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Abstract: Nelder-Mead method (NM) for solving continuous non-linear optimization
problem is probably the most cited and the most used method in the optimization liter-
ature and in practical applications, too. It belongs to the direct search methods, those
which do not use the first and the second order derivatives. The popularity of NM is
based on its simplicity. In this paper we propose even more simple algorithm for larger
instances that follows NM idea. We call it Simplified NM (SNM): instead of generating
all n + 1 simplex points in Rn, we perform search using just q + 1 vertices, where q is
usually much smaller than n. Though the results cannot be better than after performing
calculations in n+1 points as in NM, significant speed-up allows to run many times SNM
from different starting solutions, usually getting better results than those obtained by
NM within the same cpu time. Computational analysis is performed on 10 classical con-
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vex and non-convex instances, where the number of variables n can be arbitrarily large.
The obtained results show that SNM is more effective than the original NM, confirming
that LIMA yields good results when solving a continuous optimization problem.

Keywords: Continuous Optimization, Direct Search Methods, Nelder Mead Method,

Less is More Approach.

MSC: 90C30, 90C56, 90C59.

1. INTRODUCTION

Let us consider the following deterministic continuous optimization problem

min{f(x)|x ∈ X,X ⊆ Rn}, (1)

where Rn, X, x, and f respectively denote the Euclidean n-dimensional space, a
feasible set, a feasible solution, and a real-valued objective function. A solution
x∗ ∈ X is optimal if f(x∗) ≤ f(x), ∀x ∈ X. If X = Rn, the unconstrained
problem is defined. The problem is also classified as unconstrained if a feasible
set X is n-dimensional hypercube, and thus represented by box constraints, i.e.,
X = {x = (x1, .., xj , .., xn) ∈ Rn | aj ≤ xj ≤ bj}.

Optimization methods developed for solving (1) mainly depend on the proper-
ties of the objective function f(x). A nonlinear objective function could be convex
or non-convex, continuous or not, derivable or not, smooth or not, etc.

Nelder-Mead.. Nelder-Mead (NM) method was originally designed for solving con-
vex non-differentiable unconstrained nonlinear optimization problems [14]. It be-
longs to direct search methods, those that use only values of the objective function
in searching for the optimal solution. In NM method, n+ 1 points are constructed
in each iteration, forming a simplex in Rn. Estimation of the gradient is made as
a direction that connects the worst among n+ 1 points and the centroid of the re-
maining n points. Four possible points are tried out along that direction, following
the strict order: reflection, expansion, outer contraction, and inner contraction.
The first improvement strategy is implemented: a move is made immediately after
a better than the worst point is obtained; a new simplex is made by replacing
the worst point by the new one; all other n points are unchanged. If none of the
four points along the estimated gradient direction is better, than only the best
point remains the same in the next iteration, and the rest n are moved along the
diretion of their position towards the best simplex point. In that way, the volume
of the simplex is drastically reduced. This fact is used for a stopping condition:
stop when the simplex volume is less than some arbirtrary small number ε.

Literature review.. The NM paper has been cited thousands of times. It was
qualified by the late 1970s as a Science Citation Classic. Even recently, Google
Scholar displayed more than 2,000 papers published in 2012 referring to the NM
method, sometimes combining it with other algorithms. During the last 50 years,
many modifications of the NM method have been proposed in the literature. Most
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of them add new rules and steps to improve the solution quality and to satisfy
some convergence conditions (for various modifications of NM method see, for
example, [17, 5]). Besides, there are also the attempts to simplify it; for example,
a parameter free version, proposed in [22]. There, parameters of the method (for
reflection, expansion, etc) are used at random from the given intervals.

In recent years, NM has been used for solving non-convex and non-differentiable
optimization problems, mostly as a local search routine within more complex algo-
rithms, such as metaheuristics (see e.g., [11, 9, 1] where it is used within Variable
neighborhood search metaheuristic). In [21], NM was extended for solving contin-
uous global optimization problems. It is called Restarted Modified NM (RMNM).
The basic idea of (RMNM) is equally simple as the idea of NM method. When
NM stops, a new initial simplex is constructed around the final point and search
continues until there is no improvement in two successive big itertions.Thus, each
restart of full NM can be seen as one iteration of RMNM. Similar idea is also
implemented in solving non-differentiable optimization problems in [1].

Less is more approach.. Less Is More Approach (LIMA) for solving optimiza-
tion problems has recently been proposed in [12]. Its main idea is to find a
minimum number of search ingredients when numerically solving some particu-
lar problem. Namely, if LIMA based method simplifies a current popular and
much used method, it should provide better quality solutions than the original
method within the same running time. Thus, the objective is to make a method
as simple as possible but, at the same time, more effective and efficient than the
current state-of-the-art heuristic. In this paper we propose Simplified Nelder-Mead
(SNM) method.

Motivation and Contribution.. As mentioned earlier, many metaheuristic meth-
ods have been designed for solving continuous global optimization problems. In
the recent empirical study [6], around 20 metaheuristic based methods were com-
pared on the usually used test instances (such as Ackley function, Shekel function,
Rastrigin function etc.), where the dimension n can be arbitrarily increased. It
appeared that the best results were reported by heuristics based on Differential
Evolution (DE). On the other hand, DE based heuristics use only a few points
during the search, even when the size of the problem is very large. Taking those
empirical results into account, the following conclusions can be drawn: (i) we do
not need n + 1 points to find good search direction in Rn as NM method does,
i.e., 4 or 5 points could be enough; (ii) a better direction than that defined in
NM probably cannot be found, despite of the fact that updating of mutation and
cross-over parameters within DE could be succesful [7]. Thus, we got an idea to
reduce the number of points in direct search method from DE based methods,
although DE methods have nothing in common with NM and SNM. They just
use, as SNM does, only a few points in finding discent direction.

Based on observations (i) and (ii) from above, we propose a simplification of
the NM optimization method that we call Simplified NM. It simply apply NM
method in R4, where in each iteration, four out of n dimensions (n ≥ 4) are



156 K. Gonçalves-e-Silva, et al. / Less is more: Simplified Nelder-Mead Method

chosen at random. SNM is restarted until the allowed cpu time tmax ellapses.
Note that tmax is defined to be equal to the time used by NM, before it stops
naturally. The extensive computational results show that SNM performs better
than NM, confirming that LIMA approach yelds good results in solving continuous
optimization problem.

Outline.. The rest of the paper is organized as follows. In section 2, we briefly
review NM and its simplified version. Section 3 provides extensive computational
results regarding the usual optimization problems, both convex and non-convex.
Section 4 concludes the paper.

2. SIMPLIFIED NELDER MEAD METHOD FOR
UNCONSTRAINED OPTIMIZATION

SNM method is a NM that uses simplex with q + 1 vertices in Rn instead of
n + 1, where q < n. Any of the numerious existing modifications of NM could
easily have its “simplified” version. In this paper, we propose a simplification of
the original NM.

The NM method was proposed for minimizing a real-valued function f(x) for
x ≤ Rn [14]. The method is able to change direction during its execution to
adapt itself to a local landscape without using derivatives. Four scalar values
have to be defined to execute the Nelder-Mead algorithm: coefficients of reflection
(α), expansion (β), contraction (γ), and shrinkage (δ). According to the original
Nelder-Mead paper [14], these parameters should satisfy α > 0, β > 1, 0 < γ < 1
and 0 < δ < 1. The choices used in the standard Nelder-Mead algorithm are
α = 1, β = 2, γ = 1/2 and δ = 1/2. Discussions about these parameters can be
found in [19? ].

Initially, a nondegenerate initial simplex X = {x1,x2, . . . ,xn+1} is given, such
that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1), where x1 and xn+1 are know as the best
and the worst vertices/solutions/points, respectively. According to [21], due to
lack of information, it is customary to specify a random starting point x in Rn

and generate other n vertices by the perturbation of x along the n coordinate
directions. The Algorithm 1 shows an embodiment of this disturbance with step
τmei, where τ is a parameter with the predefined value, ei the n-dimensional unit
vector with one in the ith component (and zeros elsewhere), and m represents the
largest absolute value among the coordinates of the starting point x. If not feasible,
the vertex has to be projected onto the hypercube defined by box constraints:
H = {x | aj ≤ xj ≤ bj}. In other words, if some xj is greater than bj or smaller
than aj , it becomes equal to bj or aj , respectively.

The main loop of NM method consists of consecutive runs of its one iteration.
One iteration is composed of an ordering, reflection, expansion, contractions (inside
and outside), and shrinkage steps. An illustration of the basic NM steps in 2
dimensions is given in Figure 1.
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Algorithm 1 Initial Simplex of the Nelder-Mead Method.

1: procedure Initial-Simplex(x, n)
2: m← Max coordinate(x); Choose τ ;
3: if m = 0 then m← 1;
4: x1 ← x;
5: for i = 2 to n+ 1 do
6: xi ← x + τ ·m · ei;
7: if (xi not feasible) then (project xi onto the hypercube); endif
8: end for
9: return X = {x1,x2, . . . ,xn+1};

10: end procedure

Figure 1: Graphic Representation of the Nelder-Mead method [20].

Details of one NM iteration is given in Algorithm 2. ”A vertice is accepted” in
Algorithm 2 means that it replaces the worst vertice of X.

The NM method is performed by execution of an initial simplex and followed
by several runs of one iteration, as shown in Algorithm 3. A stopping condition
in most implementations of the NM method is based on two criteria: either the
function values at the vertices are sufficiently close, or the volume of simplex
becomes very small [21]. Since the method does not always converge (see e.g.
[8, 10, 15]), the stopping criterion is the combination of the number of consecutive
iterations without improvement itmax and the following condition:

2 · |f(xn+1)− f(x1)|
|f(xn+1)|+ |f(x1)|+ ε

≤ ε (2)

where ε > 0. For discussions about the convergence, see also [4, 13, 15, 16].
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Algorithm 2 One iteration of the Nelder-Mead Method.

1: procedure NM-iteration(X, f, n)
2: Ordering. Order the n + 1 vertices from X such that f(x1) ≤ . . . ≤
f(xn+1).

3: Centroid. Compute the centroid of the n best points x̄ = 1
n

∑n
i=1 xi.

4: Reflection. Compute the reflection point xr = x̄+ α(x̄− xn+1).
5: If f(x1) ≤ f(xr) < f(xn), accept the reflection point xr and terminate

the iteration.
6: Expansion. If f(xr) < f(x1), compute the expansion point xe = x̄ +
β(xr − x̄).

7: If f(xe) < f(xr), accept the expansion point xe and terminate the
interation;

8: otherwise accept xr and terminate the iteration.
9: Contraction. Here it is certain that f(xr) ≥ f(xn).

10: (a) Outside. If f(xr) < f(xn+1), then compute outside contrac-
tion point

xc = x̄+ γ(xr − x̄). If f(xc) ≤ f(xr), accept xc and terminate the
iteration.

11: (b) Inside. If f(xr) ≥ f(xn+1), then compute inside contraction
point

xc = x̄− γ(xr − x̄). If f(xc) ≤ f(xn+1), accept xc and terminate.
12: Shrinkage. Replace all points, except x1, with xi = x1 + δ(xi − x1) for

all i > 1.
13: end procedure

Algorithm 3 Nelder Mead Method.

1: procedure Nelder-Mead(f, n)
2: Get an initial vertex x ∈ Rn at random;
3: X← Initial-Simplex(x, n);
4: while convergence criterion do
5: NM-Iteration(X, f, n);
6: end while
7: return x1;
8: end procedure

2.1. Simplified Nelder-Mead

In the original NM method and in all of its numerius modifications, the con-
structed simplex contains n+1 vertices. In our SNM, size of the simplex is simply
reduced. Besides the problem size n, the SNM contains parameter q (q < n) that
a user can choose before running the code. In order to check if LIMA ”works”,
we took a value of q = 4 for all problem size tested, i.e., the number of simplex
vertices, we use in Computational results section, is equal to q + 1 = 5.

It is clear that the results obtained with SNM cannot be better than those
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obtained by NM: estimated gradient direction derived from n+1 points is more
precise than the gradient estimated from five points. However, calculation of
objective function values in n + 1 points can last very long and thus, moving
through the solution space with only five points should be much faster. If the
stopping condition for NM and SNM is based on running time, then the question is:
would a multistart SNM be better within the same cpu time? Since the simplified
procedure is obvious, we will not give its multi-start pseudo-code. It would be a
repetition of all other algorithms given earlier, but using parameter q instead of
n, for the number of points in Rn. In Algorithm 1 for example, input parameters
(x, n) in Initial-Simplex(x, n), should be Initial-SimplexS(x, n, q). In line 5
of Algorithm 1, q values of i are taken at random from [1, n]. So, we get set X
that contains q + 1 points (see Algorithm 4).

Algorithm 4 Initial Simplex of the SNM

1: procedure Initial-SimplexS(x, n, q)
2: m← Max coordinate(x); Choose τ ;
3: if m = 0 then m← 1;
4: x1 ← x;
5: for i = 2 to q + 1 do
6: j ← Rand[1, n];
7: xi ← x + τ ·m · ej ;
8: if (xi not feasible) then (project xi onto the hypercube); endif
9: end for

10: return X = {x1,x2, . . . ,xq+1};
11: end procedure

Adaptation of Algorithm 2 is also obvious. We order q+1 points, find centroid
of q points, reflect worst among q, etc.

3. COMPUTATIONAL EXPERIMENTS

In this section we analyze the quality of the results obtained by NM and
SNM. Both methods are coded in C++ and executed on a supercomputer with 64
nodes, each one with 2 CPUs Intel Xeon Sixteen-Core E5-2698v3 2.3 GHz and 128
GB of RAM DDR4, located in High Performance Computing Center at UFRN
(NPAD/UFRN), Natal, Rio Grande do Norte, Brazil. Although running on a
high-performance computer, the codes were not implemented on parallel. This
computer was used just to run multiple instances of the problem at the same time
in order to reduce the total running time.

The algorithms are compared on test instances listed in Table 1 that contains
10 benchmark functions, which represent well the diversity in characteristics of
difficulties arising in global optimization problems [21]. The name and the abbre-
viation of each function are given in the first two columns. The third column gives
the known minimum objective function value from the literature. The fourth and



160 K. Gonçalves-e-Silva, et al. / Less is more: Simplified Nelder-Mead Method

the fifth columns give the analytic form of the functions and their input domain
for each variable (box constraints), respectively.

Function Abbr. fmin Function f(x) Input range
Dixon-Price DP 0 f(x) = (x1 − 1)2 +

∑n
i=2 i(2x

2
i − xi−1)2 [-10, 10]

Griewank GR 0 f(x) =
∑n

i=1
x2
i

4000
−
∏n

i=1 cos(
xi√
i
) + 1 [-600, 600]

Powell PO 0 f(x) =
∑n/4

i=1[(x4i−3 + 10x4i−2)2 + 5(x4i−1 − x4i)2+ [-4, 4]
(x4i−2 − 2x4i−1)4 + 10(x4i−3 − x4i)4]

Rosenbrock RO 0 f(x) =
∑n−1

i=1 [100(xi+1 − x2i )2 + (xi − 1)2] [-10, 10]
Schwefel SC 0 f(x) = 418.98287272433799807913601398n− [-500, 500]∑n

i=1 xisin(
√
|xi|)

Zakharov ZA 0 f(x) =
∑n

i=1 x
2
i + (

∑n
i=1 0.5ixi)

2 + (
∑n

i=1 0.5ixi)
4 [-5, 5]

Rastrigin RA 0 f(x) = 10n+
∑n

i=1[x2i − 10cos(2πxi)] [-5.12, 5.12]
Sphere SP 0 f(x) =

∑n
i=1 x

2
i [-5.12, 5.12]

Ackley AC 0 f(x) = −20exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− [-32.768, 32.768]

exp
[
1
n

∑n
i=1 cos(2πxi)

]
+ 20 + e

Noncontinuous NR 0 f(x) =
∑n

i=1[y2i − 10cos(2πyi) + 10], [-5.12, 5.12]

Rastrigin yi =

{
xi , if |xi| < 1

2
round(2xi)

2
, if |xi| ≥ 1

2

Table 1: Standard test instances. The dimensionality of these functions can be adjusted with n.

Figure 2: Schwefel Function.

For all functions in Table 1, we used n = 10, 20, 40, 60, 80, 100, 250, 500,
750, and 1000. Each configuration was executed 10 times. The results comprise
a total of 10 tables given in the Appendix A. The convergence criterion for all
algorithms is set to be the combination of consecutive iterations without improve-
ment (itmax = 10, 000) and the condition defined in (2) with ε = 10−10. In the
Multistart SNM, the maximum number of nonconsecutive improvements is set to
ζ = 100. In addition, the stopping criterion of the NM is at most 1000 seconds if
other two criteria are not satisfied earlier. The stopping criteria for SNM is the
average running time of the NM method. Standard choices for the Nelder-Mead
coefficients are taken, i.e., α = 1, β = 2, γ = 1/2 and δ = 1/2, and τ = 4 (for
generating the initial simplex).
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The average results for 10 independent restarts of each test function are given
in Table 2. More precisely, each line of Table 2 reports average of 100 instances:
10 restarts for each out of 10 different n values.

Prob NM SNM CPU Time
name Best Average Best Average in seconds
DP 2.71E-13 6.69E-02 0.00E+00 1.06E-29 1.82E+01
GR 9.51E-01 1.45E+00 1.48E-09 5.23E-02 4.20E+02
PO 1.35E-15 6.78E-12 5.54E-47 9.53E-32 3.98E+01
RO 3.22E+02 3.58E+02 4.53E-09 7.90E-02 4.18E+02
SC 5.69E+04 6.30E+04 2.29E-09 2.20E+03 3.96E+02
ZA 4.14E+00 1.97E+03 2.76E-12 9.52E-12 3.02E+02
RA 2.04E+02 2.83E+02 9.16E-09 6.06E+00 4.03E+02
SP 1.02E-01 1.70E-01 2.14E-12 7.01E-12 4.16E+02
AC 2.67E+00 3.84E+00 4.28E-06 1.16E-02 3.74E+02
NR 5.52E+02 8.72E+02 2.86E-10 9.23E+00 1.54E+02

Table 2: omparison of best and average objective function values obtained by NM and SNM on
10 standard test instances from Table 1 within the same cpu times. Each instance, defined by
the problem and n, is restarted 10 times. Ten different values of n are tested: 10, 20, 40, 60, 80,
100, 250, 500, 750, and 1000, so, each line reports average values of 100 runs.

Observations. The following conclusions may be derived from Table 2, and also
from Tables 3 - A.13. Note that the total number of tests in each line, and each
solution method of Table 2 is equal to 100 (10 test problems for 10 different values
of n). Since there are 10 test instances, i.e., DP, GR, · · · , NR, tables below report
values obtained by 1000 runs for each method. We believe it was enough to get
some reliable conclusions:

• The main conclusion is that the LIMA idea, applied on NM optimization
method, is effective. Results obtained by NM method are significantly im-
proved by simplified NM (SNM) within the same CPU time limitation.

• SNM appers to be most successful in solving all 10 test instances, which is
clear after comparing values in columns ‘Best’ and ‘Average’ for NM and
SNM in Table 2; for all instances, the SNM best and average values were
smaller (better) than the corresponding values in NM ‘Best’ and Average
columns of Table 2.

• Optimal solutions for all instances and for all dimensions are found by SNM
at least once in 10 restarts (see column ‘Best’ for SNM method in Table 2).
This is an unexpected result and deserves more attention in a future work.
Indeed, NM was designed for solving convex nonlinear programs. However,
SNM is able to find global minimum for instances where many local minima
exist.

In order to emphasize that the SNM is much better than the original Nelder-
Mead method, we present in Table 3 the average time in seconds needed for the
SNM to reach the average solution of the NM and the number of times it has
happened in 100 tests (including 10 different function and 10 different dimensions).
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Problem Time Av # of Problem Time Av # of
name (sec.) cases name (sec.) cases

DP 0.002 100% ZA 0.007 100%
GR 0.045 97% RA 1.490 92%
PO 0.007 100% SP 0.004 100%
RO 0.001 99% AC 0.016 100%
SC 0.148 100% NR 0.361 94%

Table 3: Average time needed for the SNM to reach average solution of NM and the number of
cases it occurres, out of 100 tests for each instance (10 restarts for 10 different dimensions).

Table 3 shows that the SNM quickly reaches the average NM solution and
the remaining time is used for improving the quality of the solution. The worst
behavior of SNM, but still very good, is observed in solving non-convex Rastrigin
test function (see Figure 3). There, the best NM value is reached 92 times.

Figure 3: Rastrigin Function.

Very good results are reported in solving Ackley test function, where the NM
solutions are reached always, within average time of 0.016 seconds!

4. CONCLUSIONS and SUGGESTIONS

The general idea of the recent Less is more approach (LIMA) for solving opti-
mization problems is to consider the minimum number of ingredients in building
a method, at the same time providing better quality solutions for the given prob-
lem than the solutions provided by more complex routines, or by the current
state-of-the-art algorithm. [12]. Nelder-Mead method (NM) for solving continu-
ous non-linear optimization problem [14] is probably the most cited and the most
used method in optimization literature, and in practical applications, too. It be-
longs to direct search methods for solving unconstrained continuous optimization
problems (UCOP). Such methods do not use first and second order conditions in
solving UCOP. The popularity of NM is based on its simplicity. It calculates ob-
jective function values at n+ 1 (simplex) vertices in Rn and in each iteration, the
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Figure 4: Ackley Function.

worst vertex is exchanged with a new, better one. When appeared, it successfully
replaced direct search methods that used 2×n and more points from Rn. In this
paper we propose even more simple algorithm that follows NM idea, which we call
Simplified NM (SNM). Instead of generating all n + 1 points, we perform search
only by using q+1 vectors, where q is usually much smaller than n. Of course, our
results cannot be better than the results obtained after performing calculations in
n + 1 points as in NM. However, the significant speed-up in cpu times allows to
run many times SNM, so getting much better results than those obtained by NM.
Significant improvements within the same running time are reported in solving
non-convex instances as well.

Incouraging results reported in this paper may be continued in several direc-
tions:

(i) The way how NM method is simplified, or depleted, is general and may be
applied to other optimization techniques as well. Moreover, any numerical
method, not only the optimization one, could be simplified or depleted in
the way we did for NM;

(ii) SNM could be used as a local search within other meatheuristics for solving
global optimization problems, such as Variable neighborhood search [3];

(iii) For solving even larger problems, a SNM modified variant could include the
increment parameter q, i.e., the subspace dimension in each iteration, as it
is done for example in Variable neighborhood decomposition search [18];

(iv) Simplified variants of other sucessful NM modifications could be tried out as
well;
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ferential Evolution with crossover neighborhood search for continuous global optimization”,
Computers & Operations Research, 52 (part B) (2014) 157-169.

[8] Lagarias, J., C., Reeds, J., A., Wright, M., H., and Wright, P., E., ”Convergence properties
of the Nelder–Mead simplex method in low dimensions”, SIAM Journal on Optimization,
9 (1) (1998) 112-147.

[9] Luangpaiboon, P., ”Variable neighborhood simplex search methods for global optimization
models”, Journal of Computer Science, 8 (4) (2012) 613-620.

[10] McKinnon, Ken IM, ”Convergence of the Nelder–Mead Simplex Method to a Nonstationary
Point”, SIAM Journal on Optimization, 9 (1) (1998) 148-158.
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Appendix A. Detailed Results

Here we give detailed results obtained by NM and SNM. All tables have the same form: the
column Best expresses the objective function value of the best solution; the column Average
describes the average objective function value and the column CPU Time in seconds shows
the average running time in seconds.

NM SNM CPU Time
n Best Average Best Average in seconds
10 7.74E-13 2.86E-12 0.00E+00 3.03E-31 9.86E-04
20 8.96E-13 4.57E-12 0.00E+00 4.22E-30 4.19E-03
40 2.27E-13 6.69E-01 0.00E+00 1.01E-28 9.66E-03
60 4.91E-13 1.08E-12 0.00E+00 0.00E+00 3.08E-02
80 2.07E-13 8.21E-13 0.00E+00 0.00E+00 7.69E-02
100 4.36E-14 1.14E-12 0.00E+00 4.44E-32 1.30E-01
250 1.55E-14 3.00E-13 0.00E+00 5.76E-36 1.99E+00
500 2.50E-14 2.13E-13 0.00E+00 0.00E+00 1.49E+01
760 9.22E-15 1.29E-13 0.00E+00 0.00E+00 4.94E+01
1000 2.53E-14 1.27E-13 0.00E+00 0.00E+00 1.16E+02
Avg 2.71E-13 6.69E-02 0.00E+00 1.06E-29 1.82E+01

Table A.4: Detailed results for Dixon-Price Function.

NM SNM CPU Time
n Best Average Best Average in seconds
10 8.37E-02 7.77E-01 4.85E-09 2.52E-01 2.07E+00
20 9.86E-03 4.49E-01 3.54E-09 1.48E-01 3.77E+00
40 6.66E-01 1.18E+00 2.64E-09 3.40E-02 3.43E+00
60 6.33E-01 1.33E+00 1.14E-09 1.56E-02 9.68E+00
80 9.49E-01 1.34E+00 8.70E-10 5.02E-02 4.12E+01
100 3.64E-01 9.70E-01 9.68E-10 1.04E-02 1.60E+02
250 3.73E-01 8.52E-01 2.03E-10 1.32E-09 9.83E+02
500 1.34E+00 1.53E+00 2.19E-10 5.66E-10 1.00E+03
760 2.02E+00 2.39E+00 2.52E-10 1.37E-02 1.00E+03
1000 3.08E+00 3.70E+00 1.05E-10 2.75E-10 1.00E+03
Avg 9.51E-01 1.45E+00 1.48E-09 5.23E-02 4.20E+02

Table A.5: Detailed results for Griewank Function.
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NM SNM CPU Time
n Best Average Best Average in seconds
10 6.88E-22 4.25E-19 2.46E-50 2.98E-31 6.24E-03
20 3.66E-21 2.43E-17 5.50E-46 2.76E-33 6.28E-03
40 1.71E-21 2.51E-16 7.88E-50 6.10E-31 3.50E-02
60 4.74E-20 2.41E-12 1.81E-48 1.04E-40 9.57E-02
80 1.27E-21 1.31E-11 8.51E-53 3.45E-32 2.18E-01
100 5.05E-20 4.74E-13 2.28E-48 6.98E-34 4.45E-01
250 1.81E-22 4.95E-12 1.92E-55 6.82E-33 8.80E+00
500 9.50E-21 2.21E-11 3.20E-52 1.57E-34 5.15E+01
760 2.40E-17 1.72E-11 9.07E-60 3.80E-49 1.72E+02
1000 1.35E-14 7.44E-12 3.34E-56 1.34E-37 1.65E+02
Avg 1.35E-15 6.78E-12 5.54E-47 9.53E-32 3.98E+01

Table A.6: Detailed results for Powell Function.

NM SNM CPU Time
n Best Average Best Average in seconds
10 1.65E-10 1.20E+00 9.14E-09 7.90E-01 5.32E-02
20 9.34E+00 3.14E+01 6.60E-09 5.23E-07 4.63E-01
40 4.23E+01 1.04E+02 9.03E-09 4.97E-07 5.87E+00
60 5.72E+01 1.13E+02 2.54E-09 2.18E-07 1.08E+01
80 7.60E+01 1.29E+02 6.74E-09 2.31E-07 3.06E+01
100 1.01E+02 1.43E+02 2.50E-09 1.17E-07 1.31E+02
250 2.38E+02 2.51E+02 1.42E-09 7.98E-08 1.00E+03
500 5.27E+02 5.58E+02 2.05E-09 1.41E-07 1.00E+03
760 8.74E+02 9.16E+02 1.50E-09 2.77E-07 1.00E+03
1000 1.30E+03 1.34E+03 3.76E-09 1.85E-07 1.00E+03
Avg 3.22E+02 3.58E+02 4.53E-09 7.90E-02 4.18E+02

Table A.7: Detailed results for Rosenbrock Function.

NM SNM CPU Time
n Best Average Best Average in seconds
10 1.01E+03 1.74E+03 3.82E-09 4.08E+02 2.83E-01
20 2.65E+03 3.80E+03 2.31E-09 3.63E+02 1.30E+00
40 6.23E+03 8.29E+03 3.02E-09 1.59E+03 5.82E+00
60 1.10E+04 1.27E+04 3.08E-09 1.25E+03 1.22E+01
80 1.37E+04 1.63E+04 2.80E-09 4.52E-09 3.31E+01
100 1.86E+04 2.21E+04 1.62E-09 5.92E+02 1.12E+02
250 4.92E+04 5.75E+04 1.82E-09 2.96E+03 8.91E+02
500 1.02E+05 1.13E+05 1.08E-09 2.96E+03 9.50E+02
760 1.53E+05 1.60E+05 1.46E-09 5.43E-09 1.00E+03
1000 2.12E+05 2.35E+05 1.86E-09 1.18E+04 9.50E+02
Avg 5.69E+04 6.30E+04 2.29E-09 2.20E+03 3.96E+02

Table A.8: Detailed results for Schwefel Function.
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NM SNM CPU Time
n Best Average Best Average in seconds
10 1.29E-11 8.49E-11 2.93E-12 9.44E-12 1.69E-02
20 7.24E-04 2.25E-01 3.41E-12 9.13E-12 5.06E-02
40 3.52E-01 1.12E+00 3.43E-12 7.66E-12 5.52E+00
60 7.04E-01 1.85E+00 3.13E-12 1.11E-11 8.00E+00
80 1.21E+00 1.85E+00 2.83E-12 1.19E-11 1.68E+01
100 1.04E+00 1.74E+00 2.36E-12 9.92E-12 4.18E+01
250 1.22E+00 1.96E+00 1.62E-12 5.48E-12 5.24E+02
500 3.75E+00 4.92E+00 2.08E-12 9.33E-12 8.56E+02
760 1.38E+01 1.54E+01 3.10E-12 8.50E-12 9.51E+02
1000 1.93E+01 1.97E+04 2.75E-12 1.27E-11 6.17E+02
Avg 4.14E+00 1.97E+03 2.76E-12 9.52E-12 3.02E+02

Table A.9: Detailed results for Zakharov Function.

NM SNM CPU Time
n Best Average Best Average in seconds
10 5.97E+00 1.31E+01 8.68E-08 1.27E+01 3.07E-01
20 7.10E+00 2.25E+01 7.63E-10 7.59E+00 1.38E+00
40 2.31E+01 3.43E+01 8.52E-10 1.44E+01 5.88E+00
60 2.52E+01 4.14E+01 6.40E-10 2.39E+00 1.07E+01
80 2.56E+01 4.91E+01 4.45E-10 1.61E+00 3.75E+01
100 3.61E+01 5.03E+01 4.77E-10 2.01E+00 1.41E+02
250 7.30E+01 1.28E+02 5.22E-10 3.34E-09 8.82E+02
500 2.11E+02 7.23E+02 4.33E-10 1.98E+01 9.50E+02
760 5.26E+02 6.02E+02 2.14E-10 9.95E-02 1.00E+03
1000 1.11E+03 1.17E+03 4.19E-10 3.23E-08 1.00E+03
Avg 2.04E+02 2.83E+02 9.16E-09 6.06E+00 4.03E+02

Table A.10: Detailed results for Rastrigin Function.

NM SNM CPU Time
n Best Average Best Average in seconds
10 2.12E-11 4.74E-11 3.59E-12 8.37E-12 1.80E-03
20 1.58E-10 6.42E-10 2.29E-12 8.34E-12 2.36E-02
40 1.76E-03 8.35E-02 2.39E-12 7.40E-12 9.37E-01
60 4.72E-03 1.15E-01 1.51E-12 8.10E-12 6.87E+00
80 8.61E-03 1.01E-01 1.36E-12 5.62E-12 3.83E+01
100 1.61E-05 3.18E-02 1.96E-12 6.20E-12 1.41E+02
250 2.27E-03 3.29E-02 3.29E-12 7.55E-12 9.76E+02
500 1.01E-01 1.49E-01 1.79E-12 4.82E-12 1.00E+03
760 2.94E-01 4.02E-01 1.62E-12 8.38E-12 1.00E+03
1000 6.06E-01 7.85E-01 1.64E-12 5.28E-12 1.00E+03
Avg 1.02E-01 1.70E-01 2.14E-12 7.01E-12 4.16E+02

Table A.11: Detailed results for Sphere Function.
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NM SNM CPU Time
n Best Average Best Average in seconds
10 3.03E+00 7.26E+00 1.26E-05 1.16E-01 2.24E+00
20 1.84E+00 5.13E+00 7.29E-06 1.26E-05 2.26E+00
40 3.63E+00 5.12E+00 5.76E-06 9.14E-06 5.55E+00
60 4.00E+00 4.70E+00 4.34E-06 8.78E-06 9.02E+00
80 3.53E+00 4.15E+00 4.36E-06 7.81E-06 2.67E+01
100 2.82E+00 3.58E+00 3.06E-06 4.95E-06 9.26E+01
250 2.42E+00 2.63E+00 1.68E-06 3.03E-06 7.43E+02
500 1.95E+00 2.13E+00 1.25E-06 1.83E-06 1.00E+03
760 1.72E+00 1.88E+00 1.07E-06 2.11E-06 9.51E+02
1000 1.72E+00 1.85E+00 1.37E-06 1.80E-06 9.06E+02
Avg 2.67E+00 3.84E+00 4.28E-06 1.16E-02 3.74E+02

Table A.12: Detailed results for Ackley Function.

NM SNM CPU Time
n Best Average Best Average in seconds
10 7.03E+00 1.91E+01 4.05E-10 7.96E+00 2.17E-01
20 1.30E+01 3.51E+01 4.02E-10 2.25E+01 1.59E+00
40 3.87E+01 7.20E+01 4.33E-10 9.88E-10 5.02E+00
60 3.30E+01 9.05E+01 8.21E-10 5.69E+01 5.61E+00
80 7.20E+01 1.98E+02 3.45E-10 1.09E-09 6.63E+00
100 8.35E+01 2.14E+02 9.89E-11 1.19E-09 1.07E+01
250 2.04E+02 5.96E+02 4.54E-11 9.90E-10 1.81E+02
500 1.05E+03 1.63E+03 5.36E-11 5.02E-10 4.16E+02
760 1.59E+03 2.41E+03 1.94E-10 5.68E-10 4.62E+02
1000 2.43E+03 3.45E+03 6.64E-11 4.92E+00 4.50E+02
Avg 5.52E+02 8.72E+02 2.86E-10 9.23E+00 1.54E+02

Table A.13: Detailed results for Noncontinuous Rastrigin Function.


