
Yugoslav Journal of Operations Research
28 (2018), Number 3, 291–314
DOI: https://doi.org/10.2298/YJOR161015018I

A NEW VARIABLE NEIGHBORHOOD SEARCH
APPROACH FOR SOLVING DYNAMIC MEMORY

ALLOCATION PROBLEM

Marija IVANOVIĆ
Faculty of Mathematics, University of Belgrade, Serbia

marijai@math.rs

Aleksandar SAVIĆ
Faculty of Mathematics, University of Belgrade, Serbia

asavic@matf.bg.ac.rs

Dragan UROŠEVIĆ
Mathematical Institute, SANU, Belgrade, Serbia

draganu@mi.sanu.ac.rs

Djordje DUGOŠIJA
Faculty of Mathematics, University of Belgrade, Serbia

dugosija@matf.bg.ac.rs

Received: October 2016 / Accepted: May 2018

Abstract: This paper is devoted to the Dynamic Memory Allocation Problem (DMAP)
in embedded systems. The existing Integer Linear Programing (ILP) formulation for
DMAP is improved, and given that there are several metaheuristic approaches for solving
the DMAP, a new metaheuristic approach is proposed and compared with the former
ones. Computational results show that our new heuristic approach outperforms the best
algorithm found in the literature regarding quality and running times.

Keywords: Dynamic Memory Allocation Problem, Combinatorial Optimization, Meta-
heuristics, Variable Neighborhood Search.

MSC: 90C59, 05C90, 68T20.

292 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

1. INTRODUCTION

Dedicated computational systems within a larger mechanical or electrical sys-
tem, usually with real time constraints, or the embedded systems, represent an
integral part of a large number of devices, ranging from portable devices up to
large industrial, medical, and military structures. Minimizing energy consump-
tion while increasing reliability and performance present a major challenge for
engineers. Therefore, designers want to find a balance between the architecture
cost and its power consumption [1].

Power consumption of a given application can be reduced by using data
access parallelization, which leads us to the definition of the Dynamic Memory
Allocation Problem (DMAP).

DMAP can be described as follows. If an application involves a number of
data structures with the given size and access cost, a number of memory banks
with limited memory capacity, and one external memory bank with unlimit-
ed capacity, develop the best memory allocation scheme so that change of data
structure allocation during program execution is allowed, while keeping loading,
moving, and access time for those and all other operations to a minimum.

Given that modern devices are usually designed to run on processors with
integrated or external memory, this problem has become very popular.

DMAP, as defined above, has an important role in modern software since
the dynamic memory usage provides greater flexibility and functionality of the
applications. There are a large number of papers and references to this particular
issue in the literature. In this paper, DMAP in embedded systems is studied as an
execution time problem, shown by Wuytack et al. in [17].

A memory allocation problem in embedded systems was widely analyzed by
Soto et. al. in [14]. In [12] Soto et al. proposed the first Mixed Integer Lin-
ear Programing (MILP) formulation for the static version of the memory alloca-
tion problem and a metaheuristic approach based on the Variable Neighborhood
Search (VNS). Later, Soto et al. [13] dealt with a dynamic version of the memory
allocation problem, providing ILP formulation, and two iterative approaches for
solving DMAP in embedded systems. These two approaches were followed by
GRASP with the ejection chains for the memory allocation problem in embedded
systems proposed in Sevaux et al. [11]. Focused on improving the memory allo-
cation problem in embedded systems, Sánchez-Oro et. al [15] and [16] recently
proposed a parallel VNS algorithm for DMAP and compared it with the previous
ones. More precisely, they focused on the Synchronous Parallel VNS (SPVNS)
variant that was used for parallelization of the local search method in the sequen-
tial VNS (in [15]) and on the Replicated Shaking VNS (RSVNS), which allows the
search to simultaneously explore more solutions in the current neighborhood (in
[16]).

In this paper, an improved ILP formulation for DMAP in embedded systems is
proposed and a new metaheuristic approach based on the VNS is given. Results of
this new metaheuristic approach are compared with the results from the existing
literature.

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 293

The paper is organized as follows: Problem notation and ILP formulation
known from the literature are given in Section 2. Section 3 is dedicated to the
improved ILP formulation for dynamic versions of memory allocation problem
followed by a short illustrative example. A new VNS approach is presented in
the next section. Finally, the existing results from the literature, and the results
achieved by using new VNS approach are given and compared in Section 5.

2. EXISTING MATHEMATICAL FORMULATION AND PROBLEM
NOTATION

Notations and problem presentation will be similar as in [13]. Let us assume
that the number of memory banks is limited by an electronic device, and that there
are m internal memory banks with limited capacity, denoted by c j, 0 < c j < ∞
(j = 1, . . . ,m), and one external memory bank whose size is supposed to be large
enough so that it can be considered as unlimited (c0 = ∞), i.e. the chosen memory
architecture is similar to the one of TI C6201 device. Size of a memory bank is
given in kilo Bytes (kB), and each memory bank is denoted by β j, j = 0, . . . ,m.
Without loss of generality, let us assume that a particular application is written
in C++ code as a set of binary operations between the involved data structures.
The term data structure is used for scalars, arrays, or similar structures of the
applications. Further, let us assume that a set of all data structures is finite and
depends on a program code. Furthermore, let us mark each data structure with
αi, where i = 1, ...,n, where n is a number of data structures. Data structure αi size
is defined in kB and marked by ai. Due to the fact that external memory is a huge
mass storage, all operations with data structures will be p times slower if mapped
to the external memory bank. Therefore, we say that p is a penalty cost for loading
data structure from the external memory bank. As all operations are not used at
the same time, program execution time T is divided into t time blocks, It; it is not
necessary that time blocks have constant size, and it is allowed to reconsider and
move data structures before and after each time block. For instance, we say that
a time block has size equal to one if it contains only one operation. If all time
blocks are of size one, moving data structures is allowed before and after each
operation. Since the access to data structures during the particular time block can
differentiate, we define its access cost in milliseconds per kilo Bytes (ms/kB) and
mark access cost to data structure αi at time block It by ei,t .

As previously mentioned, given that the parallel data structure usage can
speed up program execution, moving data structure will be useful, especially
because memory banks are of limited size. We assume that moving data structure
is allowed only in between two time blocks and not during, without loss of gen-
erality. The problem with only one time block is a static memory allocation
problem and more about it can be found in [8] and [12]. Moving data structures
and rearranging their allocation is useful because in some cases moving data
structure from external to internal memory bank and loading it from the internal
memory bank can be less expensive than loading and operating with it while it

294 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

is mapped to the external memory bank. Every data structure movement is also
calculated.

It is assumed that the data structure movement between two internal memory
banks costs l times its size, while the movement between internal and external
memory banks is v times its size.

Similarly, when data structures are jointly involved in the same operation, i.e.
have to be accessed at the same time, it will be assumed that data structure location
affects its loading time. If two data structures, say αs and αd, are jointly involved
in the same operation during the particular time block It, the given pair is called
”conflict pair” with notation {αs, αd}t. The number of conflict pairs at time block It,
t = 1, . . . ,T is denoted by kt, while the set of all conflict pairs accessed at time block
It is given by Ot. Accessing the conflict pair {αs, αd}t at time block It will cost bαs,αd,t
if both data structures are mapped onto two different internal memory banks,
2bαs,αd,t if both data structures are mapped onto the same internal memory bank,
respectively; pbαs,αd,t if one data structure is mapped onto the external memory
bank, and 2pbαs,αd,t if both data structures are mapped onto the external memory
bank.

Let us assume that set Ot consists of kt conflict pairs, marked as {αs1 , αd1 },
{αs2 , αd2 }, . . . , {αskt

, αdkt
}. In order to reduce the number of indices, for r-th conflict

pair {αsr , αdr }, r = 1, . . . , kt instead of using notation bαsr ,αdr ,t conflict cost will be
written as br,t. The set of all required data structures at time block t is denoted by
Pt.

Again, it is assumed that all data structures are mapped to the external mem-
ory bank at the beginning of the program execution. Also, at the beginning of
the program execution, the number of time intervals (T) is given and for each
time interval It, t = 1, . . . ,T, sets Pt and Ot are followed with all necessary data
(access cost for each data structure αi ∈ Pt and conflict costs for each conflict pair
{αsr , αdr }, r = 1, . . . , kt in a particular time interval It).

The first mathematical formulation for DMAP in embedded systems is pre-
sented as it was proposed in [13].

For all (i, j, k) ∈ {1, . . . ,n} × {0, . . . ,m} × {1, . . . ,T} a decision variable xi, j,t is
set to one if and only if data structure αi is allocated to the memory bank β j
during the time block It, xi, j,t = 0 otherwise. Given that, the conflict pair is
considered as closed if the involving data structures are mapped onto two different
memory banks but open otherwise. For all conflicts r ∈ {1, . . . , kt} at time block
It ∈ {1, . . . ,T}, decision variable yr,t will be set to one if and only if during the time
interval It conflict r is closed, otherwise yr,t = 0. Further, data structure moving
is represented by the two following sets of variables: for all i ∈ {1, . . . ,n} and
t ∈ {1, . . . ,T}, wi,t is set to one if and only if data structure αi has been moved from
a memory bank β j , β0 to a different memory bank β j′ , β0 between time blocks
It−1 and It. For all αi, i = {1, . . . ,n}, at time block It = {1, . . . ,T}, w′i,t would be set to
one if and only if data structure αi was moved from internal memory bank to the
external memory bank, or if it was moved from the external memory bank to an
internal memory bank between time blocks It−1 and It.

Before presenting ILP formulation for DMAP, let us recall all input and output

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 295

data described in [13].
Input:

T - number of time intervals.

n - number of data structures.

m - number of internal memory banks.

p - penalty cost for operating with data structure when it is mapped to the
external memory bank.

v - penalty cost for data structure movement from external memory bank to
the internal and vice versa.

l - penalty cost for data structure movement between two different internal
memory banks.

ai - size of data structure αi, i = 1, ...,n.

c j - size of internal memory bank β j, j = 1, ...,m.

Pt - set of data structures which are going to be used at the time block It,
t = 1, ...,T.

ei,t - number of times that αi ∈ Pt, i = 1, ..., |Pt| was accessed during the time
block It, t = 1, ...,T.

Ot - set of conflict pairs for time block It, |Ot| = kt, t = 1, ...,T.

br,t - conflict cost for conflict pair {αsr , αdr } ∈ Ot, r = 1, ..., kt for time block It,
t = 1, ...,T.

Output:

xi, j,t - the decision if data structure αi (i = 1, ...,n) is to be mapped to the
memory bank β j (j = 0, ...,m) during the time interval It, (t = 1, ...,T).

yr,t - the decision if conflict r is to be closed during time interval It (t =
1, . . . ,T).

wi,t - the decision if data structure αi, i = 1, ...,n is to be moved from one
internal memory bank to a different internal memory bank between time
intervals It−1 and It.

w′

i,t - the decision if data structure αi (i = 1, ...,n) is to be moved from the
external to the internal memory bank or vice versa between time intervals
It−1 and It.

296 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

Now, DMAP formulation known from the literature can be described as fol-
lowed:

min f =

T∑
t=1

[(p− 1)
∑
αi∈Pt

(ei,t · xi,0,t)−
kt∑

r=1

(yr,t · br,t) +
∑
αi∈Pt

ai(l ·wi,t + v ·w′i,t)] (1)

Subject to the constraints

m∑
j=0

xi, j,t = 1, i ∈ {1, ...n}, t ∈ {1, ...,T} (2)

∑
αi∈Pt

xi, j,t · ai ≤ c j, j ∈ {1, ...,n}, t ∈ {1, ...,T} (3)

xsr, j,t + xdr, j,t ≤ 2− yr,t (αsr , αdr) ∈ Pt, j ∈ {0, ...,n}, r ∈ {1, ..., kt}, t ∈ {1, ...,T} (4)

xi, j,t−1 +xi, j′,t ≤ 1+wi,t i ∈ {1, . . . ,n}, (j, j′) ∈ {1, ...,m}2, (β′j , β j), t ∈ {1, ...,T} (5)

xi,0,t−1 + xi, j,t ≤ 1 + w′i,t i ∈ {1, ...,n}, j ∈ {1, ...,m}, t ∈ {1, ...,T} (6)

xi, j,t−1 + xi,0,t ≤ 1 + w′i,t i ∈ {1, ...,n}, j ∈ {1, ...,m}, t ∈ {1, ...,T} (7)

xi, j,0 = 0 i ∈ {1, ...,n}, j ∈ {1, ...,m} (8)

xi,0,0 = 1 i ∈ {1, ...,n} (9)

xi, j,t ∈ {0, 1} i ∈ {1, ...,n}, j ∈ {1, ...,m}, t ∈ {1, ...,T} (10)

wi,t ∈ {0, 1} i ∈ {1, ...,n}, t ∈ {1, ...,T} (11)

w′i,t ∈ {0, 1} i ∈ {1, ...,n}, t ∈ {1, ...,T} (12)

yr,t ∈ {0, 1} r ∈ {1, ..., kt}, t ∈ {1, ...,T} (13)

Constraints (2) state that every data structure is allocated to only one memory
bank at time interval It. Constraints (3) ensure that the total size of all data
structures allocated to any memory bank at time interval It does not exceed its
size. Constraints (4) - (7) ensure that variables yrt, wi,t and w′i,t are set appropriately.
The initial conditions are given by the constraints (8) and (9) and finally, constraints
(10)-(13) enforce binary requirements.

Note that the presented mathematical formulation does not correspond to the
DMAP problem. More precisely, calculation of the cost function is based only
on the fact that data structures are mapped to the same memory bank, though,
both data structures can be mapped to the external memory bank or to the same
internal memory bank. Additionally, the cost of accessing data structure αi during
time interval It is calculated as (p − 1)ei,t if the data are mapped to the external
memory bank and as 0 if the data are mapped to the internal memory bank, which
is not correct. We believe that

∑T
t=1

∑
αi∈Pt

eit is unintentionally left out, given the
fact that with this constant, the cost function (1) indeed corresponds to the DMAP

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 297

problem. Still, the way the solution to the DMAP problem was calculated in [11],
[13] and [15] included before mentioned oversights.

Considering that it was not easy to notice that the mentioned constant was
left out, we have given an improved ILP formulation for the DMAP in embedded
system in the following section.

3. IMPROVEMENT TO THE EXISTING ILP FORMULATION FOR DMAP
IN EMBEDDED SYSTEMS

Let binary variables xi, j,t, wi,t and w′

i,t (i = 1, ...,n, j = 0, ...,m, t = 1, ...,T) have the
same meaning as before, and let binary variables yr,t, defined such that r represent
a conflict pair (αsr , αdr) at time block It, have slightly different meaning, i.e.

yr,t =

1, if data αsr and αdr are both mapped into

the same memory bank at time block It
0, otherwise

(αsr , αdr) ∈ It, t = 1, ...,T (14)

Additionally, let eit represent the cost for accessing data αi during the time block It
instead of denoting the number of that data structure αi accessed during the time
block It. Value of the eit will actually differ, concerning the previous definition by
the conflict cost where it is involved during time interval It. We think that with
this definition, loading each data structure and accessing the same data structure
during the conflict, in which it is involved, are defined more precisely.

Now, the improved formulation for DMAP can be defined as follows:

min f =

T∑
t=1

(∑
αi∈Pt

(
1 + (p − 1)xi,0,t

)
ei,t+

kt∑
r=1

{αsr ,αdr }∈Ot

br,t

(
1 + yr,t + (p − 1)

(
xsr,0,t + xdr,0,t

))
+

n∑
i=1

ai

(
lwi,t + vw

′

i,t

))
(15)

subject to constraints:

xsr, j,t + xdr, j,t ≤ yr,t + 1 (αsr , αdr) ∈ Pt, t = 1, ...,T (16)

yr,t ∈ {0, 1} (17)

and constraints (2), (3), (5)-(12) from the existing ILP formulation.
Constraints (16) correspond to the constraints (4) in accordance with the new

definition of variables yr,t.
Access cost at particular time block It is equal to

∑
αi∈Pt

(1+ (p−1)xi,0,t)ei,t, which
covers cases when data structure is mapped to the external memory bank. At
the same time block, expression 1 + yr,t + (p − 1)(xsr,0,t + xdr,0,t) is equal to 1 if data
structures from the same conflict pair are mapped onto two different internal
memory banks; it is equal to 2 if they are mapped onto the same internal memory

298 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

bank, respectively, and it is equal to p if one conflict data is mapped to the external
memory bank and is equal to 2p if both data structures are mapped to the external
memory bank. Therefore,

kt∑
r=1

{αsr ,αdr }∈Ot

br,t

(
1 + yr,t + (p − 1)(xsr,0,t + xdr,0,t)

)
correspond to conflict cost at time interval It, while movement cost between two
time blocks is again calculated by the sum

T∑
t=1

n∑
i=1

ai

(
lwi,t + vw

′

i,t

)
Now, given that all oversights are covered by the new proposed cost function,

the improved ILP formulation corresponds to the proposed DMAP in embedded
systems.

For T = 1, DMAP formulation becomes ILP formulation, which was proposed
and proven to be feasible for static version of the memory allocation problem in
[8]. Let us illustrate DMAP and its ILP formulation on a short example.

An illustrative example is given on a small size instance.

Example 3.1. There are 9 data structures (αi, i = 1, .., ., 9), which have to be placed
into 2 internal memory banks (β1 and β2), each size of 1000 (kB) (c j = 1000, j = 1, 2),
and 1 external memory bank (c0 = ∞). Sizes of data structures are given in Table 1.
Loading time is divided into three time blocks of specified sizes. Data structures are used
in pairs. Access cost for each data structure at each time block, together with the conflict
sets are given in Table 2. For instance, at time block I1, 4 data structures are used,
P1 = {α2, α5, α8, α9}, with zero access time each and with two conflict pairs. The first
one is between data structures α8 and α9 (k1,1 = (α8, α9)) with conflict cost b1,1 = 592,
and the second one is between data structures α2 and α5 (k2,1 = (α2, α5)) with conflict
cost b2,1 = 192. Loading all operations from the external memory bank costs p = 16
times more than loading them from the internal memory bank. Moving data between two
internal memory banks costs l = 1 (ms/kB), and moving between internal and external
memory bank v = 4 (ms/kB).

Let us assume that at the beginning of the program (t = 0), all data structures
are mapped to the external memory bank. Knowing the order of the data structure
usage, we can move them before each time block in order to reach better results.
Table 3 represents the optimal solution obtained by using IBM ILOG CPLEX
optimization solver for a mathematical model presented above. Solution can be
interpreted as follows: at time block I1, data structures α1, α3, α4, α6, and α7 should
be mapped to the external memory bank, marked as β0, while data structures α5
and α8 should be mapped to the memory bank marked as β1, and finally, data
structures α2 and α9 should be mapped to the memory bank marked as β2. Then,
total execution time, which consists of moving time and conflict time for each

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 299

Table 1: Data structure size
data structures α1 α2 α3 α4 α5 α6 α7 α8 α9

size of data sruct. 256 4 496 256 4 256 256 256 256

Table 2: Data access and conflict costs for t = 1 (left) , t = 2 (middle) and t = 3 (right)
Time block: 1 Time block: 2 Time block: 3

Data set α2 α5 α8 α9 α1 α2 α3 α4 α4 α6 α7
Access c. 4 4 256 256 256 4 496 256 256 256 256

Conflicts Conflicts Conflicts
Conflicts αs αd Cost αs αd Cost αs αd Cost

k1,t α8 α9 592 α2 α2 576 α6 α7 1,024
k2,t α2 α5 192 α1 α4 64 α4 α7 1,024
k3,t α1 α3 1,024 α4 α4 64

time block, is presented in Table 4. Loading time is excluded from this illustration
because loading cost is equal to zero for each data structure at each time block. For
instance, total block costs will be explained in detail for the time block I3: given
that data structure α1 is replaced with data structure α6 and moved from memory
allocation β2 to the memory allocation β0 and the other way around, moving cost
is equal to (256 + 256) · 4 = 2048 (ms). Further, conflict costs for the same block is
equal to 1, 024 + 1, 024 + 64 · 2 = 2, 176 (ms), which brings total block cost to 4, 224
(ms). Combining the results for all three time blocks gives the problem execution
cost of 17, 772 (ms).

Table 3: Solution to the example for DMAP formulation
Mem. allocation t = 0 t = 1 t = 2 t = 3

β0 All data α1, α3, α4, α6, α7 α6, α8 α1, α8
β1 α5, α8 α3, α5, α7 α3, α5, α7
β2 α2, α9 α1, α2, α4, α9 α2, α4, α6, α9

Table 4: Costs

t = 1 t = 2 t = 3
Access cost 520 1,012 768
Moving cost 2,080 6,080 2,048
Conflict cost 784 2,304 2,176
Total cost per block 3,384 9,396 4,992

Now, the solution in terms of the proposed ILP formulation can be interpreted
as follows: min f = 17, 772 whith nonzero decision variables x1,0,1, x3,0,1, x4,0,1,
x6,0,1, x7,0,1, x5,1,1, x8,1,1, x2,2,1, x9,2,1, x6,0,2, x8,0,2, x3,1,2, x5,1,2, x7,1,2, x1,2,2, x2,2,2, x4,2,2,
x9,2,2, x1,0,3, x8,0,3, x3,1,3, x5,2,3, x7,2,3, x2,3,3, x4,2,3, x6,2,3, x9,2,3, y1,2, y2,2, y3,3, w′

2,1, w′

5,1,
w′

8,1, w′

9,1, w′

1,2, w′

3,2, w′

4,2, w′

7,2, w′

8,2, w′

1,3, and w′

6,3.

In order to compare the presented ILP formulation for the DMAP with the
one known from the literature, both formulations were coded in C++ and tested
on Intel(R) Core(TM) i7-4700Mq CPU @ 2.40GHz, 2394MHz, 4 Core(s) with 8GB

300 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

RAM with CPLEX 12.6. For experimental testings of the proposed ILP formula-
tions we used the same set of instances as the one reported by Soto et. al in [13].
The set of instances can be downloaded under the name
dmap.zip from http://www.optsicom.es/dmap/dmap.zip.
More details about these instances are given in Section 5.

In these testings, penalty cost p is set to be equal to 16ms/kB, movement data
structure cost from internal to external memory bank (v) and vice versa is set to
be equal to 4ms/kB, while the movement between two internal memory banks
(l) is set to be equal to 1ms/kB. Comparison of the presented Soto et al. [13]
formulation and our formulation is presented in Table 5. The name of an instance
is given in the first and the fifth column. Solution value obtained for the particular
instance by using ILP formulation presented in [13] is given in the second and
the sixth column. Solution values for the corrected cost function of the same
ILP formulation, as described at the end of the Section 2, are given in the third
and the seventh column. Finally, solution values of the tested instances by using
our formulation are given in the fourth and the eight column. Time limit for
all testings was set to 7200 sec. Sign ”*” was used in case that testings were
stopped earlier because of status ”out of memory”. On majority of instances, the
optimal solution value was found using both formulations. On instances such
as ”myciel4dy.col”-”r125.1dy.col”, the found solutions were not proved to be the
optimal. As it can be seen from Table 5, on instances where optimal solution was
not reached, CPLEX was able to find better results by using our ILP formulation
on 4 instances and on 1 by using Soto et al. [13] corrected formulation.

4. VNS FOR THE PROPOSED DMAP PROBLEM

The problem of combinatorial optimization, presented in this paper, can be
solved by using exact methods, but because of its number of variable limitations
for large scale variables, metaheuristics are more useful. Therefore, DMAP was
solved by using VNS hybridized with Tabu Search (TS) in [13] and GRASP with
ejection chains in [11]. In this paper, a VNS metaheuristic method hybridized
with Variable Neighborhood Descent (VND) search, which corresponds to the
proposed DMAP model, is presented. VNS metaheuristic was first presented
by Mladenović and Hansen in [9], and the main idea was proposed in 1995,
[10]. Later, it was followed with several papers aimed at improving the method,
[2, 3, 4, 5, 6], and [7]. The main idea of this heuristic is that starting from one
initial solution by using systematic search, we move to the solution that is locally
the best.

Solution space. Each solution can be represented by a matrix (two-dimensional
array) Z with T rows and n columns. Value of element zt,i represents a label of
a memory bank on which the data structure αi is allocated at the time interval
It (t = 1, 2, ...,T, i = 1, 2, ...,n). Only feasible solutions are considered, i.e. data
structures are allocated in such a way that there are no overloaded banks. In
other words, for each time interval It and each bank β j, the following condition is

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 301

Table 5: Comparison of the ILP formulation for the DMAP presented in Soto et al [13], their formulation
with correction and our ILP formulation

from Soto et al [13] from Soto et al [13]
without with our ILP without with our ILP

correct val. correct val. formulat. correct val. correct val formulat.
Instance val val val Instance val val val

adpcmdy 37368 44192 44192 mulsol i2dy * * *
alidydy * 107518 107518 mulsol i4dy * * *
cjpegdy -4237207 4466800 4466800 mulsol i5dy * * *

compressdy -222272 342592 342592 myciel3dy * 6379 6379
fpsol2i2dy * * * myciel4dy * 18225 18295
fpsol2i3dy * * * myciel5dy * 40380 40380

gsm newdy 7320 7808 7808 myciel6dy * 108726 108726
gsmdy 548645.75 1355390 1355390 myciel7dy * * *

gsmdycorrdy -312628 494119 494119 queen5 5dy * 21859 21859
inithx i1dy 0 * * queen6 6dy * 43306 39144

lmsbdy -7245829 7409669 7409669 queen7 7dy * 88652 85606
lmsbv01dy -4051636 4350640 4350640 queen8 8dy * * 138939

lmsbvdy -4061214 4323294 4323294 r125.1cdy * * *
lmsbvdyexpdy -4035252 4367024 4367024 r125.1dy * 62354 60931

lpcdy 23802 26888 26888 r125.5dy * * *
mpeg2enc2dy 7788.8586 9812.312 9812.312 spectraldy 6352 15472 15472

mpegdy 5805.625 10613.63 10613.63 treillisdy 1331.563 1805.563 1805.563
mug100 1dy 12797 29847 29847 turbocodedy 847 3195 3195

mug100 25dy 11621 28429 28429 volterrady 166 178 178
mug88 1dy 10227 25305 25305 zeroin i1dy * * *

mug88 25dy 9157 24181 24181 zeroin i2dy * * *
mulsol i1dy * * * zeroin i3dy * * *

302 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

satisfied: ∑
i:zt,i= j

ai ≤ c j.

Note that the above expression represents the total size of memory bank β j occupi-
ed by data structures allocated to that bank during the time interval It.

Similarly, a solution can be represented by a matrix X, where xi, j,t ∈ X is equal
to one if data αi is allocated to the memory bank β j at the time block It and zero
otherwise. For a matrix Z, which represents the solution, it is possible to evaluate
the solution X and its respective objective function value f (X). The objective
function value consists of two parts:

- Costs of moving data structures from one memory bank to another,

- Costs of accessing conflict pairs.

Complexity of computing the first part of the objective function is O(nT), while
the cost of computing the second part is O(K), where K represents a total number
of conflict pairs (K =

∑T
t=1 kt).

In the solution space, we introduce two types of moves:

- Insertion move,

- Swap move.

Insertion move consists of picking one time interval It and one data structure
αi, and moving that data structure from the bank β j1 on which it is allocated in
the current solution to the bank β j2 (j2 , j1). Understandably, it is necessary to
choose β j2 in such a way that the new solution obtained by this move is feasible.
If a solution is represented by a matrix Z, this move consists of setting value of
element zt,i to j2.

Swap move consists of picking time interval It, two data structures αi1 and
αi2 currently allocated to different banks and exchanging their allocations. If a
solution is represented by a matrix Z, this move consists of exchanging values of
elements zt,i1 and zt,i2 .

Hence, based on the introduced moves, we can define neighborhoods of the
solution space. So, neighborhood Nk(X) consists of all solutions X′ obtained by
applying k successive moves (Insertion or Swap move) starting from the solution
X. Also, we introduce two neighborhoods, Nins(X) and Nswap(X), as the sets of all
solutions obtained by applying Insertion move or Swap move (respectively) on
solution X. Note that the union of neighborhoods Nins and Nswap represents the
neighborhoodN1.

Now, VNS heuristic can be defined in such a way that starting from initial
feasible solution X it ”shakes” that solution by creating another feasible solution
X′ ∈ Nk(X) and applies local search method in order to move to a better solution
X′′. If such a solution is not better than the current incumbent X, we create another

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 303

neighborhood set Nk+1(X) and seek for a better solution until k reaches its maxi-
mum kmax. If X′′ is better than a current incumbent solution, it becomes new in-
cumbent and k becomes kmin. This systematic local environment change is needed
because of the fact that local minimum within one environment does not have to
be local minimum of the other environment, but a global minimum is a local min-
imum relative to all environments. Changing environments also enables to get
out from the local minimum. VNS metaheuristic is illustrated with Algorithm 1.

Algorithm 1: Variable Neighborhood Search metaheuristics

1 X← InitialSolution();
2 Xopt ← X;
3 fopt ← f (X);
4 repeat
5 k← kmin;
6 repeat
7 X′ ← Shake(X, k);
8 X′′ ← LocalSearch(X′);
9 if f (X′′) < fopt then

10 X← X′′;
11 fopt ← f (X);
12 k← kmin;
13 else
14 k← k + kstep;
15 end
16 until k > kmax;
17 until StoppingCondition();

Initial solution. At the beginning, all data structures are mapped to the external
memory bank. After that, for each data structure αi and each time interval It,
we try to ”reallocate” αi to one of the banks such that the obtained solution is
feasible and better than the incumbent. The pseudocode for calculation of an
initial solution is given in Algorithm 2.

Shaking. Shaking in Neighborhood Nk (Shake(X, k)) consists of performing k
randomly selected moves. For each of these k moves, Insertion move or Swap
move were chosen equally (with probability equal to p = 0.5). The pseudo code
for Shaking procedure is given in Algorithm 3.

304 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

Algorithm 2:

1 Function InitialSolution();
2 for← 1 to n do
3 for t← 1 to T do
4 Xt,i ← 0;
5 end
6 end
7 f c← f (X);
8 for i← 1 to n do
9 for t← 1 to T do

10 for j← 1 to m do
11 xo← Xt,t;
12 Xt,i ← j;
13 if Feasible(X) and f (X) < f c then
14 f c← f (X);
15 else
16 Xt,i ← xo;
17 end
18 end
19 end
20 end
21 return X′;

Algorithm 3:

1 Function Shake(X, k);
2 X′ ← X;
3 for i← 1 to k do
4 p← RandomNumber(0, 1);
5 if p ≤ 0.5 then
6 InsertMethod:
7 repeat
8 tr ← RandomNumber(1,T);
9 ir ← RandomNumber(1,n);

10 repeat
11 jr ← RandomNumber(0,m);
12 until jr , CurrentPosition(ir, tr);
13 until NotFeasibleSolution;
14 Move data structure αir to the memory location β jr at time block Itr .
15 else
16 SwapMethod:
17 repeat
18 tr ← RandomNumber(1,T);
19 ir1 ← RandomNumber(1,n);
20 repeat
21 ir2 , ir1

22 until ir2 , ir1 ;
23 until NotFeasibleSolution;
24 Swap memory locations for data structures αir1

and αir2
at time block

It.
25 end
26 end

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 305

Local Search is implemented as the Variable Neighborhood Descent (VND)
method based on two previously defined moves (and corresponding neighbor-
hoods Nins and Nswap). This means that the neighborhood Nins(X′) of a current
solution X′ is examined in order to find a solution X′1, which is better than the
solution X′ (f (X′1) < f (X′)). If such a solution X′1 exists, the corresponding move
is performed and examining the neighborhood Nins of the new solution contin-
ues. If there is no better solution in the neighborhood Nins of the incumbent,
examining the neighborhood Nswap of the incumbent continues. If there is a so-
lution X′1 ∈ Nswap(X′), the corresponding move is performed and examining the
neighborhood Nswap of the new solution continues. If during examination of
neighborhoods Nswap at least one improvement is made, we return to neighbor-
hood Nins, otherwise local search (VND) is finished. The pseudo-code of VND
and included functions are given in Algorithms 4, 5, and 6.

Algorithm 4: Function for Variable Neighborhood Descent procedure

1 Function VND(X);
2 k← 1;
3 X′ ← X;
4 while k ≤ 2 do
5 if k = 1 then
6 X′′ ← LSIns(X);
7 if f (X′′) < f (X′) then
8 X′ ← X′′;
9 k← 1;

10 else
11 k← 2;
12 end
13 else
14 X′′ ← LSSwap(X);
15 if f (X′′) < f (X′) then
16 X′ ← X′′;
17 k← 1;
18 else
19 k← 3;
20 end
21 end
22 end
23 return X′;

306 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

Algorithm 5: Function for local search in neighborhood Nins

1 Function LSIns(X);
2 X′ ← X;
3 for i← 1 to n do
4 for t← 1 to T do
5 X′′ ←Move(X′, i, t);
6 if Feasible(X′′) and f (X′′) < f (X′) then
7 X′ ← X′′;
8 end
9 end

10 end
11 return X′;

Algorithm 6: Function for local search in neighborhood Nswap

1 Function LSSwap(X);
2 X′ ← X;
3 for i1 ← 1 to n do
4 for i2 ← i1 + 1 to n do
5 for t← 1 to T do
6 X′′ ← Swap(X′, i1, i2, t);
7 if Feasible(X′′) and f (X′′) < f (X′) then
8 X′ ← X′′;
9 end

10 end
11 end
12 end
13 return X′;

Let us discuss briefly the complexity of the proposed local search. Cardinality
of the neighborhood Nins(X′) of the solution X′ is nmT (each of n data structures
can be reallocated in each of T time intervals to one of the remaining m memory
banks). On the other hand, examination of all neighboring solutions X′1 (suppose
that X′1 is obtained by moving data structures αi from bank β j1 to bank β j2 during
the time interval It) consists of calculating changes in objective function value.

The change of objective function value consists of

• change in the part of the objective function containing cost of transfering
data structure from one bank to another (can be calculated in (O(1)).

• change in the part of the objective function containing costs of accessing con-
flicts (can be calculated in O(kt,i), where kt,i is number of conflicts involving
data structure αi in time interval It)

Obviously, the second part depends on a number of conflicts involving spec-
ified data structure and specified time interval. However, it is possible to make

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 307

aggregate complexity analysis if we note that each conflict participates in change
of the objective function for at most 2m neighboring solutions (from neighborhood
Nins). Finally, the total complexity for calculating the change of the second part
of the objective function is O(Km), while the total complexity for both parts is
O(nmT + Km).

Regarding neighborhood Nswap, cardinality of neighborhood is
(n

2
)
T (each of

(n
2
)

pairs of data structures can exchange allocation on each of the T time intervals).
Similarly, calculating change in objective function contains two parts: change in
cost of moving data structure (can be calculated in O(1) time), and change of cost
for conflict. Each conflict participates in change of the objective function for at
most 2(n − 2) + 1 moves (each of data structures from conflict pair can exchange
allocation with any of the remaining data structures). Now, it can be concluded
that the total complexity is O

((n
2
)
T + Kn

)
.

5. COMPUTATIONAL RESULTS

Experimental results obtained by the proposed VNS algorithm for solving
DMAP are given in this section. VNS heuristic was coded in C++. All computa-
tional experiments were performed on Pentium Core Duo CPU @ 2.66GHz with
6GB RAM. For the experimental testings of the proposed implementation, the set
of instances used is the same as the one reported by Soto in [13].
The set of instances can be downloaded under the name
dmap.zip from http://www.optsicom.es/dmap/dmap.zip.

Instances are classified by their name and three relevant characteristics, no-
tably time interval, number of data structures, and number of internal memory
banks. In the following table, the main features of the instances are shown: In-
stance name, number of time intervals (T), number of data structures (n), and
number of available internal memory banks (m).

308 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

Instance name T n m Instace name T n m
adpcmdy.dat 3 10 2 mulsol i2dy.dat 39 188 16

alidydy.dat 48 192 6 mulsol i4dy.dat 39 185 16
cjpegdy.dat 4 11 2 mulsol i5dy.dat 40 185 16

compressdy.dat 3 6 2 myciel3dy.col 4 11 2
fpsol2i2dy.dat 87 451 15 myciel4dy.col 7 23 3
fpsol2i3dy.dat 87 425 15 myciel5dy.col 6 47 16

gsm newdy.dat 2 6 2 myciel6dy.col 11 95 2
gsmdy.dat 5 19 2 myciel7dy.col 24 191 4

gsmdycorrdy.dat 5 19 2 queen5 5dy.col 5 25 3
inithx i1dy.dat 187 864 27 queen6 6dy.col 10 36 4

lmsbdy.dat 3 8 2 queen7 7dy.col 16 49 4
lmsbv01dy.dat 4 8 2 queen8 8dy.col 24 64 5

lmsbvdy.dat 3 8 2 r125.1cdy.col 75 125 23
lmsbvdyexpdy.dat 4 8 2 r125.5dy.col 38 125 18

lpcdy.dat 4 15 2 r125.1dy.col 6 125 3
mpeg2enc2dy.dat 12 130 2 spectraldy.dat 3 9 2

mpegdy.dat 8 68 2 treillisdy.dat 6 33 2
mug100 1dy.col 7 100 2 turbocodedy.dat 4 12 3

mug100 25dy.col 7 100 2 volterrady.dat 2 8 2
mug88 1dy.col 6 88 2 zeroin i1dy.dat 41 211 25

mug88 25dy.col 6 88 2 zeroin i2dy.dat 35 211 15
mulsol i1dy.dat 39 197 25 zeroin i3dy.dat 35 206 15

Further, in order to compare with the known results, penalty cost p is set to be
equal to 16ms/kB, movement data structure cost from internal to external memory
bank (v), and vice versa, is set to be equal to 4ms/kB, while movement between
two internal memory banks (l) is set to be equal to 1ms/kB.

Given that all metaheuritics, including VNS, have a stochastic nature, VNS
algorithm was run 20 times for each problem instance. Finishing criteria of the
proposed VNS were either time limit or event when kmax was reached. In this
implementation, kmax was set to 10, kstep to 1, and kmin to 1. Execution time limit
for VNS was set to 7, 200 seconds per instance.

For easier comparison, the results of the presented VNS metaheuristic on
tested instances are summarized in Tables 6 - 9, where presented VNS algorithm
is compared with IM (from [13]), CPA, GRASP, and GRASP+EC (from [11]) and
with BVNS, and RVNS methods (from [16]).

Table 6 is organized as follows. Names of instances, which are sorted alphabet-
ically, are given in the first column. Determined by the solution values presented
in columns ”from Soto et. al [13] with correct. val.” and ”our ILP formulat.”
of Table 5 and by the solution values obtained by all considered methods (IM,
CPA, GRASP, GRASP+EC, BVNS and RSVNS, and VNS), the best known solution
value is presented in the second column. The next six columns are obtained using
results from Sevaux et. al [11], where all known methods for solving DMAP
(IM, CPA, GRASP and GRASP+EC) till that time were compared. Results in
corresponding columns ”%dev” are presented as a deviation value from the best
known value from the second column (in percentage). Respective running times,
which are given only for GRASP and GRASP+EC methods, are copied from [11].
Solution values, respective running times (in seconds), and deviations from the
best knowns (in percentage), obtained by VNS metaheuristic proposed in this

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 309

paper, are presented in three final columns.

Table 6: Comparison between new and existing methods from the literature for solving DMAP
IM CPA GRASP GRASP+EC VNS

Instance Best known % dev. % dev. % dev. time % dev. time Obj.val. time % dev.
adpcmdy 44192 0 45.44 0 0.01 0 0 44192 0 0

alidydy 107398 939.7749 149.3545 159.5870 160.48 50.5519 85 107398 180.05 0
cjpegdy 4466792 0.0002 1.9302 0.0002 0.01 0.0002 0 4466800 0.01 0.0002

compressdy 342592 0 7.77 2.67 0.01 0 0 342592 0 0
fpsol2i2dy 2587875 64.4663 33.5580 7.9954 1015.13 7.9954 1000 2605980 835.11 0.6996
fpsol2i3dy 2582988 60.1959 33.7942 6.9327 1062.37 6.9327 1000 2616849 1000 1.3109

gsm newdy 7808 0 17295 0 0.01 0 0 7808 0 0
gsmdy 1355389.875 <0.0001 <0.0001 0.1300 0.01 0.1300 0 1355390 0.22 <0.0001

gsmdycorrdy 494118 0 0 0.35 0.04 0.36 0 494118 1.85 0
inithx i1dy 5652213 81.8834 24.2372 11.1145 700 11.3479 1000 5716414 1000 1.1359

lmsbdy 7409660 0.0001 0.3601 0.3301 0.29 0.1401 0 7409669 0 0.0001
lmsbv01dy 4350588 0.0012 3.7712 1.1312 0.01 1.8812 1000 4350640 0 0.0012

lmsbvdy 4323116 0.0041 2.2742 0.0041 0.01 1.1442 0 4323294 0.03 0.0041
lmsbvdyexpdy 4366972 0.0012 3.3812 2.6312 0.01 1.8812 1000 4367024 0.01 0.0012

lpcdy 26888 0 43.67 22.02 0.02 26.19 0 26888 0.04 0
mpeg2enc2dy 9812 0 45.99 9.46 0.75 10.14 0 10915.28 0.23 11.2442

mpegdy 10613.625 0.15 41.75 4.62 0.13 26.54 0 10648.88 480.44 0.3322
mug100 1dy 28890 0 109.98 25.49 14.71 21.47 0 30638 395 6.0505

mug100 25dy 28429 7.2813 101.1632 13.6967 11.89 14.7910 0 28876 323.07 1.5723
mug88 1dy 25305 0.877297 94.82432 10.18827 11.43 13.72906 0 25570 471.81 1.0472

mug88 25dy 24181 1.448331 74.51606 1.448331 7.78 0.533477 0 24365 392.18 0.7609
mulsol i1dy 459598 177.7919 223.0343 73.8314 1096.13 12.7677 66 478739 1794.61 4.1647
mulsol i2dy 552215 130.3367 214.9069 48.0897 1086.69 18.5287 71 557552 1792.89 0.9665
mulsol i4dy 505927 132.3606 222.5533 37.8263 1057.35 12.7690 56 505927 1785.29 0
mulsol i5dy 518854 144.7968 208.6101 40.8412 1080.78 10.7678 59 520929 1797.09 0.3999

myciel3dy 6379 89.14 6.88 8.42 1.24 11.26 0 6379 0.2 0
myciel4dy 18225 46.7084 20.2284 19.6006 6.07 11.6009 0 18272 152.63 0.2579
myciel5dy 39144 40.5647 79.1557 42.4718 28.86 16.2980 0 40383 197.31 3.1652
myciel6dy 108726 65.31727 59.49225 39.17426 94.96 14.58194 1 109942 25.18 1.1184
myciel7dy 411022 94.7880 106.6965 30.7758 377.08 8.7533 18 411022 193.94 0

queen5 5dy 21151 73.7655 29.5211 29.5211 4.76 29.5858 0 21151 70.41 0
queen6 6dy 39144 98.3058 50.1604 26.9977 284 20.5140 0 39676 207.02 1.3591
queen7 7dy 73264 154.6836 80.1393 45.1697 42.82 10.6983 0 73264 429.52 0
queen8 8dy 133130 190.5342 74.3438 33.4009 82.56 16.0512 2 133130 486.6 0

r125.1cdy 770623 203.5352 343.4828 58.9772 700 58.9772 120 770623 1788.57 0
r125.1dy 60931 85.06245 19.0019 16.75982 33.38 13.3765 0 61570 1315.53 1.0487
r125.5dy 501175 203.6558 214.9133 172.4574 1028.86 47.9300 26 501175 1786.26 0

spectraldy 15472 6.72 25.44 6.31 0.01 0 0 15472 0 0
treillisdy 1805.5625 0.02 129.23 113.11 0.03 33.1 0 1807.56 61 0.1106

turbocodedy 3195 33.49 84.32 20.09 0.13 20.09 0 3195 0.05 0
volterrady 178 7.87 7.87 7.87 0.01 7.87 0 178 0 0

zeroin i1dy 486921 76.6642 277.5686 65.5265 1091.16 18.3601 79 490350 1792.83 0.7042
zeroin i2dy 501989 86.4093 207.0074 39.6488 1086.34 11.0174 103 501989 1194.54 0
zeroin i3dy 551001 81.0598 222.9487 47.8225 1063.72 12.5924 58 551001 1798.99 0

Table 7 is organized similarly. The first two columns are copied from Table 6.
In the next six columns of Table 7, results of testing instances by using BVNS and
RSVNS are given. These results appear in groups of three (value, running time
(in seconds) and deviation value from the best known value (in percentage)). The
individual results (solution value and running time) for each instance, for both
algorithms proposed in Sánchez-Oro et. al [16], are provided by Jesús Sánchez-
Oro, to whom we are very grateful. Deviation value is calculated as deviation
from the Best known solution from the second column, in percentage. The last
three columns are copied from Table 6, where the results of the presented VNS
are given in the same way as the results for BVNS and RSVNS.

310 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

First, we want to point to the fact that with the introduced improved ILP
formulation of Soto et. al from [11] and our ILP formulation for DMAP problem
in embedded systems, CPLEX obtained better results than all considered methods
for 10 instances. Therefore, solution presented in column ”Best known” of Tables
6 and 7, is the best solution obtained in comparison with the results presented
in Table 5 and solutions obtained by all considered methods (IM, CPA, GRASP,
GRASP+EC, BVNS, RSVNS, and VNS).

Table 7: Comparison between new and the most recent methods from the literature for solving DMAP
BVNS RSVNS VNS

Instance Best known value time %dev value time %dev Obj.val. time %dev
adpcmdy 44192 44192 0.088 0 44192 0.146 0 44192 0 0

alidydy 107398 107766 100.004 0.3427 107846 100.022 0.4171 107398 180.05 0
cjpegdy 4466792 4466792 0.031 0 4466799 0.057 0.0002 4466800 0.01 0.0002

compressdy 342592 342592 0.004 0 342592 0.016 0 342592 0 0
fpsol2i2dy 2587875 2610611 100.225 0.8786 2587875 100.239 0 2605980 835.11 0.6996
fpsol2i3dy 2582988 2601944 100.205 0.7339 2582988 100.107 0 2616849 1000 1.3109

gsm newdy 7808 7808 0.003 0 7808 0.019 0 7808 0 0
gsmdy 1355389.875 1355389.88 0.074 0 1355389.88 0.188 0 1355390 0.22 <0.0001

gsmdycorrdy 494118 494120 0.071 0.0004 494118 0.192 0 494118 1.85 0
inithx i1dy 5652213 5652213 102.062 0 5654904 101.053 0.0476 5716414 1000 1.1359

lmsbdy 7409660 7409660 0.005 0 7409660 0.032 0 7409669 0 0.0001
lmsbv01dy 4350588 4350628 0.009 0.0009 4350588 0.046 0 4350640 0 0.0012

lmsbvdy 4323116 4327364 0.013 0.0983 4323116 0.045 0 4323294 0.03 0.0041
lmsbvdyexpdy 4366972 4367004 0.01 0.0007 4366972 0.052 0 4367024 0.01 0.0012

lpcdy 26888 26888 0.033 0 26888 0.16 0 26888 0.04 0
mpeg2enc2dy 9812 12463.2793 22.921 27.0208 12451.2793 39.915 26.8985 10915.28 0.23 11.2442

mpegdy 10613.625 10764.6875 2.573 1.4233 10694.375 4.167 0.7608 10648.88 480.44 0.3322
mug100 1dy 28890 30781 6.252 6.5455 30515 10.719 5.6248 30638 395 6.0505

mug100 25dy 28429 29409 6.058 3.4472 28997 10.629 1.9980 28876 323.07 1.5723
mug88 1dy 25305 26048 3.821 2.9362 25823 6.596 2.0470 25570 471.81 1.0472

mug88 25dy 24181 24886 3.75 2.9155 24569 6.487 1.6046 24365 392.18 0.7609
mulsol i1dy 459598 465557 100.033 1.2966 459598 100.064 0 478739 1794.61 4.1647
mulsol i2dy 552215 561626 100.001 1.7042 552215 100.006 0 557552 1792.89 0.9665
mulsol i4dy 505927 511055 100.056 1.0136 506162 100.139 0.0464 505927 1785.29 0
mulsol i5dy 518854 527097 100.056 1.5887 518854 100.046 0 520929 1797.09 0.3999

myciel3dy 6379 6382 0.015 0.0470 6379 0.048 0 6379 0.2 0
myciel4dy 18225 19041 0.172 4.4774 18678 0.405 2.4856 18272 152.63 0.2579
myciel5dy 39144 42324 0.992 8.1239 42105 1.763 7.5644 40383 197.31 3.1652
myciel6dy 108726 114466 14.774 5.2793 112502 25.107 3.4730 109942 25.18 1.1184
myciel7dy 411022 417987 100.002 1.6946 412993 100.058 0.4795 411022 193.94 0

queen5 5dy 21151 21903 0.182 3.5554 21763 0.404 2.8935 21151 70.41 0
queen6 6dy 39144 41018 1.223 4.7875 40722 2.062 4.0313 39676 207.02 1.3591
queen7 7dy 73264 75493 5.567 3.0424 75190 9.054 2.6288 73264 429.52 0
queen8 8dy 133130 140476 19.34 5.5179 137027 32.223 2.9272 133130 486.6 0

r125.1cdy 770623 854826 100.035 10.9266 836061 100.202 8.4916 770623 1788.57 0
r125.1dy 60931 62798 8.181 3.0641 62033 13.396 1.8086 61570 1315.53 1.0487
r125.5dy 501175 534619 100.012 6.6731 528754 100.101 5.5029 501175 1786.26 0

spectraldy 15472 15472 0.009 0 15472 0.032 0 15472 0 0
treillisdy 1805.5625 1869.375 0.411 3.5342 1829.8125 0.813 1.3431 1807.56 61 0.1106

turbocodedy 3195 3233 0.032 1.1894 3195 0.078 0 3195 0.05 0
volterrady 178 178 0.003 0 178 0.018 0 178 0 0

zeroin i1dy 486921 494032 100.006 1.4604 486921 100.023 0 490350 1792.83 0.7042
zeroin i2dy 501989 515845 100.004 2.7602 507314 100.098 1.0608 501989 1194.54 0
zeroin i3dy 551001 572150 100.039 3.8383 564326 100.084 2.4183 551001 1798.99 0

Now, considering the results from Tables 6 and 7, none of the presented meth-
ods foundnd all best known solutions. For instance, CPLEX reached 18 of the
best known solutions, of 31 solved. Further, IM, CPA, GRASP, and GRASP+EC
together were successful in finding 8 of the best known, BVNS 10, RSVNS 20, and

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 311

the presented VNS 19. Further more, the best known solution obtained only by
IM was in two cases (the same number as for the BVNS), the best known solution
obtained only by RSVNS was in 9 cases, while the best known solution obtained
only by VNS was in 10 cases (same as with CPLEX). CPA, GRASP, and GRASP+EC
together have no solution better than the solutions obtained by other considered
methods for any of the tested instance. More details about this comparison are
given in Table 8.

If we compare presented VNS with IM, CPA, GRASP, and GRASP+EC only
(Table 6), we can see that: for 26 instances VNS finds better solutions than the
solutions obtained with other four methods; for 12 instances VNS finds solutions
equal to the best solutions obtained with other four methods; for 6 instances VNS
finds worse solutions than the best solutions obtained with other four methods.
Similarly, if we compare solutions of presented VNS with solutions obtained only
with BVNS and RSVNS methods (Table 7), we can see that for 21 instances VNS
finds better solutions than the solutions obtained with these two methods; for 9
instances solutions equal to the best solutions obtained with these two methods;
for 14 instances VNS finds worse solutions than the best solutions obtained with
these two methods.

Considering only results of the presented VNS, we can notice that running
values are less than 1, 800s, which can be considered as very fast execution time.
Comparing results of the presented VNS with results from the second column
of Tables 6 and 7, we can notice that deviation values varies from < 0.0001%
up to 11.2442% for instances where best known solutions are not reached. More
precisely, with average deviation from the best solution value of 0.8513%, solution
obtained by the proposed VNS differ from the best known solution in less than
1% for 14 instances, between 1% and 2% for 7 instances, and differ more than
2% for only 4 instances. Also, we can conclude that proposed VNS obtains the
best improvements especially on very large instances (T ≥ 15,n ≥ 20 and m ≥ 5).
Notably, solutions for instances ”r125.1cdy.col” and ”r125.5dy.col” with respective
parameters T, n, and m equal to (75, 125, 23) and (38, 125, 18), improved for 37.1%
and 32.4%. Similarly, two instances of ”zeroin” type with values parameters T, n,
and m up to (35, 211, 15) have the improvement of 10% and higher.

In Table 8 average objective function values (Avg.), average running time in
seconds (Time(s)), average percentage deviation with respect to the best solution
found (Dev(%)), and the number of times only that method matches the best result
(#Best), are presented. Average value and average time for IM, CPA, GRASP,
GRASP+EC are taken from [11]. Average value and average time for BVNS,
RSVNS, and proposed VNS, together with the average deviation from the best
known result, shown in the second column of Tables 6 and 7, are calculated in
accordance with the data presented in Tables 6 and 7. The number of times a
method matches the best result is calculated as the number of instances for which
the best result is matched only by using that method. For instance, the best result
for ”mpeg2end2dy” and ”mug100 1dy” was reached only by IM. In analogy to
that, for 2 instances the best results were obtained only by the BVNS, for 9 instances
only by the RSVNS, and for 10 instances the best results were obtained only by the

312 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

proposed VNS. Given the fact that testings of considered methods were preformed
on computers of different specifications, in order to compare running times of the
proposed VNS algorithm with running times of the other considered algorithms,
specifically, in order to compare the running times of the proposed VNS algorithm
with the running times of the BVNS and RSVNS methods, a certain scaling factor
should be applied. This scaling factor can be calculated as ratio between CPU mark
(from https://www.cpubenchmark.net/compare.php) of computers performances.
Since CPU of the computer used for testings of BVNS and RSVNS was marked
as 4944 and CPU of ours as 1719, we can conclude that their computer is almost
3 times faster than ours. Regardless of the fact that average execution time of
the proposed VNS algorithm is longer than the running time of other considered
methods, longer execution time can be attributed to instances for which better
objective function value is obtained. Now, as it can be seen from Table 8, although
average value of the tested instances got using the proposed VNS method is the
second best, the average deviation from the best known solution value obtained
by the proposed VNS algorithm is the best. Indeed, solution value of the proposed
VNS algorithm differ from the average value of the best known solutions in less
than 1%. Further more, by using the proposed VNS algorithm for the biggest
number of instances, the best known solution value is introduced.

Table 8: Comparisons between methods considered in this paper
Avg. Time (s) Dev (%) #Best

IM 1,378,609.24 300.72 76.81 2
CPA 1,375,151.61 300.48 477.73 0

GRASP 1,110,087.76 300.45 29.65 0
GRASP+EC 1,060,597.74 130.55 13.94 0

BVNS 1,006,790.25 34.08 2.77 2
RSVNS 1,003,751.30 35.62 1.97 9

VNS 1,004,086.27 539.78 0.85 10

In order to confirm the differences among the presented algorithm and al-
gorithms known from the literature, we performed the Friedman non-parametric
statistical test with all the individual values. The Friedman test ranks each al-
gorithm in all instances according to the quality of the solution obtained, giving
rank 1 to the best algorithm, 2 to the second one, and so on. If the averages differ
greatly, the associated p-value or significance will be small. Similarly to the test
presented in [16], the Friedman non-parametric statistical test is preformed for IM,
GRASP+EC, BVNS, RSVNS, and VNS. The resulting p-value (lower than 0.001)
obtained in this experiment clearly indicates that there are statistically significant
differences among the tested methods. More precisely, the average rank values
produced by this test are 3.9886 (IM), 4.0682 (GRASP+EC), 2.9091 (BVNS), 2.0227
(RSVNS), and 2.0114 (VNS), but additional p information shows that VNS and
RSVNS statistically significantly differ from IM, GRASP, GRASP+EC, and BVNS
but not from each other.

We conducted an additional statistical test (Wilcoxon signed rank test) to
perform pair-wise comparisons between our method (VNS) and the previous al-

M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach 313

gorithms (IM, GRASP + EC, BVNS and RSVNS). Table 9 presents the results of
Wilcoxon signed rank test. Since p-value obtained in the first three tests, presented
in Table 9, is lower than 0.001, it means that there are significant statistical differ-
ences between the compared algorithms. Therefore, VNS clearly outperforms the
results obtained by IM, GRASP+EC, and BVNS. Further, since p-value obtained in
the fourth test is much higher than the significant, we can consider these methods
as the methods of the similar quality. Still, given that with the proposed VNS
method better solution was obtained for 21 instance, while with RSVNS better
solution was obtained for 14 instances, we give VNS a little advantage.

Table 9: Results of the Wilcoxon signed rank test run over each pair of algorithms of the final experiment
A1 A2 A1 < A2 A1 > A2 A1 = A2 p-value

VNS IM 28 5 11 ≤ 0.001
VNS GRASP+EC 37 2 5 ≤ 0.001
VNS BVNS 30 8 6 ≤ 0.001
VNS RSVNS 21 14 9 0.2318

6. CONCLUSIONS

This paper presents our improvement of the existing ILP formulation for
DMAP. The proposed cost function covers all oversights we referred to and there-
fore, with the proposed improvements, our new ILP formulation corresponds to
the DMAP completely. In addition, we presented a new ILP formulation and a
new metaheuristic approach based on the Variable Neighborhood Search. In order
to compare the results of the proposed VNS heuristic and the methods previously
established, we tested all of them on the same set of instances. From the com-
putational results we can conclude that the proposed VNS heuristic effectively
solves DMAP, providing (including CPLEX solutions of the new ILP formulation)
20 new best known solution values. Results obtained by the VNS are better than
the results obtained by each method considered individually and better or equal
to the results obtained by all methods previously established. Indeed, results
obtained by the VNS are better or equal to the best result obtained by IM, CPA,
GRASP, GRASP+EC, BVNS and RSVNS, combined for 25 instances. Execution
time could not be easily compared given that almost all of the proposed methods
for solving DMAP were tested on different types of computers, but all solutions
were reached in a reasonable time limit or even less than 1, 800 seconds.

Building similar dynamic memory allocation problems in embedded systems
such as problems which involve calculation memory, possible movings during
time blocks, conflicts which involve three or more data structures at the same time
could be considered as the future work. Also, implementation of parallelization
into VNS heuristic can be considered as well.

Acknowledgments: The authors are grateful to anonymous referees for their
remarks and suggestions that helped to improve the manuscript. This research
was supported by the Research Grants 174010 and TR36006 of the Serbia Ministry
of Education, Science and Technological Developments.

314 M.Ivanović, A.Savić, D.Urošević, Dj.Dugošija / A New VNS approach

REFERENCES

[1] Atienza, D., Mamagkakis, S., Poletti, F, Mendias, J. M., Catthoor, F., Benini, L., Soudris, D.,
“Efficient system-level prototyping of power-aware dynamic memory managers for embedded
systems”, INTEGRATION, the VLSI journal, 39 (2) (2006) 113–130.

[2] Hanafi, S., Lazić, J., Mladenović, N., Wilbaut, C., Crévits, I., ”New variable neighbourhood search
based 0-1 MIP heuristics”, Yugoslav Journal of Operations Research, 25 (3) (2015) 343-360.

[3] Hansen, P., Mladenović, N., ”An introduction to variable neighborhood search”, Meta-heuristics,
Springer, Boston, MA, 1999, 433-458.

[4] Hansen, P., Mladenović, N., Pérez, J.A.M,. ”Variable neighbourhood search: methods and appli-
cations”, Annals of Operations Research, 175 (1) (2010) 367-407.

[5] Hansen, P., Mladenović, N., ”Variable neighborhood search: Principles and applications”, Euro-
pean journal of operational research, 130 (3) (2001) 449–467.

[6] Hansen, P., Mladenović, N., Developments of variable neighborhood search, Essays and surveys in
metaheuristics, Springer, 2002, 415–439.

[7] Hansen, P., Mladenović, N., Variable neighbourhood search, Handbook of Metaheuristics, Springer,
Boston, MA, 2003, 145-184.

[8] Ivanović, M., Dugošija, D., Savić, A., Urošević, D., ”A new integer linear formulation for a
memory allocation problem”, in proc. Balcor 2013, XI Balcan Conference on Operational Research,
2013, 284 288.

[9] Mladenović, N., Hansen, P., ”Variable neighborhood search”, Computers & Operations Research,
24 (11) (1997) 1097–1100.

[10] Mladenović, N., ”A variable neighborhood algorithm - a new metaheuristic for combinatorial
optimization”, Optimization Weeks, 112 (1995) 112-112.

[11] Sevaux, M., Rossi, A., Soto, M., Duarte, A., Martı́, R., ”Grasp with ejection chains for the dynamic
memory allocation in embedded systems”, Soft Computing, 18 (8) (2014) 1515–1527.

[12] Soto, M., Rossi, A., Sevaux, M., ”A mathematical model and a metaheuristic approach for a
memory allocation problem”, Journal of Heuristics, 18 (1) (2012) 149–167.

[13] Soto, M., Rossi, A., Sevaux, M., ”Two iterative metaheuristic approaches to dynamic memory al-
location for embedded systems”, European Conference on Evolutionary Computation in Combinatorial
Optimization, Springer, Berlin, Heidelberg, 2011, 250–261.

[14] Soto, M., Sevaux, M., Rossi, A., Laurent, J., Memory Allocation Problems in Embedded Systems:
Optimization Methods, John Wiley & Sons, Inc, Hoboken, NJ, 2013.

[15] Sánchez-Oro, J., Sevaux, M., Rosi, A., Martı́, R., Duarte, A., ”Solving dynamic memory allocation
problems in embedded systems with parallel variable neighborhood search strategies”, Electronic
Notes in Discrete Mathematics, 47 (2015) 85–92.

[16] Sánchez-Oro, J., Sevaux, M., Rosi, A., Martı́, R., Duarte, A., ”Improving the performance of
embedded systems with variable neighborhood search”, Applied Soft Computing, Elsevier, 53
(2017) 217-226.

[17] Wuytack, S., Catthoor, F., Nachtergaele, L., De Man, H., ”Power exploration for data dominated
video applications”, in: Proceedings of the 1996 international symposium on Low power electronics and
design, IEEE Press, 1996, 359–364.

