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Abstract: The statistical methods for the financial returns play a key role in measuring the
goodness-of-fit of a given distribution to real data. As is well known, the normal inverse
Gaussian (NIG) and generalized hyperbolic skew-t (GHST) distributions have been found
to successfully describe the data of the returns from financial market. In this paper, we
mainly consider the discrimination between these distributions. It is observed that the
maximum likelihood estimators (MLEs) cannot be obtained in closed form. We propose to
use the EM algorithm to compute the maximum likelihood estimators. The approximate
confidence intervals of the unknown parameters have been constructed. We then perform
a number of goodness-of-fit tests to compare the NIG and GHST distributions for the stock
exchange data. Moreover, the Vuong type test, based on the Kullback-Leibler information
criteria, has been considered to select the most appropriate candidate model. An important
implication of the present study is that the GHST distribution function, in contrast to NIG
distribution, may describe more appropriate for the proposed data.
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1. INTRODUCTION

For portfolio risk modeling and basket derivative pricing, it is essential to de-
termine the correct statistical distribution. However, it is widely acknowledged
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that returns and other financial variables are not normally distributed. There-
fore, selecting the statistical model that represents the leptokurtic behavior of
the financial returns is an important research topic. Thus, we must consider the
distributions that are heavier or fatter than the normal distribution. The class
of generalized hyperbolic (GH) distributions that has heavy-tail property is one
of the important distributions in financial data analysis. The NIG and GHST
distributions, special cases of the GH distribution, have been used with success
in many areas of their application such as turbulence (Barndorff-Nielsen, 1997),
biology (Blsild, 1981), and finance (Goncu and Yang (2016), Lee and McLachlan
(2016), Mabitsela et. al., (2015), Nakajima (2014), Necula (2009), Azzalini and
Capitanio (2003), Lillestøl, (1998; 2000)). Although, the two distribution functions
have adequately fit for the financial returns, still it is desirable to select the correct
or more nearly correct model for this data. In this paper, we want to discriminate
between the NIG and GHST distributions for the stock exchange data. For this
purpose, we first estimate the unknown parameters of the NIG and GHST dis-
tributions. The maximum likelihood procedure is one of the important methods
for estimating the unknown parameters. In many situations where the maximum
likelihood estimators of the parameters cannot be expressed in a closed form, we
can obtain the MLEs using different numerical algorithms. The standard Newton-
Raphson algorithm is one of the algorithms to estimate the parameters, but it does
not converge always. So, we can use some very powerful algorithm, say the EM
algorithm (Dempster, 1977) to compute the MLEs. Due to its efficiency, the EM
algorithm has been studied by several authors such as Ng et. al., (2002), Rastogi
and Tripathi (2012), Panahi (2016; 2017), and Panahi and Sayyareh (2016). We
then apply a number of goodness-of-fit tests to discriminate between the NIG
and GHST distributions. The goodness-of-fit (GOF) tests are used for verifying
whether the experimental data come from the postulated model. These tests are a
hypothesis testing problem, the problem concerned with the choice of one of the
two alternative hypotheses

H0 : Data come from the specified distribution.

H1 : Data don’t come from the specified distribution.

The goodness-of-fit tests have been focus of investigation for many authors, see
for example, Pewsey and Kato (2016), Kreer et. al., (2015), Pakyari and Balakr-
ishnan(2013), Cao et. al., (2010), Lim and Park (2007). We also, considered the
Vuong (Voung;1989) test as a model selection test. Based on this test, we can
compare the rival models and then select the best one. The rest of the paper is
organized as follows. In Section 2, we first discuss some properties of the NIG
distribution. Then, we obtain the MLEs of the four unknown parameters using
the EM algorithm. Section 3 provides the EM algorithm for the GHST distribu-
tions. The observed Fisher information matrix is presented in Section 4. Different
goodness-of-fit and model selection tests are provided in Section 5, which enable
us to discriminate the NIG and GHST distributions. Analysis of the daily closed
Tehran stocks exchanges is presented in Section 6, and finally in Section 7, we
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conclude the paper.

2. PARAMETERS ESTIMATION OF NIG USING THE EM ALGORITHM

A random variable X is said to has NIG distribution if the probability density
function (PDF) is of the following form;

fNIG(x;α, β, γ, δ) =
αγ

π
exp

(
γ
√
α2 − β2 + β(x − δ)

)
× =

∗

1(x;α, γ, δ). (1)

where, =∗1(x;α, γ, δ) = B1(α
√
γ2 + (x − δ)2)/

√
γ2 + (x − δ)2 and δ ∈ R is a location

parameter, γ > 0 serves for scaling, α > 0 determines the shape, and β(0 <
∣∣∣β∣∣∣ < α)

determines the skewness. Also, B1(.) denotes the modified Bessel function of the
third kind of index 1. The tail heaviness and skewness of the NIG distribution
are measured by α and β, respectively. Now, we want to estimate the unknown
parameters of the NIG distribution. Suppose that X = (X1, ...,Xn) are random
variables from NIG distribution. The likelihood function becomes

l(x, α, β, γ, δ) =
(αγ
π

)n
exp

nγ
√
α2 − β2 + β

n∑
i=1

(xi − δ)

× n∏
i=1

=
∗

1(xi;α, γ, δ). (2)

Hence, the log-likelihood function can be written

L(x, α, β, γ, δ) = n log
(αγ
π

)
+ nγ

√
α2 − β2 + β

n∑
i=1

(xi − δ) +

n∑
i=1

log=∗1(xi;α, γ, δ).

Differentiating the log-likelihood function L(x, α, β, γ, δ) partially with respect to
the unknown parameters and then equating to zero, we have

∂L
∂α

=
n
α

+
nαγ√
α2 − β2

+

n∑
i=1

(
∂B1/∂α

B1

)
= 0, (3)

∂L
∂β

= −
nβγ√
α2 − β2

+

n∑
i=1

(
xi − β

)
= 0, (4)

∂L
∂γ

=
n
γ

+ n
√
α2 − β2 +

n∑
i=1

∂B1/∂γ

B1
−

γ

γ2 + (xi − β)2

 = 0, (5)

∂L
∂δ

= −nβ +

n∑
i=1

∂B/∂δ
B
−

xi − δ

γ2 + (xi − β)2

 = 0, (6)

where,

∂B1

∂α
= −

[
=
∗

2(x;α, γ, δ) + B0(αι)
]
× ι,

∂B1

∂β
= 0,
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∂B1

∂γ
= −

[
=
∗

2(x;α, γ, δ) + B0(αι)
]
×
αγ

ι
,

∂B1

∂δ
= −

[
=
∗

2(x;α, γ, δ) + B0(αι)
]
×
−α(x − δ)

ι
.

Where,=∗2(x;α, γ, δ) = B1(α
√
γ2 + (x − δ)2)/α

√
γ2 + (x − δ)2 and ι =

√
γ2 + (x − δ)2.

Unfortunately, analytic solutions for the unknown parameters are not available.
We propose to use the EM algorithm for estimating the unknown parameters.
The EM algorithm is an iterative algorithm that converges under rather weak
conditions to a local maximum of the likelihood function. The idea behind the
algorithm is to augment the observed data with latent data, which can be either
missing data or parameter values, so that the likelihood conditioned on the data
and the latent data has a form that is easy to analyze. The EM algorithm is also
suitable for mixture distributions, since the mixing operation in a sense produces
missing data, the mixing variables. The algorithm can be broken down into two
steps: the expectation (E) step, and the maximization (M) step. Now, we describe
the steps of the EM algorithm for NIG distribution.

EM algorithm
Suppose that n observations from NIG distribution are available. First, we con-
sider

X = δ + βZ +
√

ZY, (7)

where, Y ∼ N(0, 1), Z ∼ IG(γ,=) and Y and Z are independent. Also, = =√
α2 + β2. It is clear that

Z |x ∼ GIG(−1, ν(x), α); ν(x) =

√
γ2 + (x − δ)2.

Note that the IG and GIG denote the inverse Gaussian and generalized inverse
Gaussian, respectively. So, based on the equation (7), the log-likelihood function
can be rewritten as

L(x, α, β, γ, δ) =

n∑
i=1

log fNIG(x;α, β, γ, δ)

=

n∑
i=1

log fNIG(xi |zi , β, δ) +

n∑
i=1

log fNIG(zi, γ,=) = C1 + C2,

where,

C1 = −
n
2

log(2π) − 2−1
n∑

i=1

log zi − 2−1
n∑

i=1

z−1
i (xi − δ − βzi)2,
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C2 = n log(γ) −
γ2

2

n∑
i=1

log z−1
i −

=
2

2

n∑
i=1

zi + nγ=,

and = =
√
α2 + β2. For the E-step of the EM algorithm, one needs to compute

E(Zi |Xi = xi) and E(Z−1
i |Xi = xi). Also, the M-step involves the maximization of

C1 and C2 with respect to unknown parameters (for more detail see, Pradhan and
Kundu(2009), and Karlis (2002)).

3. PARAMETERS ESTIMATION OF GHST USING THE EM ALGORITHM

A random variable X has the GHST distribution with parametersθ = (η, β, δ, µ),
denoted X ∼ GHST(η, β, δ, µ), if it has the probability density function (Aas and
Haff, 2006),

fGHST(x; η, β, δ, µ) =
2

1−η
2 δη

∣∣∣β∣∣∣ 1+η
2 B 1+η

2
(
√
β2(δ2 + (x − µ)2)) exp(β(x − µ))

Γ(η/2)
√
π(

√
δ2 + (x − µ)2)

1+η

2

. (8)

Here, β , 0 and using the following relation,

B 1+η
2

(√
β2(δ2 + (x − µ)2)

)
β→0
−−−→ Γ(

1 + η

2
)2

η−1
2

(√
β2(δ2 + (x − µ)2)

)−( 1+η
2 )

,

we have

fGHST(x; η, β, δ, µ) =
Γ( 1+η

2 )δη

Γ(η/2)
√
π(

√
δ2 + (x − µ)2)

1+η
; β = 0.

Now, we estimate the unknown parameters using the maximum likelihood method.
For appling the EM algorithm to estimate the unknown parameters of GHST dis-
tribution, we similarly write, Z ∼ GIG(−η/2, δ). So, the joint density of X and Z
is given by f (x, z) = f (x|z) f (z). Here, X |Z = z ∼ G(µ + βz, z) that G denotes the
Gaussian distribution. So, based on equation (8), the log-likelihood function can
be written as

L(x, η, β, δ, µ) = log l(x, η, β, δ, µ) =

n∑
i=1

log fx|z (x
∣∣∣zi, β, µ ) +

n∑
i=1

log fz(zi; δ, υ),

where, υ = −η/2. For the E-step of the EM algorithm, one needs to compute
o1 = E(Zi |Xi = xi), o2 = E(Z−1

i |Xi = xi) and o3 = E(lo1Zi |Xi = xi). We know that

Z
∣∣∣∣∣X = x˜GIG(−

(η + 1)
2

,
√
δ2 + (x − µ)2,

∣∣∣β∣∣∣).
Thus the o1, o2 and o3 can be obtained easily. Now, in the M-step, one computes
the parameter estimates resulting from maximizing the likelihood of f (x, z) =

f (x
∣∣∣z) f (z) using the pseudo values o1, o2 and o3 (see Appendix A) from the M-

step.
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4. THE OBSERVED FISHER INFORMATION MATRIX

In this section, we want to derive the observed Fisher information for the
likelihood using (3), (4), (5), and (6), which will enable us to construct confidence
intervals for the unknown parameters. We have,

I(θ̂) = I(α̂, β̂, γ̂, δ̂) =


−
∂2L
∂α2 −

∂2L
∂α∂β −

∂2L
∂α∂γ −

∂2L
∂α∂δ

−
∂2L
∂β∂α −

∂2L
∂β2 −

∂2L
∂β∂γ −

∂2L
∂β∂δ

−
∂2L
∂γ∂α −

∂2L
∂γ∂β −

∂2L
∂γ2 −

∂2L
∂γ∂δ

−
∂2L
∂δ∂α −

∂2L
∂δ∂β −

∂2L
∂δ∂γ −

∂2L
∂δ2


(α,β,γ,δ)=(α̂,β̂,γ̂,δ̂)

where,

∂2L
∂α2 = −

n
α2 −

nβ2γ(√
α2 − β2

)3 +

n∑
i=1


(
∂2B1/∂α2

)
B1 − (∂B1/∂α)2

B2
1

,
∂2L
∂γ2 = −

n
γ2 +

n∑
i=1


(
∂2B1/∂γ2

)
B1 −

(
∂B1/∂γ

)2

B2
1

+
γ2
− (xi − δ)2(

γ2 + (xi − δ)2
)2

,
∂2L
∂δ2 =

n∑
i=1


(
∂2B1/∂δ2

)
B1 − (∂B1/∂δ)2

B2
1

+
(xi − δ)2

− γ2(
γ2 + (xi − β)2

)2

,
∂2L
∂α∂β

= −
nαβγ(√
α2 − β2

)3 ,
∂2L
∂β2 = −

nα2γ(√
α2 − β2

)3 ,

∂2L
∂α∂γ

=
nα√
α2 − β2

+

n∑
i=1


(
∂2B1/∂α∂γ

)
B1 − (∂B1/∂α)

(
∂B1/∂γ

)
B2

1

,
∂2l
∂α∂δ

=

n∑
i=1


(
∂2B/∂α∂δ

)
B − (∂B/∂α) (∂B/∂δ)

B2

,
∂2L
∂β∂γ

= −
nβ√
α2 − β2

,
∂2L
∂β∂δ

= −n,

∂2L
∂γ∂δ

=

n∑
i=1


(
∂2B1/∂γ∂δ

)
B1 −

(
∂B1/∂γ

)
(∂B1/∂δ)

B2
1

−
2γ(xi − δ)(

γ2 + (xi − δ)2
)2

,
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and also,

∂2B1

∂α2 =


(
2 + (αA)2

)2
B1(αA)

(αA)2 +
B0(αA)
αA

 × A2,

∂2B1

∂γ2 =


(
2 + (αA)2

)2
B1(αA)

(αA)2 +
B0(αA)
αA

 × (αγ
A

)2

−

[
B1(αA)
αA

+ B0(αA)
]
×
α(x − δ)2

A3 ,

∂2B1

∂δ2 =


(
2 + (αA)2

)2
B1(αA)

(αA)2 +
B0(αA)
αA

 ×
(
−α(x − δ)

A

)2

−

[
B1(αA)
αA

+ B0(αA)
]
×
αγ2

(A)3 ,

∂2B1

∂α∂β
= 0,

∂2B1

∂β2 = 0,
∂2B1

∂β∂γ
= 0,

∂2B1

∂β∂δ
= 0,

∂2B1

∂α∂γ
=


(
2 + (αA)2

)2
B1(αA)

(αA)2 +
B0(αA)
αA

 × (
αγ

)

−

[
B1(αA)
αA

+ B0(αA)
]
×
γ

A
,

∂2B1

∂α∂δ
=


(
2 + (αA)2

)2
B1(αA)

(αA)2 +
B0(αA)
αA

 × (−α(x − δ))

−

[
B1(αA)
αA

+ B0(αA)
]
×
−(x − δ)

A
,

∂2B1

∂γ∂δ
=


(
2 + (αA)2

)2
B1(αA)

(αA)2 +
B0(αA)
αA

 ×
(
−α2γ(x − δ)

A2

)

−

[
B1(αA)
αA

+ B0(αA)
]
×
αγ(x − δ)

A3 ,
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where, A =

√
γ2 + (x − δ)2. The observed Fisher information matrix can be in-

verted to obtain a local estimate of the asymptotic variance-covariance matrix of
the MLE. Also, the A, two-sided normal approximation confidence interval for
θ̂ = (α̂, β̂, γ̂, δ̂) can be obtained by using the asymptotic variance-covariance ma-
trix. Note that the observed Fisher information matrix for the GHST distribution
can be obtained similarly.

5. GOODNESS-OF-FIT (GOF) AND MODEL SELECTION TESTS

In this section, we describe different available methods for choosing the best
fitted model to a given dataset. Suppose that there are two families, the problem
is to choose the correct family for a given dataset {x1, ..., xn} .

5.1. The Kolmogorov-Smirnov Test (K-S Test)
The K-S test is one of the important tests for GOF. It is used to decide if a

sample comes from a population with a specific distribution. The K-S test is
based on the empirical distribution function as Fn(x) = Number of xi≤x

n . Based on the
two competitive models F and G, the K-S distances are calculated as

D1 = sup
−∞<x<∞

|Fn(x) − F(x)| , (9)

D2 = sup
−∞<x<∞

|Gn(x) − G(x)| . (10)

To implement this procedure, a candidate from each parametric family that has
the smallest Kolmogorov distance should be found, and then, different best fitted
distributions should be compared.

5.2. The Anderson Darling Test (A-D Test)
The A-D test is the GOF test of whether a given sample of data is drawn from

a population with a specific distribution.. It is a modification of the K-S test and
gives more weight to the tails than the K-S test does.

A2
n = n

∞∫
−∞

(Fn(x) − F(x))2

F(x)(1 − F(x))
dF(x). (11)

The critical value for the significance level of 95% is given by 2.49. Also, the
computational form of (11) can be written as

A2
n = −n

1 + n−2
n∑

i=1

(2i − 1) log
(
F(x(i))(1 − F(x(n−i+1)))

) . (12)

where, x(i) is the ordered data.
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5.3. The Vuong Test
The Vuong (1989) test is designed to compare the two rival models. This test is

based on the likelihood ratio (LR) statistic. The LR statistic for the model F(.;θ1) ={
f (.;θ1), θ1 ∈ Θ1 ⊂ Rp} against the model G(.;θ2) =

{
1(.;θ2), θ2 ∈ Θ2 ⊂ Rq} is:

LRn(θ̂1, θ̂2) =

n∑
i=1

log
f (x; θ̂1)

1(x; θ̂2)
,

where, θ̂1, and θ̂2 are the maximum likelihood estimators. The null hypothesis of
the Vuong test is

H0 : DKL(h
∥∥∥ f ) = DKL(h

∥∥∥1 ),

where, DKL(h ‖. ) is the Kullback-Leibler divergence (Kullback and Leibler, 1951)
from the true model as

DKL(h
∥∥∥ f ) = Eh

(
log

h
f (X;θ2)

)
. (13)

Here, h is the true model. In other words, the hypotheses of this test can be written
as

H0 : Eh

(
log

f (X)
1(X)

)
= 0, H f : Eh

(
log

f (X)
1(X)

)
> 0, H1 : Eh

(
log

f (X)
1(X)

)
< 0.

For discriminating the two models using the Vuong test, we consider the follow-
ing Steps:
Step 1: Estimate the unknown parameters of the two models using the maximum
likelihood procedure.

Step 2: Calculate LRn(θ̂1, θ̂2) =
n∑

i=1
log f (x;θ̂1)

1(x;θ̂2)
.

Step 3: Obtain the = =
LRn(θ̂1,θ̂2)
√

nψ̂2
n

, where ψ̂2
n is the empirical variance of the

LRn(θ̂1, θ̂2) as

ψ̂2
n =

1
n

n∑
i=1

(
log

f (xi; θ̂1)

1(xi; θ̂2)

)2

−

1
n

n∑
i=1

(
log

f (xi; θ̂1)

1(xi; θ̂2)

)
2

. (14)

Step 4: Discriminate about the two models as:

• If the value of the statistic= is higher than Z1−α(the (1 − α)th quantile of stan-
dard normal distribution), then one rejects the null hypothesis that the models
are equivalent in favor of F(.;θ1) being better than G(.;θ2).

• If = is smaller than −Z1−α then, one rejects the null hypothesis in favor of
G(.;θ2) being better than F(.;θ1).

• If
∣∣∣=∣∣∣ < Z1−α then, one cannot discriminate between the two rival models

based on the given data (two models equal).
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6. THE STOCK EXCHANGE DATA ANALYSIS

The data used in this research is the daily closed Tehran stock exchanges.
We considered the four shares as prices and cash returns index (A), second Mar-
ket Index (B), first Market Index (C), and industry Index (D). We used the daily
log returns data (rt = log(=t/=t−1)) which are obtained totaling a series of N-
1observations for Tehran listed shares. Note that N is the number of the closing
prices, and [=t]t≥0 is the closing price at day t. All the results are obtained using
the R program. We want to test the following hypothesis for the proposed data
sets.

H0: the data are NIG distributed with the parameters (α̂, β̂, γ̂, δ̂).

H0:the data are GHST distributed with the parameters (η̂, β̂, δ̂, µ̂).

We first considered the Normality tests such as Kolmogorov-Smirnov (K-S
norm), Shapiro-Wilk (S-W), Jarque- Bera (J-B), and Lillie (L) tests. For each test,
the null hypothesis (H0Normal ) is that the daily log returns are normally distributed.
It is observed that all p-values (< 2.2e−16) are less than the significant level (0.05).
So, the proposed null hypothesis (H0Normal )will be rejected.
Now, we want to compare the NIG and GHST distributions for the proposed data.
For this purpose, we considered the following Steps:

Step 1: Computing the moment estimates (MME) of the parameters (see Ap-
pendix B).

Step 2: Econometrically estimating the unknown parameters of the NIG and
GHST distributions using the EM algorithm. To calculate the EM algorithm for
the real data set, we need to specify the initial values of the parameters. These
were taken to be their MMEs.

Step 3: Computing different criteria for comparing the NIG and GHST distri-
butions. We used the Akaike information criterion (AIC = (parameters ×2)−2 lnL),
the Bayesian information criterion (BIC = (parameters× ln n)−2 lnL), and the max-
imum log-likelihood value (LL = − lnL).

Step 4: Comparing the NIG and GHST distributions using the p-values of
Kolmogorov-Smirnov and the Anderson-Darling tests.

Step 5: Obtaining the Vuong statistic for selecting the best model.

Step 6: Constructing the 95% approximation normal confidence intervals
(ACs) for NIG and GHST distributions using the asymptotic variance-covariance
matrices.
Tables 1 and 2 present the results from the EM algorithm for the NIG and GHST
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distributions, respectively. The AIC, BIC, and LL values for the distributions are
presented in Table 3. From the results of Table 3, it is observed that the AIC
and BIC criteria of the GHST are smaller than the NIG. Also, the LL of the NIG
is larger than GHST distribution. So, the GHST is fitter than the NIG for these
data. The results of the Kolmogorov-Smirnov and the Anderson-Darling tests are
reported in Table 4. Based on the limited set of stock exchange data, and using
several statistical criteria, minimum AIC, minimum BIC, maximum LL value,
and the high p-values of the K-S and A-D tests, the GHST distribution function
appears to be more appropriate statistical distribution function. Note that we
avoid claiming that the NIG is not the appropriate distribution for these data.

It is observed that the steepness, ζ =
[
1 + γ(α2

− β2)1/2]−1/2
, and the asymmetry,

χ = βζ/α, are cited in the domain of variation {(χ, ζ) : − 1 < χ < 1, 0 < ζ < 1}.
For more comparison, we consider the Voung test to confirm the results of the
previous different tests and criteria. For this purpose, we considered the GHST
(F(.;θ1)), and NIG (G(.;θ2)) as the two rival models. For different data sets (A, B, C
and D), the Voung statistic (=) are (3.456), (4.220), (3.874), and (4.628), respectively.
It is observed that all the values are higher than Z0.95. Thus, we can conclude that
the F(data; η, β, δ, µ) ≈ GHST is better than G(data;α, β, δ, γ) ≈ NIG to estimate the
true model for a given data. Finally, we calculated the ACs using the asymptotic
variance-covariance matrix, which was considered in Section 4. The results for
NIG and GHST distributions are reported in Tables 5 and 6, respectively.

Table 1: Parameters estimation for the NIG distribution using the EM algorithm.
Source α β γ δ

A 7.98728 × 10−1
−1.89975 × 10−2 2.89654 × 10−4 6.3512 × 10−5

B 3.82744 × 101
−1.17558 × 101 3.29206 × 10−4 2.3528 × 10−5

C 42.5695 × 10−1
−10.1423 × 10−1 3.42852 × 10−4 1.4104 × 10−5

D 1.07788 × 101
−27.8912 × 10−1 3.33931 × 10−4 1.4663 × 10−6

Table 2: Parameters estimation for the GHST distribution using the EM algorithm.
Source η β δ µ

A 1.04300 −10.811 × 10−2 3.024 × 10−4
−7.038 × 10−6

B 2.06200 −62.301 × 10−1 6.251 × 10−4
−4.282 × 10−5

C 1.74900 11.860 × 10−1 5.807 × 10−4 2.109 × 10−6

D 1.55600 −1.1142 × 10−1 5.083 × 10−4
−1.065 × 10−5

7. CONCLUSION

In this paper, we evaluated the performance of the NIG and GHST distribu-
tions in characterizing the Tehran index returns. It is observed that when all pa-
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Table 3: The AIC, BIC and LL statistic for the NIG and GHST distributions.
Distribution Criteria A B C D

AIC -12991.67 -13846.24 -13850.36 -13883.45
GHST BIC -12991.81 -13846.37 -13850.49 -13883.55

LL 6498.836 6926.121 6828.181 6894.723

AIC -12850.59 -13737.14 -13712.63 -13815.07
NIG BIC -12850.64 -13737.26 -13712.72 -13815.19

LL 6428.296 6891.569 6809.317 6810.534

Table 4: The goodness-of-fit test for the NIG and GHST distribution.
Distribution p-values A B C D

GHST K-S 0.7832 0.8322 0.7759 0.8027
A-D 0.8219 0.8601 0.8097 0.8412

NIG K-S 0.5973 0.6347 0.5889 0.6099
A-D 0.6275 0.6690 0.6220 0.6638

Table 5: The lengths of the 95% ACs for the NIGs parameters.
Parameters A B C D

α 2.917 2.176 2.265 3.004
β 1.365 1.701 1.438 1.623
γ 1.895 2.004 1.785 2.038
δ 2.643 2.758 2.446 2.226

Table 6: The lengths of the 95% ACs for the NIGs parameters.
Parameters A B C D

η 3.124 2.643 2.648 3.633
β 1.784 1.989 1.873 1.978
δ 2.112 2.492 1.899 2.665
µ 2.875 3.016 2.780 2.839
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rameters are unknown, the maximum likelihood estimates of these distributions
cannot be obtained in the explicit form. Thus, we have used the EM algorithm to
estimate the parameters. The approximate confidence intervals for the unknown
parameters have been constructed using the asymptotic variance-covariance ma-
trix. Furthermore, we have considered the NIG and GHST distributions to criti-
cally analyze the data of Tehran stock exchange. Using several criteria and model
selection tests, the GHST distribution is shown to be more appropriately than the
NIG distribution for these data sets.
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APPENDIX A:

We know that W = Z |X has the generalized inverse Gaussian (GIG) distribu-
tion with the following distribution function:

fW(−
(η + 1)

2
,
√
δ2 + (x − µ)2,

∣∣∣β∣∣∣) =
∣∣∣β∣∣∣√

δ2 + (x − µ)2


−

(η+1)
2

w−
(η+1)

2 −1

2B
−

(η+1)
2

(
∣∣∣β∣∣∣ √δ2 + (x − µ)2)

e
−

1
2

{
(δ2+(x−µ)2)

w +β2w
}
.

Note: if X ∼ GIG(α, β, γ)⇒ X−1
∼ GIG(−α, γ, β).

So, based on the properties of the GIG distribution, the values of E(Zi |Xi =
xi),E(Z−1

i |Xi = xi) and E(lo1Zi |Xi = xi) can be written as

E(Zi |Xi = xi) =

√
δ2 + (xi − µ)2B −(η+1)

2 +1(
∣∣∣β∣∣∣ √δ2 + (xi − µ)2)∣∣∣β∣∣∣ B 1+η

2
(
∣∣∣β∣∣∣ √δ2 + (xi − µ)2)

,

E(Z−1
i |Xi = xi) =

∣∣∣β∣∣∣ B 3+η
2

(
∣∣∣β∣∣∣ √δ2 + (xi − µ)2)

×

{√
δ2 + (xi − µ)2B 1+η

2
(
∣∣∣β∣∣∣ √δ2 + (xi − µ)2)

}−1

,

and

E(log Zi |Xi = xi) = log(

√
δ2 + (xi − µ)2∣∣∣β∣∣∣ )
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+
∂

∂( η+1
2 )

[
log

(
B 1+η

2
(
∣∣∣β∣∣∣ √δ2 + (xi − µ)2)

)]
,

APPENDIX B:

The method of moment (MM) is probably the oldest method for estimating the
unknown parameters. Suppose that X = (X1, ...Xn) is the random variable with
the probability density function f (x, θ1, ..., θk). The method of moments is a tech-
nique for constructing estimators of the parameters that is based on matching

the sample moments (m j = 1
n

n∑
i=1

X j
i ) with the corresponding distribution moments

(µ j = E(X j)) as E(X j) = 1
n

n∑
i=1

X j
i ; j = 1, 2, ..., k. Also, we can consider the following

equations:

µ1 = E(X) =
1
n

n∑
i=1

Xi, E(X − µ1)2 =
1
n

n∑
i=1

(Xi − X̄)2,

E(X − µ1)3 =
1
n

n∑
i=1

(Xi − X̄)3, E(X − µ1)4 =
1
n

n∑
i=1

(Xi − X̄)4.


