the model parameters over a given optimum solution. It is important 

to find the effects on different system performance measures, such as cost function, 

inventory system, etc. For this purpose, sensitivity analysis of various system parameters 

for the models of this research are required to observe whether the current solutions 

remain unchanged, or the current solutions become infeasible, etc. 
 

Table 2: Effect of Demand and Cost parameters on optimal policies 
Parameters Optimum values Total Cost 

T  Q  
1T  2T  3T  1Q  2Q  3Q  

 

 

  

0.01 0.1658 746.25 0.1132 0.1273 0.1415 56.59 63.66 70.73 451206.03 

0.02 0.1588 714.48 0.1084 0.1219 0.1354 54.18 60.95 67.72 451259.65 

0.03 0.1525 686.45 0.1041 0.1171 0.1301 52.05 58.56 65.07 451311.09 

0.04 0.1470 661.48 0.1003 0.1129 0.1254 50.16 56.43 62.70 451360.58 

0.05 0.1420 639.05 0.0969 0.1090 0.1211 48.46 54.52 60.57 451408.34 

 

 

0C  

80 0.1483 667.47 0.1012 0.1139 0.1265 50.61 56.94 63.26 451078.70 

90 0.1573 707.96 0.1074 0.1208 0.1342 53.68 60.39 67.11 451144.14 

100 0.1658 746.25 0.1132 0.1273 0.1415 56.59 63.66 70.73 451206.03 

110 0.1739 782.68 0.1187 0.1335 0.1484 59.34 66.77 74.19 451264.89 

120 0.1817 817.48 0.1240 0.1395 0.1550 62.00 69.74 77.49 451321.14 

 

 

hC  

8 0.1833 825.01 1251 0.1408 0.1564 62.56 70.38 78.20 451090.89 

9 0.1739 782.67 0.1187 0.1335 0.1484 59.39 66.77 74.19 451149.90 

10 0.1658 746.25 0.1132 0.1273 0.1415 56.59 63.66 70.73 451206.03 

11 0.1588 714.48 0.1084 0.1219 0.1354 54.18 60.95 67.72 451259.65 

12 0.1525 686.45 0.1041 0.1171 0.1301 52.05 58.56 65.07 451311.09 

 

 

PC  

80 0.1674 753.13 0.1142 0.1285 0.1428 57.11 64.25 71.39 361195.01 

90 0.1666 749.67 0.1137 0.1279 0.1421 56.85 63.95 71.06 406200.53 

100 0.1658 746.25 0.1132 0.1273 0.1415 56.59 63.66 70.73 451206.03 

110 0.1651 742.88 0.1127 0.1267 0.1408 56.33 63.37 70.42 496211.50 

120 0.1643 739.56 0.1122 0.1262 0.1402 56.08 63.09 70.10 541216.94 

 

 

a  

1 0.1743 784.48 0.1209 0.1360 0.1511 60.46 68.02 75.58 451147.25 

2 0.1658 746.25 0.1132 0.1273 0.1415 56.59 63.66 70.73 451206.03 

3 0.1587 714.09 0.1066 0.1199 0.1332 53.29 59.95 66.61 451260.33 

4 0.1526 686.61 0.1009 0.1135 0.1261 50.44 56.74 63.05 451310.79 

5 0.1473 662.78 0.0959 0.1079 0.1199 47.94 53.93 59.93 451357.92 

b  

1 0.1874 843.32 0.1327 0.1493 0.1658 66.34 74.63 82.92 451067.21 

2 0.1754 789.47 0.1219 0.1372 0.1524 60.96 68.58 76.20 451140.01 

3 0.1658 746.25 0.1132 0.1273 0.1415 56.59 63.66 70.73 451206.03 

4 0.1579 710.64 0.1059 0.1191 0.1323 52.93 52.94 59.55 451266.46 

5 0.1513 680.70 0.0996 0.1121 0.1246 49.82 56.05 62.28 451322.17 

 
Observations: 

With the increase in rate of deteriorating items ( ) , total cost increases but 

cycle time, optimum quantity, Cycles times ( 1 2 3, , , )T T T T and optimum quantity and 

maximum inventory 1 2 3, , )Q Q Q decreases. 

With the increase in setup cost per unit ( 0)C , optimum quantity (Q*), maximum 

inventory 1Q , 2Q  and 3Q , Cycle times ( 1 2 3, , , )T T T T  and total cost increase. 

With the increase in holding cost per unit ( hC ), optimum quantity (Q*), maximum 

inventory 1Q , 2Q and 3Q , cycle times ( 1 2 3, , , )T T T T  decreases but total cost increase. 

Similarly, other parameters, deteriorating cost, a and b can also be observed from the 

Table 2. 



510 C. Khrishnamoorthi, C.K.Sivashankari / Production Inventory Models  

Special Cases: If the production system is considered to be ideal, that is no 

deteriorative are produced, i.e. the value of   is set to zero.  In that case, equations (21) 

and (22) reduce to the classical economic production quantity model as follows 

 

 

2 2 2 2

0

2 2 2 2

2 ( ) ( ) (1 )

( ) ( ) (1 )h

C D P D a b
T

C D P D a b

   

   

      
 


    

 

 

4. PRODUCTION INVENTORY MODEL FOR THREE LEVELS OF 

PRODUCTION AND SHORTAGES 

During time 1T , inventory is increasing at the rate of P and simultaneously decreasing 

at the rate of D. Thus inventory accumulates at the rate of P - D units.  Therefore, the 

maximum inventory level shall be equal to   1P D t . During time 2T , Production and 

Demand increases at the rate of “a” time of P-D i.e. a(P-D) where “a” is a constant. 

During time 3T , Production and Demand increases at the rate of “b” time of P-D i.e. b(P-

D) where “b” is a constant. During decline time, the inventory level starts to decrease due 

to demand at a rate D up to time 5T . In shortage period, shortages start to accumulate at a 

rate of B, the inventory level is zero at time 5T  but shortages accumulate at a rate of D up 

to time 5T . Therefore, time 5T
 
need to build-up B units of times. The production restarts 

again at time T at a rate of P-D to recover both the previous shortages in the period 5T  

and to satisfy demand in the period T. Time T need to consume all units Q at demand 

rate. The process is repeated. The variation of the underlying inventory system for one 

cycle is shown in figure 2.  
 

 
Let I (t) denote the inventory level of the system at time T. The differential equation 

describing the system in the interval (0,T) are given by 

( )
( )

dI t
I t P D

dt
   ; 10 t T   (23) 
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( )
( ) ( )

dI t
I t a P D

dt
   ; 1 2T t T   (24) 

( )
( ) ( )

dI t
I t b P D

dt
   ; 2 3T t T   (25) 

( )
( )

dI t
I t D

dt
   ;  3 4T t T   (26) 

( )dI t

dt
  = -D ; 4 5T t T   (27) 

( )dI t

dt
  = (P-D) ; 5T t T   (28) 

The boundary conditions are 

1 1 2 2 3 3 4 5(0) 0, ( ) ; ( ) , ( ); ( ) 0; ( ) ( ) 0I I T Q I T Q I T Q I T I T B and I T        (29) 

The solutions of the above equations are 

From the equation (23), I(t) = 1 tP D
e 




   ; 

1
0 t T 

 
(30) 

From the equation (24),   
( )

( ) 1 ta P D
I t e 




 

 

(31) 

From the equation (25),  
( )

( ) 1 tb P D
I t e 




 

 

(32) 

From the equation (26),  4( )
( ) 1

T tD
I t e






 

 

(33) 

From the equation (27), 4( ) ( )I t D T t  
 

(34) 

From the equation (28), ( ) ( )( )I t P D T t  
 

(35) 

Maximum inventory 1Q : The maximum inventory during time 1T
 
is calculated as 

follows. From equations (29) and (30),  1

1 1 1( ) 1
TP D

I T Q e Q I





     

In order to facilitate analysis, we do an asymptotic analysis for I(t).  Expanding the 

exponential functions and neglecting second and higher power of   for small value of     

Therefore, 
1 1

( )Q P D T   (36) 

Maximum inventory 2Q : The maximum inventory during time 2T  is calculated as 

follows. From the equations (29) and (31),  2

2 2 2

( )
( ) 1

Ta P D
I T Q e Q






     
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In order to facilitate analysis, we do an asymptotic analysis for I(t).  Expanding the 

exponential functions and neglecting second and higher power of   for small value of    

Therefore, 
2 2

( )Q a P D T   (37) 

Maximum inventory 3Q : The maximum inventory during time 3T  is calculated as 

follows. From equations (29) and (32),  3

3 3 3( ) 1
tP D

I T Q e Q





     

In order to facilitate analysis, we do an asymptotic analysis for I(t). Expanding the 

exponential functions and neglecting second and higher power of   for small value of   

Therefore, 
3 3

( )Q P D T 
 

(38) 

Total Cost: The total cost comprises of the sum of the Production cost, ordering cost, 

holding cost, and Deteriorating cost. They are grouped together after evaluating the 

above cost individually. 

Production Cost per unit time  =
P

DC
 

(39) 

Setup cost per set = 0
C

T
  (40) 

(i)  Holding Cost per unit time :  

31 2 4

1 2 30

( ) ( ) ( ) ( )

TT T T

h

T T T

C
I t dt I t dt I t dt I t dt

T

 
    

  
     

       
31 2 4

1 2 3

( )

0

( ) ( )
1 1 1 1

TT T T

t t t T th

T T T

C P D a P D b P D D
e dt e dt e dt e dt

T

   

   

   
   

        
  
   

41 2 3
4

1 2 3

( )

0

( ) ( )
TT T T

T tt t t

h

T T T

C P D e a P D e b P D e D e
t t t t

T

  

       

           
              

            

   

 
   

1 2 1

3 4 32

1 2 12 2

( )

3 2 4 32 2

( )
1 ( )

( ) 1 ( )

T T T

h

T T TT

P D a P D
T e T T e e

C

b P DT D
T T e e e T T

  

 

 
 

 
 

  

 

  
      

 
 

        
 

 

Expanding the exponential functions and neglecting second and higher power of 

  for small value of   

= 

2 2 2

2 21

2 12 2

2 2 2 2 2

3 2 4 3

2 2

( )
(

2 2

( ) ( )( )

2 2

h

TP D a P D
T T

C

T T T T Tb P D D

 

 

 

 

     
    

   
     
     
     
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2 2 2 2 2 2

1 2 1 3 2 4 3
( ) ( )( ) ( )( ) ( )

2

h
C

P D T a P D T T b P D T T D T T
T
             (41) 

(i) Deteriorating Cost per unit time: Deteriorating cost 

= 
31 2 4

1 2 30

( ) ( ) ( ) ( )

TT T T

P

T T T

C
I t dt I t dt I t dt I t dt

T

  
   

  
     

=

       
31 2 4

1 2 3

( )

0

( ) ( )
1 1 1 1

TT T T

t t t T tP

T T T

C P D a P D b P D D
e dt e dt e dt e dt

T

   

   

   
   

       
  
   

 

Expanding the exponential functions and neglecting second and higher power of   for 

small value of  . 

=
2 2 2 2 2 2

1 2 1 3 2 4 3
( ) ( )( ) ( )( ) ( )

2

P
C

P D T a P D T T b P D T T D T T
T


            (42) 

(ii) Shortage Cost : 
5

4 5

( ) ( )

T T

S

T T

C
I t dt I t dt

T

 
 

  
   

 

5

4 5

4

2 2

5 4 5

2

2

4 4

2 2

4 4

2

4

( ) ( )( )

( ) ( )( )
2

( )
( )

2

( ) ( )
( ) ( )

2

( )
( )

T T

S

T T

S

S

S

S

C
D t T dt P D T t dt

T

C
D T T P D T T

T

C P D P D D P D
D T T T T

T P P P

C D P D D P D
T T T T

T P P

D P D C
T T

TP

 
     

  

      

    
     

   

  
    

 


 

 

 (43) 

From the equations (34) and (35), 

5 4 5
( ) ( )I T B D T T    = B  that is 

5 4
( )D T T B   

5 5
( ) ( )( )I T B P D T T B      that is 

5
( )( )P D T T B    

5 5 4
( )( ) ( )P D T T D T T     

Therefore, 
5 4

P D
T T T

P D P D
 

 
  and 

5 4

P D D
T T T

P P


   (44) 

TC = Production Cost + Ordering Cost + (Holding Cost + Deteriorating Cost)   
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 = 
P

DC + 0
C

T
+ 

2 2 2

1 2 1

2 2 2

3 2 4 3

( ) ( )( )( )

2 ( )( ) ( )

h P
P D T a P D T TC C

T b P D T T D T T

     
 
     

+ 2

4

( )
( )S

D P D C
T T

TP


  

Let 
1 3

T T  ; 
2 3

T T  and 
3 4

T T  (45) 

Therefore, the total cost  

=
P

DC + 0
C

T
+ 

2 2 2 2 2

4 4 2

42 2 2 2 2

4 4

( ) ( )( )( ) ( )
( )

2 ( )( ) (1 )

h P S
P D T a P D TC C D P D C

T T
T TPb P D T D T

  

  

     
  

     
 

Partially differentiate the equation  (24) with respect to   
4

T , 
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On simplification,      

4T = 
2 2 2

2 2 2

2 ( )

( ) ( )( )
( ) 2 ( )

( )( ) (1 )

S

h P S

D P D C T

P D a P D
P C C D P D C

b P D D

  

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

     
   

      

 (46) 

Let us assume A = 2 2 2 2 2 2( ) ( )( ) ( )( ) (1 )P D a P D b P D D               

Therefore, 
4

T = 
2 ( )

( ) 2 ( )

S

h P S

D P D C T

P C C A D P D C



  
 and  
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P

DC + 0
C

T
+ 2

4

( ) ( )
( )
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C C D P D C

A T T
T TP
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Partially differentiate the equation  (46) with respect to T 
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Therefore,   
 0
2 ( ) ( )

( ) ( )

S h P

h P S

C D P D C P C C A
T

C C D P D C A





  


 
 (47) 

Note:  When 
Q

T
D

  then Q = TD  

Numerical Example 

Let us consider the cost parameters 

P = 5000 units, D = 4500 units, 
hC =10, pC = 100, 

0C =100,   = 0.01 to   0.10,  

a = 2, b= 3, 8.0 , 0.9  ,  =0.9 

Optimum solution 

Cycle Times: T = 0.2200; 
1

T = 0.0832; 
2

T = 0.0951; 
3

T = 0.1070;
4

T = 0.1189, 
5

T = 

0.1290, 

Optimum Quantity Q* = 989.83, 
1

Q = 41.62; 
2

Q = 95.15; 
3

Q = 160.56; B = 45.46, 

Production cost =450,000, Setup cost = 454.62, Holding cost = 223.47, Shortage 

Cost=208.81, 

Deteriorating cost = 22.35, Total cost = 450909.25 

Table 3: Variation of Rate of Deteriorating Items with inventory and total Cost 

 

  

 

T 

 

Q 

Product 

ion Cost 

Setup 

Cost 

Holding 

Cost 

Deteriorating 

Cost 

Shortage 

Cost 

Total Cost 

0.01 0.2200 989.83 450000 454.62 223.47 22.35 208.81 450909.25 

0.02 0.2149 967.27 450000 465.23 201.22 40.24 223.76 450930.45 

0.03 0.2106 947.76 450000 474.80 182.26 54.68 237.86 450949.60 

0.04 0.2068 930.72 450000 483.50 165.95 66.38 251.17 450966.99 

0.05 0.2035 915.69 450000 491.43 151.79 75.90 263.74 450982.86 

0.06 0.2005 902.34 450000 498.71 139.42 83.65 275.63 450997.41 

0.07 0.1979 890.38 450000 505.40 128.54 89.98 286.87 451010.80 

0.08 0.1955 879.63 450000 511.58 118.92 95.13 297.53 451023.16 

0.09 0.1933 869.89 450000 517.31 110.35 99.32 307.64 451034.61 

From the above table, a study of rate of deteriorative  items and optimum quantity and 

cycle time T, where it can be concluded that when the rate of deteriorative items 

increases, then the optimum quantity and cycle time decrease; the table gives also a study 

of rate of deteriorative item with Setup cost, Holding cost, Deteriorative Cost, Shortage 

cost and Total cost, where it can be concluded that when the rate of deteriorative  items 

increases, then the Holding cost decreases but setup cost, deteriorative cost, shortage cost  

and Total cost increases. 

Sensitivity Analysis: 
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Table 4: Effect of Demand and Cost parameters on optimal policies 

Para 

meters 

Optimum values 
Total Cost 

T  Q 1T  2T  3T  1Q  2Q  3Q  B 

  

0.01 0.2200 989.83 0.0832 0.0951 0.1070 41.63 95.15 160.56 45.46 450909.25 

0.02 0.2149 967.27 0.0781 0.0893 0.1004 39.05 89.25 150.61 46.52 450930.46 

0.03 0.2106 947.76 0.0736 0.0841 0.0946 36.79 84.08 141.89 47.48 450949.60 

0.04 0.2068 930.72 0.0696 0.0795 0.0894 34.78 79.51 134.17 48.35 450966.99 

0.05 0.2035 915.69 0.0659 0.0754 0.0848 33.00 75.42 127.28 49.14 450982.86 

0C  

80 0.1967 885.33 0.0745 0.0851 0.0957 37.23 85.10 143.61 40.66 450813.26 

90 0.2087 939.03 0.0789 0.0903 0.1015 39.49 90.26 152.32 43.13 450862.59 

100 0.2200 989.83 0.0832 0.0951 0.1070 41.63 95.15 160.56 45.46 450909.25 

110 0.2307 1038.14 0.0873 0.0998 0.1123 43.66 99.79 168.40 47.68 450953.63 

120 0.2409 1084.30 0.0912 0.1042 0.1173 45.60 104.23 175.89 49.80 450996.03 

hC  

8 0.2328 1047.61 0.0961 0.1099 0.1236 48.07 109.88 185.42 42.96 450859.10 

9 0.2258 1016.23 0.0892 0.1019 0.1147 44.60 101.94 172.03 44.28 450885.62 

10 0.2200 989.83 0.0832 0.0951 0.1070 41.63 95.15 160.56 45.46 450909.25 

11 0.2149 967.27 0.0781 0.0891 0.1004 39.05 89.25 150.61 46.52 450930.45 

12 0.2106 947.76 0.0735 0.0841 0.0946 36.79 84.08 141.89 47.48 450949.60 

PC  

80 0.2211 994.77 0.0844 0.0964 0.1085 42.19 96.43 162.72 45.24 360904.73 

90 0.2205 992.28 0.0838 0.0958 0.1078 41.90 95.78 161.63 45.35 405907.00 

100 0.2200 989.83 0.0832 0.0951 0.1070 41.63 95.15 160.56 45.46 450909.25 

110 0.2194 987.41 0.0827 0.0945 0.1063 41.35 94.52 159.50 45.57 495911.47 

120 0.2189 985.04 0.0822 0.0939 0.1056 41.08 93.90 158.64 45.68 540913.67 

SC  

8 0.2322 1045.11 0.0788 0.0901 0.1014 39.42 90.11 152.07 53.82 450861.15 

9 0.2255 1014.77 0.0121 0.0928 0.1044 40.60 92.81 156.61 49.27 450886.90 

10 0.2200 989.83 0.0832 0.0951 0.1070 41.63 95.15 160.56 45.46 450909.25 

11 0.2153 968.94 0.0850 0.0972 0.1093 42.52 97.20 164.02 42.22 450928.85 

12 0.2114 951.19 0.0866 0.0990 0.1114 43.32 99.01 167.08 39.42 450946.19 

 

Observations: 

1. With the increase in rate of deteriorating items ( ) , total cost increases but cycle 

time, optimum quantity, Cycles times ( 1 2 3, , , )T T T T and optimum quantity, buffer 

stock and maximum inventory 1 2 3( , , )Q Q Q decrease. 

2. With the increase in setup cost per unit ( 0)C , optimum quantity (Q*), maximum 

inventory 1Q , 2Q  and 3Q , Cycle times ( 1 2 3, , , )T T T T , Buffer stock and total cost 

increase. 

3. With the increase in holding cost per unit ( hC ), optimum quantity (Q*), 

maximum inventory 1Q , 2Q , and 3Q , cycle times ( 1 2 3, , , )T T T T  decreases but total 

cost  increase. 

4. Similarly, other cost parameters, production cost, shortage cost can also be 

observed from Table 4. 
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Special Cases:  

If the production system is considered to be ideal,no deteriorative are produced, the value 

of   is set to zero. In that case, equations (35) and (36) reduce to the classical economic 

production quantity model as follows  

Therefore, 0 2 ( )

( )

S h

h S

C D P D C PC A
T

C D P D C A

   



 

Optimum solution 

Cycle Times: T = 0.2258; 
1

T = 0.0892; 
2

T = 0.1019; 
3

T = 0.1147;
4

T = 0.1274, 
5

T = 

0.1373, 

Optimum Quantity Q* = 1016.10, 
1

Q = 44.60; 
2

Q = 101.94; 
3

Q = 172.03; B = 44.28, 

Production cost =450,000, Setup cost = 442.81, Holding cost = 249.86,  

Shortage Cost=192.95, Total cost = 450885.62 

 

5. CONCLUSION  

In general, inventory models are based on the assumption that products generated 

have indefinitely long lives, but almost all items deteriorate over time. Often, the rate of 

deterioration is low and there is little need to consider the deterioration in the 

determination of economic lot size. In this paper, a dynamic inventory model is 

considered with deteriorating production in which each of the production, the demand 

and the deterioration rates, as well as all cost parameters are assumed to be general 

functions of time. The objective is to cycle time and optimal production lot size, which 

minimize total costs. The relevant model is built and solved.  Illustrative examples are 

provided. The validation of the results in this model was coded in Microsoft Visual Basic 

6.0. 

This research can be extended as follows: 

Most of the production systems today are multi-stage systems and in a multi-stage 

system the defective items and scrap can be produced in each stage. Again, the defectives 

and scrap proportion for a multi-stage system can differ in different stages. Taking these 

factors into consideration, this research can be extended for a multi-stage production 

process. 

Traditionally, inspection procedures incurring cost is an important factor to identify 

the defectives and scrap and to remove them for the finished goods inventory. For better 

production, the placement and effectiveness of inspection procedures are required which 

is ignored in this research, so inspection cost can be included in developing future 

models.  

The demand of a product may decrease with time owing to the introduction of a new 

product which is either technically superior or more attractive and cheaper than the old 
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one. On the other hand, the demand of a new product will increase. Thus, demand rate 

can be varied with time, so variable demand rate can be used to develop the model. 

The proposed model can assist the manufacturer and retailer in accurately 

determining the optimal quantity, cycle time, and inventory total cost. Moreover, the 

proposed inventory model can be used in inventory control of certain items such as food 

items, fashionable commodities, stationary stores and others.  
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