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Abstract: This paper deals with the Uncapacitated r-allocation p-hub Maximal Covering
Problem (UrApHMCP) with a binary coverage criterion. This problem consists of choosing
p hub locations from a set of nodes so as to maximize the total demand covered under the
r-allocation strategy. The general assumption is that the transportation between the non-
hub nodes is possible only via hub nodes, while each non-hub node is assigned to at most
r hubs. An integer linear programming formulation of the UrApHMCP is presented and
tested within the framework of a commercial CPLEX solver. In order to solve the problem
on large scale hub instances that cannot be handled by the CPLEX, a Genetic Algorithm
(GA) is proposed. The results of computational experiments on standard p-hub benchmark
instances with up to 200 nodes demonstrate efficiency and effectiveness of the proposed
GA method.
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1. INTRODUCTION

The hub covering problem is one of the fundamental and most studied prob-
lem in facility location theory. It is widely used within the design of supply
chains, airline transportation networks, DHL services, postal delivery networks,
computer and communication systems, etc. The hub covering problem was first
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introduced by Campbell [7]. Let N = {1, 2, ...,n} be a set of nodes in the network,
each of them with a certain demand assigned, and let H ⊂ N be a set of potential
hub nodes. The goal of the hub covering problem is to choose hubs from the set
H and to allocate demand nodes to them, in order to minimize the number of
hubs while covering all origin-destination (O–D) pairs, or to maximize the total
demand covered by a given number of hubs. The O–D pair i − j (i, j ∈ N) is
considered to be covered by hubs hi, h j ∈ H if nodes i and j are assigned to hubs hi
and h j, meaning that the path i→ hi → h j → j is established, and the preselected
covering criterion is fulfilled.

From the early work by Campbell [7], where different types of hub covering
formulations were introduced, hub covering problems developed in two main
directions: the hub set covering, and the hub maximal covering problems. The
goal of the hub set covering problem is to locate the hub nodes such that all
demands are covered while the cost of opening hub facilities is minimized. On the
other hand, the hub maximal covering problem maximizes the demand covered
with a fixed number of hubs to be located.

Another criterion for the classification of hub covering problems is the alloca-
tion scheme, which defines the way of allocating the non-hub nodes to the hubs.
Two main allocation schemes are distinguished: a single allocation (each non-hub
node is allocated to exactly one established hub) and multiple allocation (each
non-hub node may communicate to other non-hub nodes via more than one lo-
cated hubs). The r–allocation scheme was introduced by Yaman in [30], allowing
each non-hub node to be assigned to at most r located hubs.

The single allocation hub set covering problem was studied by Kara in [18],
who proposed an improved problem formulation compared to the one from [7].
Wagner [28] further improved models for the single and multiple allocation hub
set covering problem, and proposed a new model involving quantity-dependent
transport time functions for links in the single allocation case. Ernst in [11] tight-
ened up the formulations from [28] by lifting some of the constraints, and pro-
posed a new formulation for the single allocation version of the hub set covering
problem. Alumur and Kara in [2] considered the problem of cargo transportation
and formulated it as a single allocation hub set covering problem, which relaxes
the complete hub network assumption and minimizes the cost of establishing
both hubs and links between the hubs.

Regarding the allocation strategy, the following variants of the Uncapacitated
p-hub Maximal Covering Problem can be distinguished: the Uncapacitated Single
Allocation p-hub Maximal Covering Problem (USApHMCP) [17], the Uncapaci-
tated r-allocation p-hub Maximal Covering Problem (UrApHMCP), and the Unca-
pacitated Multiple Allocation p-hub Maximal Covering Problem (UMApHMCP)
[28]. In the USApHMCP each node is assigned to exactly one out of p established
hubs, while in the UMApHMCP, each node can send and receive traffic through
any of the p established hubs in the network.

According to the binary coverage criterion, an origin-destination pair is con-
sidered covered if the cost of the established path via hubs is within the max-
imum allowed limit (see [8]). The partial coverage criterion involves the degree
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of coverage of the path between origin-destination pairs that is determined by a
non-increasing decay function based on the path length (see [24]).

The first mathematical formulations of USApHMCP and UMApHMCP pro-
posed in [7] assume the binary coverage criterion. Hwang [17] also investigated
USApHMCP using the binary coverage criterion and proposed a new model for
USApHMCP, as well as two heuristics to tackle the problem: a distance based
allocation and a volume based allocation heuristics. Weng [29] developed a new
mathematical formulation for the multiple assignment version of the problem.
Recently, Peker and Kara [24] proposed new mathematical models for the single
and multiple p-hub maximal covering problem that can be applied in both binary
and partial coverage cases.

This paper deals with UrApHMCP with the binary coverage criterion. The
goal is to maximize the total covered demand with respect to the binary coverage
criterion under the following assumptions:

• the number of hubs is fixed to p,

• each non-hub node can be assigned to at most r hubs (1 6 r 6 p),

• a direct transportation between non-hub nodes is not allowed,

• the amount of flow collected at each hub is not limited.

The UrApHMCP with binary coverage is an NP-hard optimization problem as
a generalization of both single allocation (r = 1) and multiple allocation (r = p)
p-HMCP, which are proved to be NP-hard (see [3, 7]).

This paper is organized as follows: In Section 2, the mathematical formulation
for the UrApHMCP with a binary coverage criterion is given. In addition, in
the same section, it is proved that single and multiple allocation p-hub covering
problems are special cases of r-allocation p-hub covering problem. The details
of the proposed GA-based method are given in Section 3, while in Section 4, the
experimental results obtained by the proposed GA are presented. In Section 5,
conclusions and future directions are given.

2. MATHEMATICAL FORMULATION

In order to present Integer Linear Programming (ILP) model for the UrApHMCP
with binary coverage, the following notation is used:

• G = (N,E) is a complete undirected graph, where N = {1, 2, ...,n} is a set of
nodes and E = {{i, j} : i, j ∈ N} is a set of edges with no capacity restrictions;

• di j is the distance (cost, time, etc.) between a pair of nodes i, j ∈ N. It is
assumed that di j = d ji, dii = 0, and di j ≤ dik + dkj, for all i, j, k ∈ N.

• Ti j is the flow of demand between O–D pair i − j;
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• The cost of total path length from origin i ∈ N to destination j ∈ N via hubs
k ∈ H and m ∈ H is denoted as ckm

ij and calculated as

ckm
ij = χdik + αdkm + δdmj, (1)

where χ, δ, and α represent cost factors for flow collection from an origin
to a hub, distribution from a hub to a destination, and for the interhub
transportation, respectively. It is assumed that α < χ and α < δ.

According to the binary coverage criterion [8] used in this paper, the established
path from i to j via hubs k and m is considered as covered if the cost of the total
path length is equal or less than a predefined limit βi j. As in paper by Peker and
Kara [24], for each path i → k → m → j, a binary parameter akm

ij is introduced
to indicate whether the origin-destination pair i and j is covered by using hubs k
and m:

akm
ij =

{
1 if ckm

ij ≤ βi j

0 otherwise
∀i, j ∈ N ∀k,m ∈ H. (2)

The following decision variables are introduced:

• A binary variable xik takes the value of 1 if node i ∈ N is allocated to hub
k ∈ H, and 0 otherwise. In case that xkk = 1, the node k is chosen as a hub,
and is naturally assigned to itself.

• A binary variable yi jkm is equal to 1 if there is traffic that travels from origin
node i ∈ N to hub k ∈ H, then from hub k ∈ H to hub m ∈ H, and finally from
m ∈ H to the destination node j ∈ N.

Using the above notation, the UrApHMCP with binary coverage can be rep-
resented by the following ILP model:

max
∑
i∈N

∑
j∈N

∑
k∈H

∑
m∈H

akm
ij Ti jyi jkm (3)

such that

xik ≤ xkk ∀i ∈ N ∀k ∈ H, (4)∑
k∈H

xik ≤ r ∀i ∈ N, (5)

∑
k∈H

xkk = p, (6)

∑
k∈H

∑
m∈H

yi jkm = 1 ∀i, j ∈ N, (7)
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yi jkm ≤ xik ∀i, j ∈ N ∀k,m ∈ H, (8)

yi jkm ≤ x jm ∀i, j ∈ N ∀k,m ∈ H, (9)

xik ∈ {0, 1} ∀i ∈ N ∀k ∈ H, (10)

yi jkm ∈ {0, 1} ∀i, j ∈ N ∀k,m ∈ H. (11)

The objective function (3) maximizes the covered demand of all origin-destination
pairs. Constraints (4) and constraints (5) ensure that each node is allocated to at
most r hubs. Constraint (6) indicates that exactly p hubs are located. Constraints
(7) ensure that the flow from the origin to the destination node is routed entirely
via some pair of located hubs. Constraints (8) and (9) impose the requirement
that if the flow is routed from the origin i to destination j through the established
hubs k and m, respectively, than node i is assigned to hub k and node j to hub m.
Constraints (10) and (11) indicate the binary type of variables xik and yi jkm.

The proposed model can be applied, for example, to optimizing fast deliv-
ery services, cargo applications, emergency services, food delivery, etc., where
customers are generally very sensitive to delivery time and prefer the companies
with fast and on-time delivery. Companies are interested in satisfying customers’
needs, and therefore, they are trying to decrease delivery time as much as pos-
sible, and to guarantee that packages are delivered on time. However, these
requirements cannot be satisfied completely for every situation. So, their primary
objective is to design a network such that the amount of cargo delivered on-time
is maximized. The structure used by these companies is precisely the same as
the hub network structure. Transportation of cargo packages from origin to des-
tination node is handled by the operation centers that can be identified as hubs.
Each demand center is assigned to an operation center that handles collection and
distribution operations for the assigned demand center. A typical route for cargo
consists of three segments: from the origin node to the operation center serving it,
then to the consignees’ operation center, and finally, to the consignee destination
node. There are some i→ k→ m→ j paths in which some nodes coincide, which
cases actually correspond to some special real-life situations. More precisely, the
following formal movements are possible:

• Case 1: The path contains only a single hub node that is different from both
the origin and the destination nodes, which are also different, i.e., i , j,
k = m and i→ k→ k→ j. In practice, the both origin and destination nodes
are served by the same operation center. Assuming that travel time from a
node to itself is zero, it is clear that ckk

i j = χdik +δdkj. If ckk
i j ≤ βi j, then according

to the binary coverage criterion, origin-destination pair i − j is covered by
using hub k, akk

i j = 1 and akk
i j Ti j = Ti j. Otherwise, akk

i j = 0 and akk
i j Ti j = 0.

• Case 2: This case is similar to Case 1 but the origin and destination nodes
coincide, i.e., i = j and i→ k→ k→ i. This scenario occurs when a customer
sends a package to a recipient situated in the same service area, but it first has
to be processed at the sorting hub before being delivered to the recipient. In
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this case, ckk
ii = χdik + δdki = (χ+ δ)dik. If ckk

ii ≤ βi j, then akk
ii = 1 and akk

ii Tii = Tii.
Otherwise, akk

ii = 0 and akk
ii Tii = 0.

• Case 3: The origin node is a hub node (operation center) and the destination
node is a non-hub node, i.e., i = k = m and i → i → i → j. In this case,
cii

i j = δdi j. If cii
i j ≤ βi j, then aii

i j = 1 and aii
i jTi j = Ti j. Otherwise, aii

i j = 0 and
aii

i jTi j = 0.

• Case 4: The origin node is a non-hub node and the destination node is a
hub node (operation center), i.e., k = m = j and i→ j→ j→ j. In this case,
c j j

i j = χdi j. If c j j
i j ≤ βi j, then a j j

i j = 1 and a j j
i j Ti j = Ti j. Otherwise, a j j

i j = 0 and

a j j
i j Ti j = 0.

• Case 5: The origin node and the destination node are the same hub node,
i.e., i = k = m = j and i→ i→ i→ i. This means that the package is sent and
delivered in the same zone (or zip code). As the travel time from a node to
itself is zero, cii

ii = 0. In this case, aii
ii = 1 and aii

iiTii = Tii.

• Case 6: The origin node is a hub node and the destination node is a hub node
(the both origin and destination nodes are operation centers), i.e., i = k = m
and i → i → i → j or k = m = j and i → j → j → j or i = k,m = j
and i → i → j → j. These situations are as those in the practice, but
cii

i j = δdi j, c
j j
i j = χdi j and ci j

i j = αdi j. The path from i to j is considered as

covered if cii
i j ≤ βi j or c j j

i j ≤ βi j or ci j
i j ≤ βi j. As α is the economies of scale

factor used to discount the distance between hubs (for example, the delivery
between two operation centers is done by means of larger, more specialized,
or faster vehicles), it is clear that ci j

i j ≤ cii
i j and ci j

i j ≤ c j j
i j . In practice, if ci j

i j ≤ βi j,
then according to the binary coverage criterion, origin-destination pair i − j
is covered, ai j

i j = 1 and ai j
i jTi j = Ti j. Otherwise, ai j

i j = 0 and ai j
i jTi j = 0.

From the previous discussion, it can be seen that the paths in cases 1-4 and 6 have
no influence on the objective function value as long the corresponding coefficients
in the expression for the objective function are equal to zero. In case 5, the objective
function value is increased by the flow of demand Tii that corresponds to the origin
and destination nodes (which are the same).

In the remaining part of this section, the relationship of the model (3) – (11)
with four-index formulations for the single and multiple allocation p-hub max-
imal covering problems is discussed. It will be proved that USApHMCP and
UMApHMCP can be transformed to model (3) – (11) for r = 1 and r = p, respec-
tively.

In the paper [17], the USApHMCP model is formulated as (3) such that (4),
(6), (10)–(11), and∑

k∈H

xik = 1 ∀i ∈ N, (12)
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2yi jkm ≤ xik + x jm ∀i, j ∈ N ∀k,m ∈ H. (13)

For r = 1, it is obvious that constraints (5) directly follow from (12). By constraints
(12), the origin node i is allocated to exactly one hub k (i.e. xik = 1), and the
destination node j is assigned to exactly one hub m (i.e. x jm = 1). Since (13) is
satisfied, and the objective function of USApHMCP model is maximized, then in
an optimal solution of this model yi jkm = 1, and (k,m) is the only hub pair that
cover O–D pair i − j . Therefore, the constraints (7) are satisfied. If yi jkm = 0, then
inequalities yi jkm ≤ xik and yi jkm ≤ x jm obviously hold. In the case of yi jkm = 1,
from (13) it can be concluded that xik + x jm ≥ 2 and, thus, xik = x jm = 1. Therefore,
constraints (8) and (9) follow from (13).

Recall that UMApHMCP model from [7] uses variables hk, k ∈ H, which are
defined as follows: hk = 1,∀k ∈ H if and only if a hub is established at location
k, and 0 otherwise. The UMApHMCP model is formulated as (3) under the
constraints (7), (11), and

∑
k∈H

hk = p, (14)

yi jkm ≤ hk ∀i, j ∈ N ∀k,m ∈ H, (15)

yi jkm ≤ hm ∀i, j ∈ N ∀k,m ∈ H, (16)

hk ∈ {0, 1} ∀k ∈ H. (17)

In the model defined by an objective (3) and constraints (7), (11), (14)–(17), let
hk = xkk, k ∈ H. If variables xik, i ∈ N, k ∈ H are introduced adding constraints (4),
(8) and (9), then (14) is transformed directly to (6). Constraints (5) for r = p follow
from constraints (4) and (6). From (4), (8) and (9) it follows that constraints (15)
and (16) are redundant and can be omitted. In this way, model defined by (3), (7),
(11), (14)–(17) can be transformed to model defined by (3)–(11).

3. GENETIC ALGORITHM FOR SOLVING UrApHMCP

Genetic Algorithm (GA) is a stochastic search technique proposed by Holland
in [16]. Over the last two decades, GA has been proved as an efficient search
technique for solving various optimization problems (see [9, 10, 14, 21]). GA is
inspired by Darwin’s principle of natural evolution and starts with a set of ran-
domly generated candidate solutions, denoted as population. Each individual in
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the population corresponds to a candidate solution to the problem, and it is rep-
resented by a genetic code. Parts of a genetic code are denoted as genes. In each
iteration (i.e. generation), the following processes are performed: i) Evaluation
of individuals in the population is done by calculating the fitness function, which
measures the quality of an individual; ii) Selecting promising individuals from the
current population according to their fitness, which will take part in producing
new generation; iii) Creating offspring individuals by combining genetic codes
of selected parent individuals, which is done by crossover operator; iv) Slight
modification of some randomly selected offspring individuals by mutation oper-
ator. The generated offspring individuals enter the next generation of individuals.
These steps are repeated until certain stopping criterion is satisfied. Through GA
generations, the (average) fitness of individuals is improved, and the best fitted
individual corresponding to the best found GA solution is returned when the GA
finishes its run.

The basic scheme of GA is represented in Algorithm 1. More details on GA
and its variants can be found in [4, 5, 15].

Algorithm 1: Basic scheme of GA
Input Data();
Population Init();
while not Finish() do

Fitness Function();
Selection();
Crossover();
Mutation();

end
Output Data();

In the literature, there are examples of successful GA applications to various
hub location problems, such as [1, 19, 20, 25, 26, 27], etc. These studies indicate
that GA is a promising metaheuristic approach for solving hub location problems.
This was a motivation to design a GA metaheuristic for solving the variant of hub
covering problem considered in this study.

3.1. Representation of individuals and fitness function calculation
The proposed GA implementation uses a binary representation of individuals.

A genetic code of an individual consists of n genes, each corresponding to one
node of the network. Each gene takes the value of 1 if the corresponding node is
chosen as a hub, and 0 otherwise.

The initial population consists of Nind = 150 randomly generated individuals.
Each individual is created by randomly selected exactly p genes, taking value of
1, while the remaining genes are set to 0. After generating the initial population,
the fitness value of each individual is calculated. In this GA implementation, the
fitness value of the individual is equal to its objective function value, calculated
as follows.
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Let H be the set of indices {h1, h2, ..., hp} of p hub nodes, obtained from the
genetic code of an individual. Each hub node is naturally assigned to itself, while
for the remaining non-hub nodes, their adequate allocations to the chosen hubs
have to be found. This is performed by the function alloc(i, h), proposed in [23],
which is used to construct a greedy solution. This function reflects the influence
of allocating non-hub node i to hub h, and it is calculated as follows:

alloc(i, h) = χdih +
∑
j∈N

δdhj. (18)

The first term in alloc(i, h) represents the cost from origin node i ∈ N to hub
h ∈ H, while the second term measures the cost associated with the arcs from hub
h ∈ H to destination nodes. For each non hub node i, the values alloc(i, h), h =
h1, h2, . . . , hp are computed. Each non hub node i is assigned to exactly r hubs with
the best allocation values alloc(i, h), building a sequence of r hubs in a greedy way.
Now, it is easy to find traffic routes for each O–D pair i − j, and to calculate the
objective function value. The key point of the UrApHMCP is to maximize cases
of ckm

ij within the coverage radius βi j. Let K and M be sets of r hubs assigned to
nodes i and j, respectively. Then, for each pair i − j, a promising solution can
be obtained when hubs k ∈ K and m ∈ M, through which the traffic is routed
from i to j, are chosen such that the cost ckm

ij = χdik + αdkm + δdmj is minimized.
The procedure considers all possible paths of type i → k → m → j and binary
variable yi jkm is equal to 1 if there is traffic that is routed from origin node i to
hub k, then from hub k to hub m, and finally, from m to the destination node j.
Naturally, some of the nodes i, j, k, and m may coincide. Also, even if sets K and
M have a common hub, the traffic from i to j is not necessarily routed through
that hub. The straightforward calculation of all O–D shortest path pairs requires
O(n2r2) operations. In the case of r = p, the calculation of all shortest paths may
be performed in O(n2r) operations using a modification of the Floyd-Warshall
shortest path algorithm. The fitness value is then simply evaluated by summing
up the demands over covered paths. The individual is considered as correct if
there are no unused hubs, i.e., the ones with no non-hub nodes assigned. If this is
not the case, the individual is considered incorrect, and its fitness value is set to 0.

Example 1. The left hand side of Figure 1 shows a network with n = 5 nodes
denoted as 1, 2, 3, 4, 5 with the following coordinates in the plane: (0,0), (2,0), (4,1),
(1,3), and (0,2). The corresponding distance matrix is

D =


0 2

√
17
√

10 2
2 0

√
5
√

10 2
√

2
√

17
√

5 0
√

13
√

17
√

10
√

10
√

13 0
√

2
2 2

√
2
√

17
√

2 0


, (19)

where Di j is a distance between each pair of nodes i, j ∈ {1, 2, 3, 4, 5}. Let the flow
of demand between each pair of nodes i, j ∈ {1, 2, 3, 4, 5} be equal to 2. The optimal



210 O. Janković / GA for the UrApHMCP

 

1

5

2

3

4

1

5

2

3

4

 
 

 

1

5

2

3

4

1

5

2

3

4

 
 

 

 

Figure 1: Hub network with n = 5, p = 3, r = 2, α = 0.25

solution of the UrApHMCP that is obtained for p = 3, r = 2, α = 0.25, χ = δ = 1
and β = 2 is presented to the right hand side of Figure 1. Hubs are located at nodes
1, 3 and 5, while non-hub nodes 2 and 4 are assigned to their closest established
hubs. As it can be seen from the right hand side of Figure 1, non-hub node 2
is allocated to hubs 1 and 3, while non-hub node 4 is allocated to hubs 5 and 1.
This optimal solution is encoded as 10101. After the locations of hubs are chosen
and each node is assigned to r hubs, previously described procedure is applied
to find traffic routes for each pair i − j and to calculate the objective function
value. Namely, the transportation costs obtained as the shortest paths between
each pair of nodes are: ‘1 − 1′ 0, ‘1 − 2′ 2, ‘1 − 3′ 0.25 ·

√
17 = 1.03, ‘ 1 − 5 − 4′

0.25 · 2 +
√

2 = 1.91, ‘1 − 5′ 0.25 · 2 = 0.5, ‘2 − 1′ 2, ‘2 − 1 − 2′ 2 + 2 = 4, ‘2 − 3′√
5, ‘2 − 1 − 5 − 4′ 2 + 0.25 · 2 +

√
2 = 3.91, ‘2 − 1 − 5′ 2 + 0.25 · 2 = 2.5, ‘3 − 1′

0.25 ·
√

17 = 1.03, ‘3 − 2′
√

5, ‘3 − 3′ 0, ‘3 − 5 − 4′ 0.25 ·
√

17 +
√

2 = 2.44, ‘3 − 5′

0.25 ·
√

17 = 1.03, ‘4−5−1′
√

2+0.25 ·2 = 1.91, ‘4−5−1−2′
√

2+0.25 ·2+2 = 3.91,
‘4 − 5 − 3′

√
2 + 0.25 ·

√
17 = 2.44, ‘4 − 5 − 4′

√
2 +
√

2 = 2.82, ‘4 − 5′
√

2, ‘5 − 1′

0.25 ·2 = 0.5, ‘5−1−2′ 0.25 ·2+2 = 2.5, ‘5−3′ 0.25 ·
√

17 = 1.03, ‘5−4′
√

2, ‘5−5 ′ 0.
According to the binary coverage criterion, it may be concluded that 15 paths are
considered as covered. The objective function value is then simply evaluated by
summing up the demands over covered paths. Since the flow of demand between
each pair of nodes is equal to 2, the objective function value that corresponds to
the optimal solution is 30.

3.2. Genetic operators
The proposed GA uses elitist strategy (see e.g. [20, 25, 26]). In order to

ensure elitism, in each iteration, 30% of best fitted solutions from the current
population is directly copied to the next population (Nel = 45). These individuals
are denoted as elite ones, and their role is to preserve high-quality genetic material
in the population. The rest of the next population is generated by applying GA
operators: selection, crossover, and mutation.

The selection operator chooses the individuals that will produce offspring in the
next generation, according to their fitness. Low fitness-valued individuals have
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a lower chance of being selected than the ones with higher fitness values. The
proposed GA uses fine-grained tournament selection (FGTS), an improvement
of standard tournament selection [13]. This operator uses a real parameter Ftour,
which denotes the desired average tournament size. The first type of tournaments
is held k1 times and its size is [Ftour] + 1, while the second type is realized k2
times with [Ftour] individuals participating. Numerical experiments performed
for different hub location problems indicate that FGTS gives the best results for
Ftour = 5.4 (see [19, 25, 26]). In the proposed GA implementation, FGTS operator
is applied to Nnonel = 105 non-elitist individuals, tournaments are held k1 = 63
and k2 = 42 times with sizes 5 and 6, respectively. In practice, the running time
for the FGTS operator is O(Nnonel ∗ Ftour).

A crossover operator uses all non-elitist individuals to produce offspring for
the next generation. The standard one-point crossover appears to be ineffective,
and not appropriate for the applied representation scheme because the number of
hubs in offspring individuals may be different from p. The implemented modified
crossover operator randomly selects a pair of parent-individuals and produces
one offspring individual, such that the set od established hubs in the offspring is
obtained as the union of hubs in the parent individuals. Obviously, the offspring
individual may have more than p hubs. In order to correct the obtained offspring,
it is necessary to set some bits to 0, i.e., to close some hubs. Therefore, a new
matrix E with n rows and q columns is constructed, where q is the number of hubs
of the offspring. Each entry E(i, j) represents the closeness of hub h j to node i,
which is estimated as in [23]:

E(i, j) = χdi j. (20)

The reason for using (20) is the fact that as the value of E(i, j) is smaller, it is
more convenient to send traffic from the node i via node j. By using matrix E,
hubs are removed iteratively by the following procedure. Let m(E) denote the
sum of minima computed for each row of matrix E, i.e.,

m(E) =

n∑
i=1

min
j∈{1,2...q}

E(i, j), (21)

and let E j denote the matrix obtained from E by deleting the column j. Since
the removal of the hub h j corresponds to the deletion of the j-th column of the
matrix E, the hub h j to be removed is chosen as the one that corresponds to the
j-th column so that the difference between m(E j) and m(E) is the least possible.
After deleting hub h j, matrix E is replaced by matrix E j. The described process is
repeated until the number of hubs in the offspring becomes p.

Each produced offspring is subject to a mutation operator. Mutation is a process
that reverses the structure of an individual and serves as a policy that helps in
preventing the GA from being trapped in local optima. The simple mutation
operator is implemented in the proposed GA. It is performed by changing the bit
value at each bit position with the mutation rate pmut, which is set to 0.03. After
the mutation of an offspring, it is possible that the number of hub becomes greater
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or less than p. In these cases, the offspring is corrected by adding or removing the
necessary number of hubs. Hubs to be added or deleted are chosen randomly.

The proposed GA uses the combination of two stopping criteria: the maximal
number of GA iterations without improvement (max1 = 300), and the maximal
number of performed iterations (max2 = 1000). When at least one of these stopping
criteria is met, the proposed GA finishes its work. The structure of the proposed
GA for the UrApHMCP is presented in Algorithm 2.

Algorithm 2: Proposed GA heuristic for the UrApHMCP
Initialize the parameters;
Generate initial population P;
Calculate fitness values for all individuals in population;
while the number of iter. without impr. <max1 and the number of iter. <max2 do

Choose Nel elite individuals;
Set the next population C = ∅;
Add Nel elite individuals to C;
Apply FGTS to non-elitist individuals;
for i = 1 to Nnonel do

Select two parent-individuals: P1, P2;
C1 ← Crossover (P1,P2);
C1 ←Mutate (C1, pmut);
Calculate fitness value of C1;
Insert C1 into C;

end
P← C;

end
Return the best individual from P and its fitness value;

4. COMPUTATIONAL RESULTS

In this section, the computational results of the GA method are presented. The
proposed GA method is coded in C++ and all the tests are executed on an Intel
Core I7 with 3.0 GHz CPU and 8GB of RAM. The performance of GA method
is tested on the standard CAB and AP benchmark instances that are used for
various hub location problems. A short description of data sets used in these
computational experiments is given in Table 1.
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Table 1: Data sets used in this computational experiments
Name Dimension α Description

CAB 10 ≤ n ≤ 25

Introduced in [22];
ranges from Based on airline passenger flow between

0.2 to 1.0 25 cities in the United States.

AP 10 ≤ n ≤ 200

Introduced in [12];
Derived from data from Australian Post;

0.75 Involve up to 200 nodes corresponding to
postal districts in Australia.

For all considered hub instances, the collection and distribution cost parame-
ters, χ and δ, are set to 1. For CAB data set, parameter α ranges from 0.2 to 1.0,
while for AP data set, α is set to 0.75.

The parameter akm
ij for the binary coverage is defined as in [24]:

akm
ij =

{
1, if ckm

ij ≤ 0.75β, ∀i, j ∈ N, ∀k,m ∈ H
0, otherwise.

(22)

For CAB instances, the values of the parameter β are taken from [24], while
for the other instances, the parameter β is set to be equal to the corresponding
solution value for the Uncapacitated Multiple Allocation p-hub Center Problem
(UMApHCP) given in [6]. For each considered instance, the value of β used in
this paper represents the upper limit on the objective value of the UMApHCP
with the same number of hubs p.

The quality of results obtained by the proposed GA heuristic is assessed by
comparing them with the results obtained solving the ILP formulation (3) - (11) by
a commercial CPLEX 12.6 MIP solver. In order to provide a fair comparison, the
CPLEX was run on the same platform as GA. The maximum CPU time allowed
for the CPLEX solver was set to 1 h (3600 s) on each test instance.

Since GA is a stochastic search method, it was run several times on each test
instance. On each tested CAB and AP instance, the proposed GA was run 10
times.

Tables 2 – 3 provide results of the GA approach for small-size problem instances
(n = 25, 40), while Tables 4 – 5 contain results obtained on medium and large size
instances (n = 50, 100, 200).

In the first three columns of Tables 2 – 3, the number of nodes (n) and hubs to
be located (p) are given, as well as the values of parameters r and α. The next two
columns contain the optimal solutions (Opt.sol) obtained by the CPLEX or lower
bounds, marked with superscripts ∗, in cases when the CPLEX solver was unable to
find an optimal solution within the imposed time limit of 1h and the corresponding
running time (t(s)) in seconds. In the following two columns, the best GA solution
(Best sol), and average total GA running time in seconds (ttot) are given. Column
1en.av1 contains the average number of GA generations. The solution quality in
all 10 executions is evaluated as a percentage gap a1ap = 1

10

∑10
i=1 1api, where 1api
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is evaluated as percentage deviation from the optimal solution Opt.sol, or the best
solution obtained by GA, in cases where no optimal solution is known. Standard
deviation σ of the average gap is presented in the last column.

From the results presented in Table 2, it can be seen that CPLEX failed to
provide optimal solution for 3 out of 24 CAB instances. On these 3 instances
(CAB25.4 for r = 2, α = 0.4, CAB25.5 for r = 2, α = 0.6, CAB25.4 for r = 2,
α = 0.8), CPLEX provided feasible solutions within 1h of CPU time. On the other
hand, the proposed GA quickly reaches all known optimal solutions and improves
lower bounds provided by CPLEX on three instances unsolved to optimality. The
average CPLEX running time on instances that are solved to optimality is 1606.21
seconds, while the corresponding average GA running time is 0.21 seconds. On
CAB instances with no optimal solution known, the proposed GA provided a
solution within 0.12 seconds (on average).

The GA results on AP instances with n = 25 nodes (AP25), and AP instances
with n = 40 nodes (AP40) are presented in Table 3. On these instances, CPLEX
failed to provide optimal solution for 4 out of 6 instances from the group AP25,
and for all AP40 instances that were tested. For AP25 instances, GA reached all
optimal solutions and improved lower bounds provided by CPLEX on instances
unsolved to optimality. The average CPLEX running time on instances that are
solved to optimality is 1611.4 seconds, while the corresponding GA running time
is 0.19 seconds, on average. On AP40 instances GA provided better solutions than
lower bounds obtained by CPLEX, and the total GA running time on this data set
was 0.85 seconds on average.

Medium and large size AP instances with n = 50, 100, 200 nodes remained out
of reach of CPLEX when solving the considered problem. Not even a feasible so-
lution was obtained within 1 h of running time, due to memory limits. Therefore,
Tables 4 – 5 contain only the results obtained by the proposed GA. As it can be
seen, the GA was able to provide the best solutions in an efficient manner. On
average, for tested AP instances with n = 50 nodes (AP50), GA obtained solution
in 20.26 seconds, while for large size AP instances with n = 100, 200 nodes, the
GA running time was 70.36 seconds on average. On all instances that were solved
by GA, small values of average gap and σ indicate the reliability of the proposed
GA approach.
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Table 2: Comparison of CPLEX and GA solutions obtained on CAB data set
CPLEX GA

n.p r α Opt.sol(%) t(s) Best sol(%) ttot(s) 1en.av1 agap(%) σ(%)
25.3 2 0.2 96.58 1805.86 96.58 0.08 303.10 0.00 0.00
25.4 2 0.2 95.71 1541.47 95.71 0.13 330.20 0.00 0.00
25.4 3 0.2 95.71 2100.11 95.71 0.16 331.50 0.00 0.00
25.5 2 0.2 92.70 2087.15 92.70 0.18 420.20 0.00 0.00
25.5 3 0.2 92.70 2849.29 92.70 0.25 385.20 0.00 0.00
25.5 4 0.2 92.70 2431.20 92.70 0.31 409.20 0.00 0.00
25.3 2 0.4 96.24 2305.22 96.24 0.76 300.80 0.00 0.00
25.4 2 0.4 93.80∗ 3600.09 95.01 0.10 302.70 0.00 0.00
25.4 3 0.4 95.01 2049.70 95.01 0.14 303.50 0.00 0.00
25.5 2 0.4 91.45 1267.85 91.45 0.15 340.60 0.25 0.25
25.5 3 0.4 91.84 1105.92 91.84 0.25 367.50 0.00 0.00
25.5 4 0.4 91.84 1110.36 91.84 0.28 351.50 0.00 0.00
25.3 2 0.6 93.17 354.23 93.17 0.08 300.70 0.00 0.00
25.4 2 0.6 93.62 1055.33 93.62 0.11 318.80 0.00 0.00
25.4 3 0.6 93.63 831.95 93.63 0.13 320.50 0.01 0.01
25.5 2 0.6 90.00∗ 3600.05 90.12 0.14 314.10 0.00 0.00
25.5 3 0.6 90.19 2727.55 90.19 0.23 342.30 0.05 0.04
25.5 4 0.6 90.19 3531.83 90.19 0.26 353.50 0.00 0.00
25.3 2 0.8 90.08 682.41 90.08 0.08 303.30 0.00 0.00
25.4 2 0.8 89.02∗ 3600.07 89.60 0.11 311.00 0.00 0.00
25.4 3 0.8 89.61 1829.71 89.61 0.15 322.20 0.00 0.01
25.5 2 0.8 89.03 728.15 89.03 0.16 329.00 0.29 0.28
25.5 3 0.8 89.05 605.09 89.05 0.24 350.90 0.00 0.00
25.5 4 0.8 89.05 730.11 89.05 0.27 345.30 0.00 0.00

Average: 92.20 1855.45 92.22 0.20 335.73 0.03 0.02

Table 3: Comparison of CPLEX and GA solutions obtained on AP25 and AP40 data set
CPLEX GA

n.p r α Opt.sol(%) t(s) Best sol(%) ttot(s) 1en.av1 agap(%) σ(%)
25.3 2 0.75 95.13 765.58 95.13 0.08 302.00 0.15 0.15
25.4 2 0.75 96.94∗ 3000.50 96.94 0.12 306.50 0.00 0.00
25.4 3 0.75 97.16 1068.12 97.16 0.16 305.50 0.05 0.05
25.5 2 0.75 97.47∗ 3600.07 97.87 0.17 338.50 0.00 0.00
25.5 3 0.75 98.03∗ 3600.10 98.03 0.28 394.10 0.00 0.00
25.5 4 0.75 98.06∗ 3600.09 98.06 0.35 389.80 0.12 0.20
40.3 2 0.75 84.25∗ 3600.36 97.77 0.22 309.10 0.00 0.00
40.4 2 0.75 26.92∗ 3600.35 96.85 0.42 356.00 0.03 0.04
40.4 3 0.75 28.64∗ 3600.36 97.22 0.70 392.60 0.00 0.00
40.5 2 0.75 38.30∗ 3600.36 97.04 0.60 376.60 0.00 0.00
40.5 3 0.75 38.05∗ 3600.45 97.25 1.31 483.70 0.16 0.09
40.5 4 0.75 36.04∗ 3600.35 97.44 1.84 516.90 0.10 0.05

Average: 69.58 3103.06 97.23 0.52 372.61 0.05 0.05
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Table 4: GA results obtained for UrApHMCP on AP50 data set
GA

n.p r α Best sol (%) ttot(s) 1en.av1 agap(%) σ(%)
50.3 2 0.75 97.86 0.44 333.60 0.14 0.05
50.4 2 0.75 97.53 0.80 333.90 0.07 0.07
50.4 3 0.75 98.05 1.56 446.00 0.02 0.01
50.5 2 0.75 97.66 1.40 514.50 0.06 0.02
50.5 3 0.75 97.89 2.87 528.70 0.06 0.05
50.5 4 0.75 97.90 5.32 488.50 0.03 0.04
50.10 2 0.75 99.20 3.60 740.10 0.02 0.03
50.10 3 0.75 99.27 9.73 802.20 0.04 0.04
50.10 4 0.75 99.29 18.76 778.80 0.02 0.01
50.10 5 0.75 99.32 30.47 787.70 0.03 0.02
50.10 6 0.75 91.11 43.41 773.80 0.04 0.02
50.10 7 0.75 91.08 80.06 831.70 0.02 0.01
50.10 8 0.75 99.35 64.92 809.80 0.02 0.02

Average: 97.35 20.26 628.41 0.05 0.03

Table 5: GA results obtained for UrApHMCP on large size AP instances
GA

n.p r α Best sol(%) ttot(s) 1en.av1 agap(%) σ(%)
100.3 2 0.75 97.74 3.76 365.33 0.02 0.03
100.4 2 0.75 97.39 10.54 456.67 0.05 0.04
100.4 3 0.75 97.85 19.71 410.67 0.03 0.05
100.5 2 0.75 98.03 15.94 610.67 0.00 0.00
100.5 3 0.75 98.35 36.49 720.00 0.00 0.00
100.5 4 0.75 98.15 51.45 494.00 0.09 0.09
200.3 2 0.75 98.83 56.50 603.50 0.01 0.01
200.4 2 0.75 98.62 97.47 703.00 0.00 0.00
200.4 3 0.75 98.81 207.09 631.50 0.01 0.01
200.5 2 0.75 98.54 204.69 825.00 0.05 0.05
200.5 3 0.75 98.67 458.91 501.00 0.02 0.02

Average: 98.23 70.36 574.67 0.03 0.03

5. CONCLUSION

In this paper, an integer linear programming mathematical formulation for the
Uncapacitated r-allocation p-hub Maximal Covering Problem (UrApHMCP) with
a binary coverage criterion is presented. In order to solve the problem instances of
larger problem dimensions, a Genetic Algorithm (GA) adapted to the considered
problem is developed. Computational results on CAB and AP instances with up
to 200 nodes demonstrate the efficiency and practicability of the proposed GA
with respect to both computation time and solution quality. The obtained results
clearly indicate that GA represents a promising heuristic approach to UrApHMCP.
Future research should be conducted to examine the parallelization of the GA and
its hybridization with other heuristics for solving this problem.
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