
Yugoslav Journal of Operations Research
28 (2018), Number 3, 345–353
DOI: https://doi.org/10.2298/YJOR171120017S

RETAILER'S OPTIMAL PRICING AND
REPLENISHMENT POLICY FOR NEW

PRODUCT AND OPTIMAL TAKE-BACK
QUANTITY OF USED PRODUCT

Nita H. SHAH
Department of Mathematics, Gujarat University, Ahmedabad-380009, Gujarat,

India
nitahshah@gmail.com

Chetansinh R. VAGHELA
Department of Mathematics, Marwadi University, Rajkot-360005, Gujarat, India

chetan vaghela07@yahoo.com

Received: November 2017 / Accepted: May 2018

Abstract: In the world of limited resources, recovery of used products for reselling
or recycling is a critical issue from the economic and environmental point of view. In
this paper, we have assumed that a retailer sells the new product to customers as well
as collects and sells the used products. We adopt a price dependent quadratic demand
function, and the return of used product as a price and time-dependent linear function.
The proposed problem is formulated as a profit maximization problem for the retailer.
The objective is to find the optimal selling price, the optimal ordering quantity for the
new product, and the optimal quantity of used product simultaneously such that the
retailers total profit is maximized. The model is validated by a numerical example and
sensitivity analysis is performed for the key parameters.
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1. INTRODUCTION

In todays world, one of the greatest challenges is to preserve our limited nat-
ural resources and reduce the waste material. Due to growing environmental con-
cern among customers, the manufacturing sectors are also promoting environment-
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friendly methods to attract new customers. Customers also prefer to buy from the
companies with green image. That is why recovery of used materials and items
has got more attention in past decade. Earlier, recycling and reusing were limited
to commonly used items like metal and glass. In recent times, items like print
cartridges, one-time-use cameras, carpet material etc. are the examples where
recycling and product recovery are widely used.

Fleischmann et al. [4] considered a generic facility location model to discuss the
effects of return flows on logistic networks. Koh et al. [9] have discussed reusable
items with the simple recovery process. In their paper, the demand is fulfilled
by a new product and recycled old products. Kannan et al. [8] have developed
a multi-echelon closed loop supply chain network model for a multi-period and
multi-products. They have studied the case of battery recycling where old battery
material is used in the production of new batteries. Govindan et al. [6] have
provided a very nice review of the recent research papers in which they reviewed a
total of 382 papers to construct a good framework of past, and they identified the
gaps where future work was required. Recently, Chen et al. [2] have developed
models for the retailer, assuming that the retailer sells the new products as well
as collects the used products. Other motivating work in the area of recycling and
reusing are paper recycling, Pati et al. [11], Glass recycling, Gonzlez-Torre and
Adenso-Daz [5], electronic waste recycling, Nagurney and Toyasaki [10], batteries
recycling, Daniel et al. [3] etc.

In recent time, pricing is an important strategic issue because it directly af-
fects the demand. The demand is said to be elastic if, when the price goes up, the
generated revenue goes down. Thus, this is a very important decision for any man-
ager to make. Whitin [15] was the first to study price-dependent demand. Shah
et al. [12] studied an inventory model for price and frequency of advertisement
dependent demand. They have provided a general model by using general-type
of deterioration and holding cost rates. Jaggi et al. [7] also used selling price de-
pendent demand in their study. Their model features a two ware-house inventory
model with non-instantaneous deterioration and under the effects of trade credit.
Wu et al. [16], Shastri et al. [14], Shah et al. [13] also considered price dependent
demand in their study.

In this study, we have assumed that a retailer sells the new product to the
customers as well as collects and sells the used products. The optimal pricing, the
ordering quantity for a new product and the optimal quantity of a used product
are discussed, where customer demand is sensitive to time and the retail price.
The total profit is maximized with respect to selling price and cycle time.

The rest of the paper is structured as follows. Section-1 contains a brief liter-
ature review of recent papers. Model assumptions and notation are provided in
Section-2. Section-3 provides model formulation. In section-4, numerical example
and sensitivity analysis are provided followed by conclusion in Section-5.
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2. ASSUMPTIONS AND NOTATION

2.1. NOTATION
A Ordering cost for retailer ($/order)
C Purchase cost per item (constant), ($/order)
h Inventory holding cost per unit item for new product ($/unit)
hu Inventory holding cost per unit item for used product ($/unit)
Q The replenishment quantity for new product
Qu The quantity of used product
T The replenishment time (a decision variable) (years)
τ The point of time when collection of used products starts (years)
p Selling price per item (a decision variable) ($/unit)
R(p, t) Demand rate for new product at t ≥ 0 (units)
Ru(p, t) Demand rate for used product at t ≥ τ (units)
I(t) Inventory level at time t ≥ 0 for new product (units)
Iu(t) Inventory level at time t ≥ τ for used product (units)
π (p, T ) Total profit of the retailer during cycle time (in $)

2.2. ASSUMPTIONS
1. It is a single item inventory system.
2. The replenishment is instantaneous and planning horizon is infinite.
3. The Lead time is negligible or zero and shortages are not allowed.
4. The Demand rate of new product R(p, t) is considered as, R(p, t) =

α(1 + α1t − α2t
2)) − βp where, α > 0 denotes the scale demand and

α1, α2 > 0. The parameter β > 0 denotes the price elasticity.
5. The return rate of used product is considered as Ru (p, t) = a (1 − bt)−

p (1 − p0) where, a, b > 0 and p0 are the parameters associated with
price for the used product.

3. MATHEMATICAL MODEL

In this section, we present the general formulations and solutions to the inven-
tory models for a new product as well as for the used product. For the new product
the inventory is consumed due to time and price dependent demand. Suppose Q
is the ordering quantity to be sold during cycle time [0, T ], then the governing
differential equation for inventory level I(t) at any time t , where 0 ≤ t ≤ T , is
given by

dI (t)

dt
= −R (p, t) , 0 ≤ t ≤ T (1)

with I(t) = 0 and I(0) = Q. The solution of the differential equation (1) is given
by

I (t) = −α
(
t+

α1t
2

2
− α2t

3

3

)
+βpt+Q (2)
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By using the boundary condition I(t) = 0 , the inventory level I(t) and the ordering
quantity Q are given by

I (t) = α

(
(T − t) +

α1

(
T 2 − t2

)
2

−
α2

(
T 3 − t3

)
3

)
−βp (T − t) (3)

Q = α

(
T +

α1T
2

2
− α2T

3

3

)
−βpT (4)

Now, for the used product during the period [τ, T ], the inventory level is affected
by the return rate of the used product so the governing differential equation for
inventory level Iu(t) at any time t, where τ ≤ t ≤ T , is given by

dIu (t)

dt
= −Ru (p, t) , τ ≤ t ≤ T (5)

with Iu (τ) = Qu and Iu(T ) = 0. The solution of the differential equation (5) is
given by

Iu (t) = a

[
(T − t) − b

2

(
T 2 − t2

)]
− p (1 − p0) (T − t) (6)

From the boundary conditions, the quantity of used product Qu is given by

Qu = −a
[
(T − τ) − b

2

(
T 2 − τ2

)]
+ p (1 − p0) (T − τ) (7)

Now to calculate total profit, we calculate all the components for both new product
and used product. The components of profit function of the inventory system for
new product are as follows.

SRn = Sales revenue from new product =
1

T

T∫
0

[p ·R (p, t)] dt (8)

PCn = Purchase cost =
CQ

T
(9)

OCn = Ordering cost =
A

T
(10)

HCn = Holding cost =
1

T

T∫
0

[h · I (t)] dt (11)

The components of profit function for the used product are as below.

SRu = Sales revenue from new product =
1

T

T∫
τ

[p (1 − p0) ·Ru (p, t)] dt (12)
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PCn = Purchase cost =

(
C · (1 − d) ·Qu

T − τ

)
(13)

HCn = Holding cost =
1

T

T∫
τ

[hu · Iu (t)] dt (14)

Therefore, the total profit is given by

π (p, T ) = (SRn −HCn − PCn −OCn)+(SRu −HCu − PCu) (15)

π (p, T ) =
1

T

T∫
0

[p ·R (p, t) − h · I (t)] dt−
(
CQ+A

T

)

+
1

T

T∫
τ

[p · (1 − p0) ·Ru (p, t) − hu · Iu (t)] dt−
(
C · (1 − d) ·Qu

T − τ

)
(16)

The total profit is a function of two variables p and T . Using the classical optimiza-
tion technique, we calculate maximum profit for the numerical example provided
in the next section.

4. NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS

In this section, the model is validated by numerical example using Maple 18
software and sensitivity analysis is performed for the developed model.

Example:: We consider an inventory system with the following parameters in
appropriate units:

α = 200 , α1 = 4%, α2 = 14%, β = 2, a = 100, b = 0.4, C = $45 , A =
$100, h = $0.5, hu = $0.2, d = 0.15, τ = 30

365 and p0 = 0.4.

Using Maple 18 software, the optimal values of decision variables are obtained
as (p∗, T ∗) = (83.37, 1.91). The optimum quantity of fresh and used products
are obtained as Q∗ = 144.11 units and Qu

∗ = 18.62 units. The maximum profit
gained is πmax = $2906.55. The concavity of the profit function is shown in Figure
1.

Now, for the data used in example 1, we perform sensitivity analysis to observe
the effects of inventory parameters on profit and decision variables of the model.
We consider parameter variation from -20% to 20%. The results are shown in
Figures 2 – 4.
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Figure 1: Concavity of profit function

Figure 2: Effect on Selling price w.r.t. inventory parameters

Figure 3: Effect on Cycle time w.r.t. inventory parameters
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Figure 4: Effect on Profit w.r.t. inventory parameters

From figures 2, 3, and 4, we can observe that

The scale demand α and parameter α1 have great positive influence on selling
price and total profit. This finding implies that a higher scale demand motivates a
retailer to set a high selling price and grabs the opportunity of greater investment.
Also as shown in Figure 3, an increasing scale demand will lead to heavy decrease
in cycle time T .

Figures 2–4, show that an increasing purchase cost C leads to increasing selling
price p and cycle time T , while the total profit π will decrease. This finding
implies that a high purchase cost reduces the retailers profit. So, the retailer
should decrease his ordering quantity and increase the selling price in order to
reduce the loss.

As the price elasticity β increase, the cycle time T increases heavily, while the
selling price p and profit π decrease significantly. The price elasticity β reduces
the opportunity for the retailer to set a high selling price.

When the holding cost h per unit time increases, the selling price increases
marginally, while the cycle time and total profit decrease slightly. Similar to
holding cost, other parameters have very minor effects on decision variables and
the total profit.

5. CONCLUSION

In this study, we developed an inventory model under the assumption that a
retailer sells the new product as well as collets used products from the customers.
The demand rate of new products and return rate of used products both are linked
to selling price. We established a Mathematical model to maximize the profit of
the retailer. The optimal selling price, replenishment time, ordering quantity of
new product, and optimal quantity of used product are determined using classical
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optimization. Finally, a numerical example is given to validate the model. Some
important managerial insights are provided through sensitivity analysis.

The research can be further extended in several directions. For example, a
similar model can be developed for a manufacturer to see effects of remanufacturing
process. A possible extension is to study behaviour of each player of the supply
chain from the perspectives of game theory.
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