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1. INTRODUCTION

A second order cone optimization (SOCO) problem is a linear optimization
problem over a cross product of second order convex cones. The second order
cone in Rn is given by

L
n := {x ∈ Rn : x2

1 ≥

n∑
i=2

x2
i , x1 ≥ 0}.
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We consider the following standard primal and dual SOCO problems

min{cTx : Ax = b, x ∈ K}, (P)

max{bT y : AT y + s = c, s ∈ K}, (D)

whereK ⊆ Rn is the Cartesian product of several second-order cones, i.e.,

K = K1
×K

2
× · · · × K

N,

with K j = Ln j for each j( j = 1, 2, . . . ,N) and n =
∑N

j=1 n j. Furthermore, x =

(x1; x2; . . . ; xN), s = (s1; s2; . . . ; sN) with x j, s j
∈ K

j, c = (c1; c2; . . . ; cN) with c j
∈ Rn j ,

A = (A1; A2; . . . ; AN) with A j
∈ Rm×n j and b ∈ Rm. Without loss of generality, we

assume that the matrix A has full row rank, i.e., rank(A) = m.
In recent years, there have been extensive investigations concerning the analy-

sis of interior-point methods (IPMs) for SOCO. Nesterov and Todd [13] considered
linear cone optimization problems in which the cone is self-scaled. It has become
clear later that self-scaled cones are precisely the symmetric cones. Adler and Al-
izadeh [1] studied the relationship between semidefinite optimization (SDO) and
SOCO problems and presented a unified approach to these problems. Schmieta
and Alizadeh [16] extended the analysis of the Monteiro-Zhang family of interior
point algorithms from SDO to all symmetric cones using Jordan algebraic tech-
niques. Wang and Bai [18] proposed a full Nesterov-Todd (NT)-step primal-dual
path-following interior-point algorithm for SOCO based on Darvay’s technique
[3].

The methods mentioned above are feasible IPMs, which start with a strictly
feasible interior point. All the points generated by feasible IPMs are also strictly
feasible. In practice, it is sometimes difficult to obtain an initial strictly feasible
point. Infeasible IPMs (IIPMs) do not require that the starting point is feasible, but
only that it is in the interior of the cone. The first IIPMs were proposed by Lustig
[10]. Global convergence was shown by Kojima et al. [8], whereas Zhang [21]
and Mizuno [12] presented polynomial iteration complexity results for variants
of this algorithm. For studying more details about IIPMs one can refer to [19]. In
2006, Roos [15] proposed an IIPM to solve LO problem. This method use only full
steps (instead of damped steps) unlike the classical IIPMs [8, 12, 21]. Kheirfam
[5, 6] presented variants of this algorithm for SDO. Kheirfam and Mahdavi-Amiri
[7] generalized it to full NT-step IIPM for linear complementarity problem over
symmetric cone (SCLCP). Gu et al. extended it to SOCO [20].

In this paper, we use another definition for the feasibility step, and present
a full NT-step IIPM for SOCO. We analyze our algorithm and prove that the
iteration bound coincides with the best known bound for IIPMs, providing an
interesting analysis along the way.

The rest of the paper is organized as follows: In Section 2 we briefly review
some properties of the second-order cone and its associated Euclidean Jordan
algebra. In Section 3 we firstly present our algorithm, and then give some results
which show that the NT-process converges quadratically. Section 4 is devoted to
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the analysis of the feasibility step, which is the main part of this paper. The analysis
presented in this section differs from the analysis of the existing methods. We
derive the complexity bound for algorithm, which coincides with the best known
bound for IIPMs. Finally, we end the paper with some concluding remarks in
Section 5.

2. PRELIMINARIES

In this section, we briefly state some properties of second order cones and the
associated Jordan algebra [17, 18].

Let Rn denote the set of vectors with n components. For any two vectors
x j, s j

∈ Rn j , the bilinear map ◦ is defined by

x j
◦ s j =

(
(x j)Ts j; x j

1s j
2 + s j

1x j
2; . . . ; x j

1s j
n j

+ s j
1x j

n j

)
, j = 1, 2, . . . ,N.

One can easily verify that (Rn j , ◦), for each j = 1, 2, . . . ,N, is a Euclidean Jordan
algebra with e j = (1; 0; . . . ; 0), j = 1, 2, . . . ,N as an identity element. The matrix of
the linear map s j

→ x j
◦ s j for each j = 1, 2, . . . ,N, with respect to the standard

basis is a symmetric matrix as

L(x j) :=

 x j
1 (x j

2:n j
)T

x j
2:n j

x j
1En j−1

 ,
where x j

2:n j
= (x j

2; . . . ; x j
n j

) and En j−1 denotes the (n j − 1) × (n j − 1) identity matrix.

For x j
∈ Rn j , j = 1, 2, . . . ,N, define

P(x j) := 2L(x j)2
− L((x j)2),

where L(x j)2 = L(x j)L(x j). The map P(x j) is called the quadratic representation
of Rn j . We define the algebra (Rn, ◦) as a direct product of the Euclidean Jordan
algebras (Rn j , ◦) by

x ◦ s = (x1
◦ s1; x2

◦ s2; . . . ; xN
◦ sN) (1)

and the identity element e = (e1; e2; . . . ; eN). Then, the matrices L(x) and P(x) of Rn

can be adjusted to

L(x) = diag
(
L(x1),L(x2), . . . ,L(xN)

)
, P(x) = diag

(
P(x1),P(x2), . . . ,P(xN)

)
.

Letλmax(x j) andλmin(x j) denote the maximal and minimal eigenvalues of L(x j), j =
1, 2, . . . ,N, respectively, namely,

λmax(x j) := x j
1 + ‖x j

2:n j
‖, λmin(x j) := x j

1 − ‖x
j
2:n j
‖.

Then we have

λmax(x) = max{λmax(x j) : 1 ≤ j ≤ N}, λmin(x) = min{λmin(x j) : 1 ≤ j ≤ N}.
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It readily follows that

x ∈ K ⇔ λmin(x) ≥ 0, and x ∈ intK ⇔ λmin(x) > 0,

where intK denotes the interior ofK . Furthermore,

tr(x) =

N∑
j=1

tr(x j) =

N∑
j=1

(
λmax(x j) + λmin(x j)

)
:=

2N∑
j=1

λ j(x),

and

‖x‖F =

√√√ N∑
j=1

‖x j‖2F, det(x) =

N∏
j=1

det(x j),

where ‖x j
‖F =

√
tr(x j ◦ x j) =

√
λmax(x j)2 + λmin(x j)2 and det(x j) = λmax(x j)λmin(x j),

for j = 1, 2, . . . ,N.

Lemma 2.1. (Lemma 14 in [2]) Let x ∈ intK and z is any vector in Rn such that
x + z �K 0. Then

2N∑
j=1

1
λ j(x + z)

≤

2N∑
j=1

1
λ j(x) + λ j(z)

.

Proposition 2.2. (Proposition 2.2 in [9]) For each x ∈ intK , P(x) is an automorphism
of P(x)intK = intK . Furthermore, P(x) is positive semidefinite (positive definite) for
each x ∈ K (intK ).

Lemma 2.3. (Lemma 3.2 in [4]) Let x, s ∈ intK . Then, there exists a unique w ∈ intK
such that x = P(w)s. Moreover,

w = P(x
1
2 )
(
P(x

1
2 )s

)− 1
2
[

= P(s−
1
2 )
(
P(s

1
2 )x

) 1
2
]
.

Due to Proposition 2.2, P(w) is an automorphism. The point w is the so-called
NT-scaling point of x and s. The definition of the trace function, together with (1),
implies that, for any x, s ∈ Rn,

〈x, s〉 := tr(x ◦ s) = 2xTs.

In what follows, we list some results which will be needed latter on, when dealing
with the analysis of our algorithm.

Lemma 2.4. (Lemma 30 in [16]) Let x, s ∈ intK . Then

‖P(x)
1
2 s − e‖F ≤ ‖x ◦ s − e‖F.

Lemma 2.5. (Proposition 3.2.4 in [17]) Let x, s ∈ intK . If w is the scaling point of x
and s, then (

P(x
1
2 )s

) 1
2
∼ P(w

1
2 )s.
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Lemma 2.6. (Proposition 21 in [16]) Let x, s,u ∈ intK . Then
(i) P(x

1
2 )s ∼ P(s

1
2 )x.

(ii) P
(
(P(u)x)

1
2

)
P(u−1)s ∼ P(x

1
2 )s.

Lemma 2.7. (Lemma 2.6 in [20]) Let x, s ∈ intK ,u = P(x)
1
2 s and z = x ◦ s ∈ intK .

Then we have ∥∥∥u
1
2 − u−

1
2

∥∥∥
F ≤

∥∥∥z
1
2 − z−

1
2

∥∥∥
F.

Lemma 2.8. (Lemma 6.1 in [18]) Let x(α) := x+α∆x and s(α) := s+α∆s for 0 ≤ α ≤ 1,
and x, s ∈ intK . If one has

det(x(α) ◦ s(α)) > 0, ∀ α : 0 ≤ α ≤ ᾱ,

then x(ᾱ) and s(ᾱ) ∈ intK .

3. THE STATEMENT of THE ALGORITHM

We assume that (P) and (D) have an optimal solution (x∗, y∗, s∗) such that
tr(x∗ ◦ s∗) = 0. We start usually with assuming that the initial iterates x0, y0 and s0

are
x0 = s0 = ξe, y0 = 0, µ0 = ξ2,

where µ0 is the initial duality gap and ξ is such that

x∗ + s∗ �K ξe.

3.1. The Feasible SOCO Problem
The perturbed optimality conditions for (P) and (D) are

Ax = b, x ∈ K ,
AT y + s = c, s ∈ K ,

x ◦ s = µe,
(2)

where µ > 0 is a parameter. The natural way to define a search direction is to
follow the Newton approach and to linearize the third equation in (2), which leads
to the system

A∆x = 0,
AT∆y + ∆s = 0,

x ◦ ∆s + s ◦ ∆x = µe − x ◦ s.
(3)

Due to the fact that x and s do not operator commute in general, i.e., L(x)L(s) ,
L(s)L(x), this system does not always have a unique solution. This difficulty can
be solved by applying a scaling scheme. It goes as follows. Let x, s,u ∈ intK , then
x◦ s = µe if and only if P(u)x◦P(u−1)s = µe (Lemma 28 in [16]). Now replacing the
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third equation in (2) by P(w−
1
2 )x ◦ P(w

1
2 )s = µe, where w is the NT-scaling point of

x and s as defined in Lemma 2.3, and then applying Newton’s method, we obtain

A∆x = 0,
AT∆y + ∆s = 0,

P(w−
1
2 )∆x ◦ P(w

1
2 )s + P(w−

1
2 )x ◦ P(w

1
2 )∆s = µe − P(w−

1
2 )x ◦ P(w

1
2 )s.

(4)

We define

v :=
P(w−

1
2 )x

√
µ

[
=

P(w
1
2 )s
√
µ

]
, (5)

and

Ā :=
√
µAP(w

1
2 ), dx :=

P(w−
1
2 )∆x
√
µ

, ds :=
P(w

1
2 )∆s
√
µ

. (6)

Using the above notations, the system (4) transforms to

Ādx = 0,

ĀT ∆y
µ

+ ds = 0,

dx + ds = v−1
− v.

(7)

The new search directions dx and ds are obtained by solving (7), so ∆x and ∆s
can be computed via (6). Due to the first two equations of (7), dx belongs to the
null space of Ā and ds belongs to the row space of Ā, hence we conclude that
dT

x ds = 0, i.e., dx and ds are orthogonal. Thus, from the third equation of (7) and
the orthogonality of dx and ds, we obtain

‖dx + ds‖
2
F = ‖dx‖

2
F + ‖ds‖

2
F = ‖v−1

− v‖2F.

This implies that dx and ds are both zero if and only if v−1
− v = 0. In this case, x

and s satisfy x◦ s = µe, implying that x and s are the µ-centers [16]. Hence, we can
use the norm ‖v−1

− v‖F as a quantity to measure closeness to the µ-centers. Let
us define

δ(x, s;µ) ≡ δ(v) :=
1
2
‖v−1
− v‖F. (8)

3.2. The Perturbed Problem
For any ν with 0 < ν ≤ 1, we consider the perturbed problem

min
{
(c − νr0

c )Tx : b − Ax = νr0
b , x ∈ K

}
, (Pν)

and its dual problem

max
{
(b − νr0

b)T y : c − AT y − s = νr0
c , s ∈ K

}
, (Dν)

where
r0

b := b − Ax0, r0
c := c − AT y0

− s0.

Note that if ν = 1, then x = x0 and (y, s) = (y0, s0) yield strictly feasible solutions
of (Pν) and (Dν), respectively.
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Lemma 3.1. (Lemma 4.1 in [20]) Let the original problems, (P) and (D), be feasible.
Then for each ν with 0 < ν ≤ 1, the perturbed problems (Pν) and (Dν) are strictly feasible.

Assuming that (P) and (D) are both feasible, it follows from Lemma 3.1 that the
problems (Pν) and (Dν) are strictly feasible, for each ν ∈ (0, 1]. This means that the
following system

b − Ax = νr0
b , x ∈ K

c − AT y − s = νr0
c , s ∈ K

x ◦ s = µe,
(9)

has a unique solution, for any µ > 0. For ν ∈ (0, 1] and µ = νµ0 = νξ2, we denote
this unique solution as (x(µ, ν), y(µ, ν), s(µ, ν)), where x(µ, ν) is the µ-center of (Pν)
and (y(µ, ν), s(µ, ν)) is the µ-center of (Dν). Due to the fact that the parameters µ
and ν will always be in a one-to-one correspondence, according to µ = νµ0 = νξ2.
For the sake of simplicity, we denote x(µ) = x(µ, ν), y(µ) = y(µ, ν) and s(µ) = s(µ, ν).
By taking ν = 1, one has (x(1), y(1), s(1)) = (x0, y0, s0) = (ξe, 0, ξe) and x0

◦ s0 = µ0e.
Hence, we initially have δ(x, s;µ) = 0. In the sequel, we assume that at the start of
each iteration, just before the µ-and ν-update, δ(x, s;µ) ≤ τ, where τ is a positive
threshold value. This certainly holds at the start of the first iteration.

Now, we describe one main iteration of our algorithm. The algorithm be-
gins with an infeasible interior-point (x, y, s) such that (x, y, s) is feasible for the
perturbed problems (Pν) and (Dν), with µ = νµ0 and such that xTs = Nµ and
δ(x, s;µ) ≤ τ. We reduce ν to ν+ = (1 − θ)ν, with θ ∈ (0, 1), and find new iterate
(x+, y+, s+) that is feasible for the perturbed problems (Pν+ ) and (Dν+ ), and such
that (x+)Ts+ = Nµ and δ(x+, s+;µ+) ≤ τ. Every iteration consists of a feasibility step
and a few centering steps. The feasibility step serves to get iterates (x f , y f , s f ) that
are strictly feasible for the perturbed problems with ν+ := (1 − θ)ν, and close to
their µ-centers such that δ(x f , s f ;µ+) ≤ 1

4√2
. Since the triple (x f , y f , s f ) is strictly

feasible for (Pν+ ) and (Dν+ ), we perform a few centering steps starting at (x f , y f , s f ),
targeting at the µ+-centers of (Pν+ ) and (Dν+ ), and obtain iterates (x+, y+, s+) that
are feasible for (Pν+ ) and (Dν+ ) such that δ(x+, s+;µ+) ≤ τ. This process is repeated
until the algorithm terminates. For the feasibility step in [20] search directions
∆ f x,∆ f y and ∆ f s are defined by the system

A∆ f x = θνr0
b

AT∆ f y + ∆ f s = θνr0
c

P(w−
1
2 )x ◦ P(w

1
2 )∆ f s + P(w

1
2 )s ◦ P(w−

1
2 )∆ f x =

µe − P(w−
1
2 )x ◦ P(w

1
2 )s.

(10)

After the feasibility step, the iterates are given by

x f := x + ∆ f x, y f := y + ∆ f y, s f := s + ∆ f s, (11)

It can be easily understood that if (x, y, s) is feasible for the perturbed problems
(Pν) and (Dν), then after the feasibility step, the iterates satisfy the feasibility
conditions for (Pν+ ) and (Dν+ ). Assume that before the step δ(x, s;µ) ≤ τ = 1

16
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holds. Here, we want to investigate how large θ can be so that it guarantees that
after the feasibility step the iterates x f , y f and s f are nonnegative and moreover,
δ(x f , s f ;µ+) ≤ 1

4√2
, where µ+ = (1 − θ)µ. In a centering step, the search directions

∆x,∆y and ∆s are the usual primal-dual NT directions defined by the system (4).
Denoting the iterates after a centering step as x+, y+ and s+, we recall from [20]
the following results.

Lemma 3.2. If δ := δ(v) < 1, then the full NT-step is strictly feasible, and (x+)Ts+ = Nµ
and

δ(x+, s+;µ) ≤
δ2√

2(1 − δ4)
.

Corollary 3.3. If δ(v) ≤ 1
4√2

, then δ(x+, s+;µ) ≤ δ2, showing that the iterates are in the
neighborhood of the quadratic convergence of the proximity measure of the iterates.

4. NEW FEASIBILITY STEP

In this paper, we use another definition for the feasibility step by replacing the
third equation of (10) by the equation

P(w−
1
2 )x ◦ P(w

1
2 )∆ f s + P(w

1
2 )s ◦ P(w−

1
2 )∆ f x = −θP(w−

1
2 )x ◦ P(w

1
2 )s. (12)

4.1. Analysis of the New Feasibility Step
The important and hard part of the analysis is to prove quadratic convergence

property of feasibility step. The feasibility step generates new iterates x f , y f and
s f that satisfy the feasibility conditions for (Pν+ ) and (Dν+ ). A crucial element in
the analysis is to find the largest value θ so that the iterates (x f , y f , s f ) satisfy
δ(x f , s f ;µ+) ≤ 1

4√2
, i.e., that the new iterates are within the region where the

Newton process targeting at the µ+-centers of (Pν+ ) and (Dν+ ) is quadratically
convergent. After the feasibility step, we perform centering steps in order to get
iterates (x+, y+, s+) that satisfy (x+)Ts+ = Nµ+ and δ(x+, s+;µ+) ≤ τ, where τ ≥ 0. A
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more formal description of the algorithm is given as follows:

Algorithm 1 : A f ull −Newton step IIPM
Input :

accuracy parameter ε > 0;
barraier update parameter θ, 0 < θ < 1;
and threshold parameter τ > 0;

parameter ξ > 0.
begin
x := ξe; y := 0; s := ξe; µ := µ0 = ξ2; ν = 1;

while max
(
xTs, ‖b − Ax‖, ‖c − AT y − s‖

)
> ε do

feasibility step :
solve (13) and update

(x, s, y) := (x, s, y) + (∆ f x,∆ f s,∆ f y);
µ − update :

Determine the largest value θ such that(
4Nθρ(δ)

)2
+

(
4Nθρ(δ) +

√
2Nθ

)2
≤ 1.166(1 − θ);

where ρ(δ) = δ +
√

δ2 + 1.
µ := (1 − θ)µ;

centering step :
while δ(x, s;µ) ≥ τ do

solve (4) and update
(x, y, s) := (x, y, s) + (∆x,∆y,∆s)

end while
end while

end.

Now, let us replace the third equation in system (10) by (12) which implies the
following system:

A∆ f x = θνr0
b

AT∆ f y + ∆ f s = θνr0
c

P(w−
1
2 )x ◦ P(w

1
2 )∆ f s + P(w

1
2 )s ◦ P(w−

1
2 )∆ f x = −θP(w−

1
2 )x ◦ P(w

1
2 )s.

(13)

Let us define

d f
x :=

1√
µ+

P(w−
1
2 )∆ f x, d f

s :=
1√
µ+

P(w
1
2 )∆ f s, (14)

where w is the NT-scaling point of x and s. Using (5), (11), and (14), we may write

x f = x + ∆ f x =
√
µP(w

1
2 )(v +

√
1 − θd f

x),

s f = s + ∆ f s =
√
µP(w−

1
2 )(v +

√
1 − θd f

s ).
(15)
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By using the third equation of system (13), we derive that

(v +
√

1 − θd f
x) ◦ (v +

√

1 − θd f
s ) = v2 +

√

1 − θv ◦ (d f
x + d f

s ) + (1 − θ)d f
x ◦ d f

s

= (1 − θ)(v2 + d f
x ◦ d f

s ). (16)

Since P(w
1
2 ) and P(w−

1
2 ) are automorphisms of intK , x f and s f will belong to intK

if and only if v +
√

1 − θd f
x and v +

√
1 − θd f

s belong to intK .

Lemma 4.1. The iterates (x f , y f , s f ) are strictly feasible if v2 + d f
x ◦ d f

s ∈ intK .

Proof. Introduce a step length α with α ∈ [0, 1] and define

vx(α) = v + α
√

1 − θd f
x , vs(α) = v + α

√

1 − θd f
s .

Therefore, by the third equation of system (13), we have

vx(α) ◦ vs(α) = (v + α
√

1 − θd f
x) ◦ (v + α

√

1 − θd f
s )

= v2 + α
√

1 − θv ◦ (d f
x + d f

s ) + α2(1 − θ)d f
x ◦ d f

s

= (1 − αθ)v2 + α2(1 − θ)d f
x ◦ d f

s .

If v2 +d f
x ◦d f

s ∈ intK , then we have d f
x ◦d f

s �K −v2. Substituting this into the above
relation, we get

vx(α) ◦ vs(α) �K (1 − α)(1 + α − αθ)v2.

If 0 ≤ α ≤ 1, then we have vx(α) ◦ vs(α) �K 0. Thus det(vx(α) ◦ vs(α)) > 0. Lemma
2.8 implies that vx(1) = v +

√
1 − θd f

x ∈ intK and vs(1) = v +
√

1 − θd f
s ∈ intK . This

proves the lemma.

For the proof of our main result in this subsection, which is Lemma 4.5, we need
the following two lemmas.

Lemma 4.2. (See Lemma II.60 in [14]) Let ρ(δ) := δ +
√

1 + δ2. Then

1
ρ(δ)

≤ λi(v) ≤ ρ(δ), i = 1, 2, · · · , 2N.

Lemma 4.3. (Lemma A.1 in [11]) For i = 1, 2, . . . ,n, let fi : R+ → R denote a convex
function. Then, for any nonzero vector z ∈ Rn

+, the following inequality

n∑
i=1

fi(zi) ≤
1

1Tz

n∑
j=1

z j

(
f j(1Tz) +

∑
i, j

fi(0)
)

holds, where 1 is the all-one vector.
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In the sequel, we denote

ω :=
1
2

√
‖d f

x‖
2
F + ‖d f

s ‖
2
F,

which implies ‖d f
x‖F ≤ 2ω and ‖d f

s ‖F ≤ 2ω. Moreover, we have

‖d f
x ◦ d f

s ‖F ≤
1
2

(‖d f
x‖

2
F + ‖d f

s ‖
2
F) = 2ω2, (17)

|λi(d
f
x ◦ d f

s )| ≤ ‖d f
x ◦ d f

s ‖F ≤ 2ω2, i = 1, 2, . . . , 2N. (18)

We proceed by deriving an upper bound for δ(x f , s f ;µ+). Recall from definition
(8) that

δ(x f , s f ;µ+) := δ(v f ) =
1
2

∥∥∥(v f )−1
− v f

∥∥∥
F, (19)

where v f := 1√
µ(1−θ)

P(w f )−
1
2 x f

[
= 1√

µ(1−θ)
P(w f )

1
2 s f

]
and w f is the NT-scaling point

of x f and s f .

Lemma 4.4. One has
√

1 − θv f
∼

[
P(v +

√

1 − θd f
x)

1
2 (v +

√

1 − θd f
s )
] 1

2 .

Proof. It follows from the definition v f and Lemma 2.5 that√
µ(1 − θ)v f = P(w f )

1
2 s f
∼

(
P(x f )

1
2 s f

) 1
2 .

Due to (15) and Lemma 2.6, with u = w
1
2 , we may write

P(x f )
1
2 s f = µP

(
P(w

1
2 )(v +

√

1 − θd f
x)
) 1

2 P(w−
1
2 )(v +

√

1 − θd f
s )

∼ µP(v +
√

1 − θd f
x)

1
2

(
v +
√

1 − θd f
s

)
.

Thus we obtain√
µ(1 − θ)v f

∼
√
µ
[
P(v +

√

1 − θd f
x)

1
2

(
v +
√

1 − θd f
s

)] 1
2 .

From this the lemma follows.

The above lemma implies that

(v f )2
∼ P

(v +
√

1 − θd f
x

√
1 − θ

) 1
2
(v +

√
1 − θd f

s
√

1 − θ

)
.

By Lemma 2.7, one can easily verify that

4δ(v f )2 =
∥∥∥v f
− (v f )−1

∥∥∥2

F =
∥∥∥u

1
2 − u−

1
2

∥∥∥2

F

≤

∥∥∥z
1
2 − z−

1
2

∥∥∥2

F,
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where

x =
v +
√

1 − θd f
x

√
1 − θ

, s =
v +
√

1 − θd f
s

√
1 − θ

, u = P(x)
1
2 s, z = x ◦ s.

Moreover, again by using (16), we derive

(1 − θ)z =
(
v +
√

1 − θd f
x

)
◦

(
v +
√

1 − θd f
s

)
= (1 − θ)(v2 + d f

x ◦ d f
s ).

So we have

4δ(v f )2
≤

∥∥∥z
1
2 − z−

1
2

∥∥∥2

F = tr(z) + tr(z−1) − 2tr(e), z = v2 + d f
x ◦ d f

s . (20)

Lemma 4.5. If v2 + d f
x ◦ d f

s ∈ intK and 1 − 2ρ(δ)2ω2 > 0, then

4δ(v f )2
≤ 4δ(v)2 + 2ω2 +

2ρ(δ)4ω2

1 − 2ρ(δ)2ω2 .

Proof. Using (20) and Lemma 2.1, we obtain

4δ(v f )2
≤ tr(v2 + d f

x ◦ d f
s ) + tr((v2 + d f

x ◦ d f
s )−1) − 2tr(e)

=

2N∑
i=1

λi(v2 + d f
x ◦ d f

s ) +

2N∑
i=1

1

λi(v2 + d f
x ◦ d f

s )
− 2tr(e)

≤

2N∑
i=1

(
λi(v)2 + λi(d

f
x ◦ d f

s )
)

+

2N∑
i=1

1

λi(v)2 + λi(d
f
x ◦ d f

s )
− 2tr(e)

≤

2N∑
i=1

(
λi(v)2 + |λi(d

f
x ◦ d f

s )|
)

+

2N∑
i=1

1

λi(v)2 − |λi(d
f
x ◦ d f

s )|
− 2tr(e)

≤

2N∑
i=1

((
λi(v)2 + |λi(d

f
x ◦ d f

s )|
)

+
1

λi(v)2 − |λi(d
f
x ◦ d f

s )|
− 2

)
.

For each i, taking yi = |λi(d
f
x ◦ d f

s )|, we define

fi(yi) := λi(v)2 + yi +
1

λi(v)2 − yi
− 2, i = 1, 2, . . . , 2N.

Using Lemma 4.2, hypothesis 1 − 2ρ(δ)2ω2 > 0 and (18), we get

λi(v)2
− yi > 0, i = 1, 2, . . . , 2N.
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This implies that fi(yi) is convex in yi. Therefore, by Lemma 4.3,

4δ(v f )2
≤

2N∑
j=1

f j(y j) ≤
1

1T y

2N∑
j=1

y j

(
f j(1T y) +

∑
i, j

fi(0)
)

≤
1

1T y

2N∑
j=1

y j

[(
λ j(v)2 + 2ω2 +

1
λ j(v)2 − 2ω2 − 2

)
+

∑
i, j

(
λi(v)2 +

1
λi(v)2 − 2

)]
.

Furthermore, we have∑
i, j

(
λi(v)2 +

1
λi(v)2 − 2

)
=

2N∑
i=1

(
λi(v)2 +

1
λi(v)2 − 2

)
−

(
λ j(v)2 +

1
λ j(v)2 − 2

)
=

2N∑
i=1

(
λi(v) −

1
λi(v)

)2
−

(
λ j(v)2 +

1
λ j(v)2 − 2

)
= 4δ(v)2

−

(
λ j(v)2 +

1
λ j(v)2 − 2

)
.

Therefore,

4δ(v f )2
≤ 4δ(v)2 +

1
1T y

2N∑
j=1

y j

[(
λ j(v)2 + 2ω2 +

1
λ j(v)2 − 2ω2 − 2

)
−

(
λ j(v)2 +

1
λ j(v)2 − 2

)]
= 4δ(v)2 + 2ω2 +

1
1T y

2N∑
j=1

y j
2ω2

λ j(v)2
(
λ j(v)2 − 2ω2

)
≤ 4δ(v)2 + 2ω2 +

2ω2

1
ρ(δ)2

(
1

ρ(δ)2 − 2ω2
)

= 4δ(v)2 + 2ω2 +
2ρ(δ)4ω2

1 − 2ρ(δ)2ω2 .

This completes the proof.

From Section 3.2, we know that the algorithm begins with a feasible point (x, y, s)
for the perturbed pair (Pν) and (Dν) such that δ(v) := δ(x, s;µ) ≤ τ = 1

16 . Because we
need that (x f , y f , s f ) lies in the quadratic convergence neighborhood with respect
to the µ+-center of the perturbed pair (Pν+ ) and (Dν+ ), i.e., δ(v f ) ≤ 1

4√2
, it follows
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from Lemma 4.5 that it suffices to have

4δ(v)2 + 2ω2 +
2ρ(δ)4ω2

1 − 2ρ(δ)2ω2 ≤ 2
√

2. (21)

From the fact that the left-hand side of (21) is increasing in δ(v), it follows that the
inequality (21) holds if (by substituting δ(v) with its upper bound τ = 1

16 )

2ω2 +
2ρ( 1

16 )4ω2

1 − 2ρ( 1
16 )2ω2

≤
128
√

2 − 1
64

. (22)

After performing some elementary calculations, we obtain

ω ≤ 0.54. (23)

4.2. An Upper Bound For ω
One can easily check that the system (13), which defines the search directions

∆ f x,∆ f y and ∆ f s, can be expressed in terms of the scaled search directions d f
x and

d f
s as follows:

Ād f
x = θ

√
1−θ
νr0

b ,

ĀT ∆ f y

µ
√

1 − θ
+ d f

s = θ
√

1−θ
ν
√
µP(w

1
2 )r0

c ,

d f
x + d f

s = − θ
√

1−θ
v,

(24)

where
Ā =

√
µAP(w

1
2 ).

Let us denote the null space of the matrix Ā as L. So,

L :=
{
ξ ∈ Rn : Āξ = 0

}
.

Clearly, from the first equation in (24), the affine space{
ξ ∈ Rn : Āξ =

θ
√

1 − θ
νr0

b

}
,

equals d f
x + L. Note that due to a well-know result from linear algebra, the row

space of Ā equals the orthogonal complement L⊥ of L, i.e.,

L
⊥ =

{
ĀTϑ : ϑ ∈ Rm

}
.

From the second equation in (24), the affine space{ θ
√

1 − θ

ν
√
µ

P(w
1
2 )r0

c + ĀTϑ : ϑ ∈ Rm
}
,
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equals d f
s + L⊥. Since L⊥ ∩ L = {0}, it follows that the affine spaces d f

s + L⊥ and
d f

x + L meet in a unique point. We call this point q. So q is uniquely determined
by the system

Āq = θ
√

1−θ
νr0

b ,

ĀTϑ + q = θ
√

1−θ
ν
√
µP(w

1
2 )r0

c .
(25)

The proof of the following lemma is similar to the proof of Lemma 4.6 in [15].

Lemma 4.6. One has

4ω2
≤ ‖q‖2F +

(
‖q‖F +

√
2Nθ2

1 − θ

)2
.

By using Lemma 4.6 in order to have ω ≤ 0.54, it suffices if

‖q‖2F +
(
‖q‖F +

√
2Nθ2

1 − θ

)2
≤ 1.166. (26)

4.3. Upper Bound For ‖q‖F
Recall that the vector q is the unique solution of the system (25), where Ā =

√
µAP(w

1
2 ), with w denoting the scaling point of x and s, as defined in Lemma 2.3.

So we have
√
µAP(w

1
2 )q = θ

√
1−θ
νr0

b ,
√
µP(w

1
2 )ATϑ + q = θ

√
1−θ

ν
√
µP(w

1
2 )r0

c .
(27)

For the moment, let us write

D := P(w
1
2 ), rb :=

θ
√

1 − θ
νr0

b , rc :=
θ

√
1 − θ

νr0
c .

Then the system (27) is equivalent to
√
µADq = rb,

√
µDATϑ + q = 1

√
µDrc.

(28)

By using similar arguments as in Lemma 4.7 in [15], we obtain the following
result:√

µ+‖q‖F ≤ θν
√
‖D(s0 − s∗)‖2F + ‖D−1(x0 − x∗)‖2F. (29)

Using that P(w
1
2 ) is self-adjoint with respect to the inner product 〈·, ·〉 and P(w)e =

w2, we may write

‖D(s0
− s∗)‖2F =

〈
D(s0

− s∗),D(s0
− s∗)

〉
=

〈
D2(s0

− s∗), (s0
− s∗)

〉
=

〈
D2(s0

− s∗), ξe
〉
−

〈
D2(s0

− s∗), ξe − (s0
− s∗)

〉
≤

〈
D2(s0

− s∗), ξe
〉

=
〈
s0
− s∗,D2ξe

〉
= ξ

〈
s0
− s∗,w2

〉
= ξ

〈
ξe,w2

〉
− ξ

〈
ξe − (s0

− s∗),w2
〉
≤ ξ

〈
ξe,w2

〉
= ξ2tr(w2).
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In the same way it follows that

‖D−1(x0
− x∗)‖2F ≤ ξ

2tr(w−2).

Substitution of the last two inequalities and µ = νµ0 = νξ2 into (29) gives

‖q‖F ≤
θ

√
1 − θ

√
νtr(w2 + w−2).

Finally, by using tr(w2 + w−2) ≤ tr(x+s)2

µλmin(v)2 (Lemma 4.7 in [20]) and tr(x + s) ≤ 4Nξ
(Lemma 4.9 in [20]), we obtain

‖q‖F ≤
θ

√
1 − θ

tr(x + s)
ξλmin(v)

≤
4Nθ

√
1 − θλmin(v)

≤
4Nθ
√

1 − θ
ρ(δ),

where the last inequality follows by Lemma 4.2.

4.4. Value For θ
In order to have (26), it suffices if

( 4Nθ
√

1 − θ
ρ(δ)

)2
+

( 4Nθ
√

1 − θ
ρ(δ) +

√
2Nθ2

1 − θ

)2
≤ 1.166,

which is simplified as follows:(
4Nθρ(δ)

)2
+

(
4Nθρ(δ) +

√

2Nθ
)2
≤ 1.166(1 − θ). (30)

With a value of θ that satisfies the above inequality, we are sure that when starting
with δ(x, s;µ) ≤ τ, after the feasibility step we have δ(x f , s f ;µ+) ≤ 1

4√2
. Choosing

δ = 1
16 , one may easily verify that if θ = 1

7N , then the inequality (30) is satisfied.

4.5. Complexity Analysis
We have seen that if at the start of an iteration the iterate satisfies δ(x, s;µ) ≤ τ,

with τ = 1
16 , then after the feasibility step with θ = 1

7N , the iterate is strictly feasible
and satisfies δ(x f , s f ;µ+) ≤ 1

4√2
.

After the feasibility step, we perform a few centering steps in order to get
the iterate (x+, y+, s+) which satisfies δ(x+, s+;µ+) ≤ τ. By Corollary 3.3, after k
centering steps, we will have the iterate (x+, y+, s+) that is still feasible for (Pν+ )
and (Dν+ ) and satisfies

δ(x+, s+;µ+) ≤
( 1

4√2

)2k

.

From this, one easily deduces that δ(x+, s+;µ+) ≤ τ will hold after at most

2 + log2

(
log2

1
τ

)
, (31)
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centering steps. According to (31), and since τ = 1
16 , at most 4 centering steps

suffice to get the iterate (x+, y+, s+) that satisfies δ(x+, s+;µ+) ≤ τ. So, each main
iteration consists of one feasibility step and at most 4 centering steps.

In each main iteration both the duality gap and the norms of the residual
vectors are reduced by the factor 1−θ. Hence, the total number of main iterations
is bounded above by

1
θ

log
max{2Nξ2, ‖r0

b‖F, ‖r
0
c‖F}

ε
.

Due to θ = 1
7N and the fact that we need at most 5 inner iterations per main

iteration, we may state the main result of the paper.

Theorem 4.7. If (P) and (D) are feasible and ξ > 0 is such that x∗ + s∗ � ξe for some
optimal solution x∗ of (P) and (y∗, s∗) of (D), then after at most

35N log
max{2Nξ2, ‖r0

b‖F, ‖r
0
c‖F}

ε
,

inner iterations, the algorithm finds an ε-optimal solution of (P) and (D).

5. CONCLUDING REMARKS

In this paper, we presented and analyzed an infeasible full-NT step IPM for
second-order cone optimization based on a new feasibility direction. The ob-
tained complexity bound in Theorem 4.7 coincides with the best-known iteration
complexity for small update methods. However, we have given a different way
to calculate feasibility direction and its convergence analysis.
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