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Abstract: Cross-efficiency evaluation, an extension of the data envelopment analysis
(DEA), has found an appropriate function in ranking decision making units (DMU).
However, DEA suffers from a potential flaw, that is, the existence of multiple optimal
solutions. Different methods have been proposed to obtain a unique solution (based on
a specific criterion). In this paper, we refer to Wang’s method for ranking DMUs but
argue that his way of selecting the weights is not the appropriate one. Namely, in the
cross-efficiency evaluation of DMUs, we always search for the weights which use minimum
resources to increase the production. Therefore, we suggest that the selection of weights
among the multiple weights should be determined by decreasing the contribution of inputs
in the use of resources, and increasing the contribution of outputs in the production,
which should overtly prevent the selection of zero solutions to the extent possible. To
this end, some examples are given to illustrate differences and advantages of our method
compared to those usually used.
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1. INTRODUCTION

Data envelopment analysis is a nonparametric method based on linear program-
ming in relative efficiency evolution of a series of homogeneous decision making
units (DMUs) with multiple input and outputs. The relative measure of each
DMU was first introduced by Farell [11], but got interest among researches by
Charnes et al. [2]. One of the appealing features of DEA is that it does not need
accurate and greater values of the weights. DEA aims to estimate the unit under
evaluation in its best state possible. On the one hand, the flexibility of DEA in
the allocation of weights often leads to unreal solutions (especially zero weights),
hence, undesirable. Therefore, some researchers suggested the use of weight con-
trol factor to prevent the occurrence of unreal weights in efficiency evaluation. On
the other hand, most of DMUs are evaluated as efficient and are given the same
efficiency score. Therefore, we cannot distinguish their performances theoretically.
This problem led the researchers to propose methods to distinguish efficiency of
the given DMUs and thus, provide a complete ranking for all DMUs. Different
methods have been proposed to rank DMUs, each of which uses specific qualities
as the ranking criteria. For more information regarding the new ranking methods,
readers can refer to Hosseinzadeh Lotfi et al. [14], Nasseri et al. [20], Ruiz and
Sirvent [24], Nasseri and Kiaei [21], Emrouznejada et al. [9], Jahanshahloo et al.
[13].

The cross-efficiency evaluation method is one of the most popular ranking
methods. Sexton et al [25] are among the pioneer users of this method. The
overall objective of cross-efficiency evaluation is to evaluate each DMU from the
perspective of all others, which is generally referred to as peer evaluation. Un-
like DEA that uses self-evaluation, this method offers two advantages: provide a
ranking for each DMU, and also avoid using the pattern of unreal weights in the
efficiency evaluation of DMUs. Due to its high distinguishing power in the ranking
of DMUs, the cross-efficiency evaluation has a wide range of applications in such
studies as Sexton et al. [25], Doyle and Green [8] , Ertay and Ruan [10], Cooper
et al. [4], Lim et al. [18] and Cui and Li [5].

Nevertheless, there are some problems in cross-efficiency evaluation. Perhaps
the main problem is the existence of multiple optimal solutions for the weights
resulting from the DEA model that leads to various efficiency scores (depending
on the selection of weights). To solve this problem, secondary goal was first in-
troduced by Sexton et al. [25] in 1986, and generalized by Doyle and Green [7]
in 1994. This goal is a potential adjustment which avoids deduction of the cross-
efficiency advantages. In most papers, this idea is used for all DMUs with the
some conditions on cross-efficiency results. Thus, these conditions are referred
to aggressive and benevolent formulas. A benevolent (aggressive) model searches
the optimal weights that not only preserve the efficiency score of the unit under
evaluation, but also increase (decrease) the efficiency score of the other DMUs.
Liang et al. [17], in their attempt to expand Doyle and Green’s [7] models, sug-
gested three various secondary goals from a benevolent perspective. Wang and
Chin [29] extended Liang et al.’s [17] models by describing the true ideal points.
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Liang et al. [16] generalized cross-efficiency concepts to the game cross-efficiency
and achieved the convergence of the repetitive algorithm by deduction from the
balanced point. Wu et al. [39] exhibited a mixed integer programming model for
cross-efficiency evaluation and for determining the best ranking arrangement for
each DMU. Lam [15] proposed the development of a new, improved method for
selecting more suitable weights to be used in cross-evaluation. Wang et al. [33]
suggested three alternative approaches to determine relative importance of weights
for cross efficiency aggregation. Soltanifar et al. [27], by extending some of the
previous researchers’ ideas in the same area, set the goal constituted three new sec-
ondary goals and by selecting the best among them and using the voting model,
they suggested a new assessment. Wu et al. [37], demonstrated inefficiency of
the conventional aggressive and benevolent model, and exhibited better secondary
goals. Wu et al. [36] suggested a DEA cross-efficiency evaluation based on Pareto
improvement.

The review of the related articles makes clear that the available cross-efficiencies
(except for game cross-efficiency) are all computed either as aggressive or benev-
olent. Yet, there is no warranty that the aggressive and benevolent formulas can
give the same results in ranking. Therefore, a neutral model is introduced, which
determines the weights of the inputs and outputs for the unit under evaluation,
without examining the aggressiveness and benevolence of other DMUs. This model
helps the decision maker to evade the problem of selecting between aggressive and
benevolent model. Wang and Chin [30] suggested a neutral model DEA for cross-
efficiency evaluation and its generalization for evaluation with cross-weights. They
maximized the minimum of relative efficiency of each output, and as a result, they
considerably decreased the number of zero weights for the outputs. Ramon et
al. [22] exhibited another model, operating concurrent with assessment, whose
secondary goal was to select profiles weights. So, high differences in the weights
related to inputs and outputs, to the extent possible were avoided. Also, Ramon
et al. [23] selected a peer-restricted method, disregarding the weights of a specific
inefficient DMU in computing cross-efficiency. Wang et al. [34] presented some
neutral DEA models to minimize the virtual disparity in the cross-efficiency eval-
uation. Wang et al. [32] suggested a neutral model whose goal was to decrease
the number of zero weights both for the inputs and outputs. Wang et al. [31],
using ideal and anti-ideal virtual DMUs, exhibited four neutral models for cross-
efficiency evaluation from the view of multiple criteria decision analysis (MCDA).
Jahanshahloo et al. [12] suggested the selection of symmetric weights as a sec-
ondary goal in cross-efficiency evaluation. Wu et al. [40] introduced a weight
balanced DEA model whose goal was to decrease the number of zero weights. Lin
et al. [19] presented an iterative method for assigning weights in cross-efficiency
evaluation, which not only certifies a unique weight set for positive input and
output data, but also decreases the number of zero weights maximally without
imposing any prior weight limitation.

In this paper, we seek to allocate weights among the multiple optimal weights
based on Wang et al. [32], so that the consumption contribution of each input and
the production contribution of each output in the efficiency evaluation of DMU
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under study decreases and increases respectively. However, we avoid the simul-
taneous selection of zero weights in both inputs and outputs. In other words, in
addition to allocating the optimal contribution of the inputs and outputs in the
consumption of resources and production, and retaining the efficiency of the unit
under evaluation, we try to have all the inputs and outputs of other DMUs par-
ticipate in the cross-efficiency evaluation, to the extent possible. We believe that
such a selection of weights is more logical than the selection method introduced
by Wang et al. [32].

The advantage of the proposed method over the Wangs is that the neutral
weights are selected for each unit based on increasing outputs share and reducing
inputs share, simultaneously. This type of weight selection appears to be more
appropriate in terms of performance evaluation viewpoint, since in performance
evaluation, it is always sought to increase the total outputs share and reduce the
total inputs share, simultaneously. Although the proposed method may cause
zero weight assignment to inputs, and thus reduce the number of inputs in the
performance evaluation of units, these weights can be avoided by providing a two-
phase process.

The rest of this article is organized as follows: In section 2, we present a con-
cise point out of the cross-efficiency evaluation, its main formulations, and the
secondary goals. In Section 3, the proposed method is introduced and illustrated
by numerical examples in Section 4. Finally, Section 5 is assigned to the conclu-
sions.

2. CROSS-EFFICIENCY

2.1. Cross-efficiency evaluation

Suppose that there is a set of n Decision Making Units (DMUs), and each
DMUj(j = 1, . . . , n),using different m inputs, produces different s outputs which
are respectively determined by xij (i = 1, . . . ,m) and yrj (r = 1, . . . , s). To assess
each DMUk (k = 1, . . . , n), the efficiency score Ekk performance can be calculated
by the input-oriented CCR multiplier model as follows :

max Ekk =

∑s
r=1 urkyrk∑m
i=1 νikxik

s.t. Ekj =

∑s
r=1 urkyrj∑m
i=1 νikxij

≤ 1, j = 1, . . . , n, (1)

νik ≥ 0, i = 1, . . . ,m,

urk ≥ 0, r = 1, . . . , s.

where νik and urk represent ith input and rth output weights for DMUk. By
using the Charnes and Cooper [1] Conversion, we changed it to a linear model as
follows:
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max Ekk =

s∑
r=1

urkyrk

s.t.

m∑
i=1

νikxik = 1,

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n, (2)

νik ≥ 0, i = 1, . . . ,m,

urk ≥ 0, r = 1, . . . , s.

Suppose that ν∗ik(i = 1, . . . ,m) and u∗rk(r = 1, . . . , s) are the optimal solutions
above of LP model, then E∗kk =

∑s
r=1 u

∗
rkyrk shows the CCR-efficiency of DMUk,

which resulted from self-evaluation. The cross-efficiency of DMUj , resulting from
peer-evaluation using DMUk, can be obtained as follows:

E∗kj =

∑s
r=1 u

∗
rkyrj∑m

i=1 ν
∗
ikxij

, j = 1, . . . , n; j 6= k, (3)

The corresponding model for each DMU is solved, and as a result, n series of
input and output weights for n DMU are computed. Each DMU has (n−1) cross-
efficiency in addition to one CCR efficiency. These efficiencies constitute an n×n
matrix, called the cross-efficiency matrix, where Ekj is an entry in row k and in
column j .

Doyle and Green [7] described the cross-efficiency score as a cross efficiency
average DMUj with optimal weights of the other DMUs, as follows:

Ej =
1

n

n∑
k=1

E∗kj (4)

Optimal solutions resulting from Model (2) are not often unique, but, a desirable
cross-efficiency was gained. This is related to a specific software that ideally selects
optimal solutions (Despotis, [6] ). To overcome this problem, secondary goals in
cross-efficiency evaluation are exhibited.

Secondary goals to solve the problem of multiple optimal weights were intro-
duced to examine one solution among the multiple optimal solutions on the basis
of a given criterion. For the first time, Sexton et al. [25] discussed the benevolent
and aggressive models. Doyle and Green[7] exhibited another form of benevolent
and aggressive formulas, which are used more frequently in practice.
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min

s∑
r=1

urk(

n∑
j=1,j 6=k

yrk)

s.t.

m∑
i=1

νik(

n∑
j=1,j 6=k

xik) = 1,

s∑
r=1

urkyrk − E∗kk
m∑
i=1

νikxik = 0, (5)

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n,

νik ≥ 0, i = 1, . . . ,m,

urk ≥ 0, r = 1, . . . , s.

and

max

s∑
r=1

urk(

n∑
j=1,j 6=k

yrk)

s.t.

m∑
i=1

νik(

n∑
j=1,j 6=k

xik) = 1,

s∑
r=1

urkyrk − E∗kk
m∑
i=1

νikxik = 0, (6)

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n,

νik ≥ 0, i = 1, . . . ,m,

urk ≥ 0, r = 1, . . . , s.

Model (5) is known as the aggressive formulation for cross-efficiency evalua-
tion, which aims at minimizing the cross-efficiencies of the other DMUs in some
way, whereas model (6) is known as the benevolent formulation for cross-efficiency
evaluation, which aims at maximizing the cross-efficiencies of the other DMUs to
some extent(Wang and Chin [29]). The two models choose the optimal weights
from two different viewpoints, whereby two different ranking methods are achieved
in the cross-efficiency evaluation, while the decision maker may seek to choose a
neutral method being neither benevolent nor aggressive. So, Wang and Chain [30]
introduced a neutral model of DEA in the cross-efficiency evaluation as follows:
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max δ

s.t.

m∑
i=1

νikxik = 1,

s∑
r=1

urkyrk = E∗kk,

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n, (7)

urkyrk − δ ≥ 0, r = 1, . . . , s,

νik, urk, δ ≥ 0, i = 1, . . . ,m, r = 1, . . . , s.

Among multiple optimal weights, Model (7) selects such optimal weights which
maximize the comparative efficiency of each output. In this method, the number
of zero weights of the output decreases effectively. Wang et al. [30] stated: “The
economic meaning of the model (7) can be interpreted as DMUk searches for a set
of input and output weights to maximize its efficiency as a whole and at the same
time to make each of its output be as efficient as possible to produce sufficient
efficiency as an individual.” If we have only one output component, then model
(7) does not necessarily yield a unique optimal solution. In this case, model (7) and
model (2) have the same result. Wang et al. [32] proposed the following model, by
generalizing the neutral model of Wang et al. [30], which simultaneously reduces
the number of the weights of zero input and output.

max α.δ + β.γ

s.t.

m∑
i=1

νikxik = 1,

s∑
r=1

urkyrk = E∗kk,

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n, (8)

urkyrk − δ ≥ 0, r = 1, . . . , s,

νikxik − γ ≥ 0, i = 1, . . . ,m,

νik, urk, δ, γ ≥ 0, i = 1, . . . ,m, r = 1, . . . , s.

Where α and β are parameters that hold in α+ β = 1 condition.
Wang et al. [32] said:“ the economic meaning of model (8) can be interpreted

as seeking for a set of input and output weights for DMUk to make each of its
output and input as efficient or sufficiently important as possible while keeping its
CCR-efficiency unchanged such that each output can produce sufficient efficiency
as an individual and every input can be sufficiently utilized.”
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3. THE PROPOSED MODEL

Wang and Chin [30] proposed a neutral model for cross-efficiency evaluation to
evade the problem of selecting between aggressive or benevolent formulas. They
suggested a new strategy to select the weights so as not to increase or decrease
the other DMUs. Likewise, Ramon et al. [22] followed the same strategy. They
also suggested the participation of all inputs and outputs’ weights of DMUs in
the efficiency evaluation of the unit under evaluation to avoid the selection of zero
weights. In the present paper, by combining the two ideas above, we intend to
propose a model that considers the selected weights in the cross-efficiency evalua-
tion.

Wang et al. [32] commented that among the multiple optimal weights the one
should be selected which yields an improved relative efficiency for each input and
output, and to the extent possible, covertly prevents the selection of zero solutions
in cross-efficiency evaluation. We agree with them in this regard. However, in
their model, Wang et al. [32] actually seek to select weights that increase the
contribution of input consumption while it seems that this contradicts the opti-
mization of the relative efficiency of each input. We believe that such selection of
weights is not appropriate because it worsens the relative efficiency of each input
though the relative efficiency of each output is improved. Therefore, we intend to
propose a model that improves the relative efficiency of each input and output.
To this end, we first propose the following model:

max δ − γ

s.t.

m∑
i=1

νikxik = 1,

s∑
r=1

urkyrk = E∗kk,

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n, (9)

urkyrk − δ ≥ 0, r = 1, . . . , s,

νikxik − γ ≥ 0, i = 1, . . . ,m,

νik, urk, δ, γ ≥ 0, i = 1, . . . ,m, r = 1, . . . , s.

In model (9), in the cross-efficiency evaluation, those weights are selected that,
in addition to retaining the efficiency of the unit under evaluation, they optimize
the relative efficiency of each input and output. In other words, this allows the
consumption contribution of each input to reduce while the production contribu-
tion of each output increases. However, in doing, so in model (9), the zero weights
are allocated to each input to the extent possible, but for the outputs a non-zero is
obtained. To avoid zero weights, to the extent possible, we propose the following
model:
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max min{ν1k, . . . , νmk, u1k, . . . , usk}

s.t.

m∑
i=1

νikxik = 1,

s∑
r=1

urkyrk = E∗kk,

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n, (10)

νik, urk ≥ 0, i = 1, . . . ,m, r = 1, . . . , s.

To minimize the weights, this model uses the optimal solutions of model(2),
so it is a non-linear model defined by ε = min{ν1k, . . . , νmk, u1k, . . . , usk}, that
converts to the following linear model, which is the same as the phase one model.

max ε

s.t.

m∑
i=1

νikxik = 1,

s∑
r=1

urkyrk = E∗kk,

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n, (11)

νik, urk ≥ ε, i = 1, . . . ,m, r = 1, . . . , s.

The limitations applied to the weights do not make model (11) infeasible be-
cause here ε is a variable not a constant value with no impact on the infeasibility.
Due to the objective function of the fourth and fifth restrictions, the non-zero
weights are selected among the multiple optimal weights. In fact, the model as-
signs the non-zero weights to efficient units and inefficient units whose images were
on the efficient frontier.

If the model (2) has been used instead of the first phase(model (11)), there
are two problems: the existence of multiple optimal solutions and the existence
of zero weights. In the method, it is attempted to solve the mentioned problems
as far as possible. Hence, in the first phase, model (11) has been applied which
included two advantages: 1) it drives the weights towards selecting unique weights
(it does not necessarily yield the unique result); 2) they are obtained the weights
being against zero, as far as possible.

Now, in order to achieve the weights of the inputs and outputs of the unit
under evaluation, we propose the following model:
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max δ − γ

s.t.

m∑
i=1

νikxik = 1,

s∑
r=1

urkyrk = E∗kk,

s∑
r=1

urkyrj −
m∑
i=1

νikxij ≤ 0, j = 1, . . . , n, (12)

urkyrk − δ ≥ 0, r = 1, . . . , s,

νikxik − γ ≥ 0, i = 1, . . . ,m,

νik, urk ≥ ε∗, i = 1, . . . ,m, r = 1, . . . , s,

δ, γ ≥ 0.

Where ε∗ is the solution resulted from model (11).
In this method, a neutral secondary goal is suggested that prevents the oc-

currence of multiple optimal solutions. In fact, model (12) selects a solution
among the multiple optimal solutions that decreases the consumption contribu-
tion of each input but increases the production contribution of each output, in
addition to ensuring the non-zero weights to the extent possible. Assume that
model (12) is solved n times and ν∗ik, u

∗
rk(∀i, r, k) are derived the weights, then the

cross-efficiency of DMUs, from the perspective of other DMUs, is calculated by
equation (3). Also, the cross-efficiency scores for DMUs are calculated by equation
(4).

Remark: Model (2) has multiple optimal solutions when the unit under eval-
uation is efficient or its projection falls on the efficient frontier of production possi-
bility set, model (12) produces non-zero solutions for such DMUs. Therefore, the
zero weights resulting from model (12) are due to a unique solution in model (2)
for the unit under evaluation.

To clarify the suggested ranking method in the evaluation of cross-efficiency in
comparison with other methods, we will exhibit two examples in the next section.

4. NUMERICAL EXAMPLES

In this section, we provide two numerical examples so to demonstrate the in-
congruity between the orderings achieved by the aggressive and benevolent formu-
lations for cross-efficiency evaluation and the applications of the proposed neutral
DEA model in cross-efficiency evaluation.

4.1. Example 1.

Seven academic departments (DMUs) in a university (Wong and Beasley, [35])
are evaluated based on three inputs and three outputs, given below, and their
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Table 1: Data for seven academic departments in a university.

DMU x1 x2 x3 y1 y2 y3 CCR Efficiency
1 12 400 20 60 35 17 1
2 19 750 70 139 41 40 1
3 42 1500 70 225 68 75 1
4 15 600 100 90 12 17 0.8197
5 45 2000 250 253 145 130 1
6 19 730 50 132 45 45 1
7 41 2350 600 305 159 97 1

Table 2: Cross-efficiencies score of the seven academic departments in the university and their
rankings

Department
(DMU) Model(5) Model(6) Model(7) Model(8) Model(12)

1 0.8081 (2) 0.9442 (2) 0.8499(3) 0.8647(3) 0.9282(2)
2 0.7191 (4) 0.9326 (3) 0.8612(2) 0.8835(2) 0.9271(3)
3 0.7669 (3) 0.7952 (6) 0.7963(5) 0.8252(4) 0.8180(5)
4 0.3904 (7) 0.5793 (7) 0.5244(7) 0.5143(7) 0.5688(7)
5 0.6576 (5) 0.9100 (4) 0.8256(4) 0.8092(5) 0.8387(4)
6 0.8424 (1) 0.9929 (1) 0.9453(1) 0.9829(1) 0.9929(1)
7 0.5264 (6) 0.8963 (5) 0.7679(6) 0.6709(6) 0.7349(6)

input and output, data are shown in Table 1 along with the CCR efficiencies of
the seven academic departments.

x1: Number of academic staff.

x2: Academic staff salaries in thousands of pounds.

x3: Support staff salaries in thousands of pounds.

y1: Number of undergraduate students.

y2: Number of postgraduate students.

y3: Number of research papers.

Since the CCR-efficiencies evaluate six out of seven academic departments as
efficient and cannot distinguish them any further, the cross-efficiencies are com-
puted.

In the first phase of the proposed method of solving model (11), the optimal
target functions for units 1 through 7 are 0.002315, 0.000949, 0.000356, 0.000000,
0.000427, 0.001252 and 0.000190, respectively. We put these values in the second
phase in (12) model to solve the optimal solutions, resulting in cross-efficiency and
score cross efficiency.

The cross-efficiency scores of the seven academic departments in the university,
adopted from Models (5), (6), (7), (8), and (12) are presented in Table 2. As can
be seen, DMU4 and DMU5 have the best and worst performance respectively
among the different DMUs in the models mentioned above . The results of the
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Table 3: Input and output weights for the seven academic departments produced by aggressive
model (5).

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
1 0 0 0.0008772 0 0.0005013 0
2 0 0.0001142 0.0001232 0.0006783 0 0
3 0 0 0.0009174 0.0002854 0 0
4 0.0053885 0.0000053 0 0.0007651 0 0
5 0.0042872 0 0.0004016 0 0 0.0022564
6 0.0009669 0 0.0007493 0 0 0.0012408
7 0.0065789 0 0 0 0.0016965 0

Table 4: Input and output weights for the seven academic departments produced by benevolent
model (6).

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
1 0.0019853 0.0000808 0 0.0003273 0.0009051 0.0002835
2 0.0028663 0.0000661 0 0.0005581 0.0006460 0
3 0 0.0000287 0.0007376 0 0.0002436 0.0010415
4 0.0053885 0.0000053 0 0.0007651 0 0
5 0.0024655 0.0001003 0 0.0004065 0.0011241 0.0003521
6 0.0020692 0.0000842 0 0.0003412 0.0009434 0.0002955
7 0.0025294 0.0001029 0 0.0004170 0.0011532 0.0003613

ranking of DMUs in the proposed model is more similar to the neutral model (7)
with only the ranks of DMU1 and DMU2 being exchanged.

In Tables 3-8, the weights obtained from different models indicate that the pro-
posed model included the most non-zero weights in the cross-efficiency evaluation.
In other words, every efficient DMU participates in cross-efficiency evaluation of
other DMUs. However, the other models discussed above do not have such a
feature. This again implies the superiority of the proposed model to the ones
mentioned above. Also, it can be seen that this model is able to rank every indi-
vidual DMU. It can be seen in Tables 6 and 7 that Wang et al. [32] also intended
to decrease the number of zero weights of the input and output by changing the
parameters α and β. However, in comparison with the proposed method (Table
8), this strategy failed to achieve this goal.

In Table (9), the weights obtained from the model (9) are given without regard
to phase 1. In Table (8), we observed that the number of zero weights obtained
from model (12) reduced compared to the model (9) in Table (9), which was our
goal in phase 2. The results differ when model (12) is used in the first phase com-
pared to model (9). Although the application of the proposed two-phase method
seems more complicated, its idea is to prevent the selection of zero weights in the
performance evaluation of the units, because from managerial viewpoint, managers
expect all units to participate in performance evaluation. Model (12) chooses a
larger number of non-zero weights than model (9) to look for an optimal share of
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Table 5: Input and output weights for the seven academic departments produced by neutral
DEA model (7).

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
1 0 0.0016879 0.0162413 0.0055556 0.0095238 0.0196078
2 0.0370936 0.0003936 0 0.0053032 0.0032055 0.0032856
3 0 0 0.0142857 0.0008000 0.0026471 0.0085333
4 0.0641504 0.0000629 0 0.0091082 0 0
5 0.0206555 0 0.0002820 0.0013175 0.0022989 0.0025641
6 0 0.0013699 0 0.0025253 0.0074074 0.0074074
7 0.0243902 0 0 0.0010929 0.0020964 0.0034364

Table 6: Input and output weights for the seven academic departments produced by neutral
DEA model (8) [α = 0.5, β = 0.5].

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
1 0.0277778 0.0008333 0.0166667 0.0050076 0.0114024 0.0176740
2 0.0356618 0.0002149 0.0023030 0.0071942 0 0
3 0.0051643 0.0001446 0.0080886 0.0007440 0.0024619 0.0088691
4 0.0641504 0.0000629 0 0.0091082 0 0
5 0.0175341 0.0000527 0.0004219 0.0013175 0.0022989 0.0025641
6 0.0175439 0.0004566 0.0066667 0.0023633 0.0069323 0.0083575
7 0.0206904 0.0000323 0.0001264 0.0010929 0.0020964 0.0034364

Table 7: Input and output weights for the seven academic departments produced by neutral
DEA model (8) [α = 0.8, β = 0.2].

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
1 0.0238609 0.0007158 0.0213670 0.0055556 0.0095238 0.0196078
2 0.0370936 0.0003936 0 0.0053032 0.0032055 0.0032856
3 0.0051643 0.0001446 0.0080886 0.0007440 0.0024619 0.0088691
4 0.0641504 0.0000629 0 0.0091082 0 0
5 0.0175341 0.0000527 0.0004219 0.0013175 0.0022989 0.0025641
6 0.0209475 0.0004123 0.0060200 0.0025253 0.0074074 0.0074074
7 0.0206904 0.0000323 0.0001264 0.0010929 0.0020964 0.0034364

Table 8: Input and output weights for the seven academic departments produced by neutral
DEA model (12).

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
1 0.0023148 0.0023148 0.0023148 0.0041294 0.0144134 0.0145744
2 0.0116848 0.0009488 0.0009488 0.0066414 0.0009488 0.0009488
3 0.0003559 0.0003559 0.0064447 0.0042182 0.0003559 0.0003559
4 0.0641504 0.0000629 0 0.0091082 0 0
5 0.0008897 0.0004267 0.0004267 0.0004267 0.0029689 0.0035505
6 0.0012516 0.0012516 0.0012516 0.0025253 0.0074074 0.0074074
7 0.0106952 0.0001903 0.0001903 0.0012375 0.0034939 0.0006911
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Table 9: Input and output weights for the seven academic departments produced by model (9).

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
1 0.0277778 0.0008333 0.0166667 0.0050076 0.0114024 0.0176740
2 0.0263158 0.0006667 0 0.0055463 0.0027935 0.0028633
3 0 0.0003131 0.0075772 0.0006788 0.0022461 0.0092604
4 0.0641504 0.0000629 0 0.0091082 0 0
5 0.0110615 0.0002489 0.0000179 0.0013175 0.0022989 0.0025641
6 0.0175439 0.0004566 0.0066667 0.0023633 0.0069323 0.0083575
7 0.0121951 0.0002128 0 0.0013795 0.0022179 0.0023362

input and output weights in evaluating cross-efficiency in an impartial view.

4.2. Example 2.

Fifteen US cities (Chen, [3]) were assessed with respect to three inputs and
three outputs that are defined as follows:

x1: highend housing price (1,000 US$).

x2: lower-end housing monthly rental (US$).

x3: number of violent crimes.

y1: median household income (US$).

y2: number of bachelor’s degrees (million) held by persons in the population.

y1: number of doctors (thousand).

Table 10 shows the input and output data of the 15 US cities together with their
CCR-efficiencies which assess seven out of the 15 US cities as DEA efficient but
cannot distinguish them any further.

Table 11 shows the efficiency scores resulting from cross evaluation of 15 US
cities in Models (5), (6), (7), (8), and (12). It can be seen that the proposed
model assigns a different rank to each unit and DMU6 and DMU12, respectively
have the best and the worst performance among the different DMUs in the models
mentioned above. The results obtained from the ranking of models show that
the ranking performance of the proposed model is most similar to that of the
neutral model (7). In Table 12, all the weights of efficient DMUs are non-zero.
Therefore, it can be concluded that every input and output has participated in
the cross-efficiency evaluation of other DMUs.
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Table 10: Data and CCR efficiency scores.

DMU City x1 x2 x3 y1 y2 y3 CCR-efficiency
1 Seattle 586 581 1193.06 46928 0.6534 9.878 1
2 Denver 475 558 1131.64 42879 0.5529 5.301 0.9766
3 Philadelphia 201 600 3468 43576 1.135 18.2 1
4 Minneapolis 299 609 1340.55 45673 0.729 7.209 1
5 Raleigh 318 613 634.7 40990 0.319 4.94 1
6 StLouis 265 558 657.5 39079 0.515 8.5 1
7 Cincinnati 467 580 882.4 38455 0.3184 4.48 0.8930
8 Washington 583 625 3286.7 54291 1.7158 15.41 1
9 Pittsburgh 347 535 917.04 34534 0.4512 8.784 0.9573
10 Dallas 296 650 3714.3 41984 1.2195 8.82 0.9092
11 Atlanta 600 740 2963.1 43249 0.9205 7.805 0.7068
12 Baltimore 575 775 3240.75 43291 0.5825 10.05 0.6826
13 Boston 351 888 2197.12 46444 1.04 18.208 1
14 Milwaukee 283 727 778.35 41841 0.321 4.665 0.9941
15 Nashville 431 695 1245.75 40221 0.2365 3.575 0.7747

Table 11: Cross-efficiencies score of the 15 city by different models and their rank-
ings.

DMU Model(5) Model(6) Model(7) Model(8) Model(12)
1 0.7185(5) 0.9134(3) 0.8211(5) 0.8000(5) 0.817364(5)
2 0.6497(9) 0.8444(6) 0.7443(8) 0.7365(9) 0.785380(7)
3 0.7969(2) 0.8889(5) 0.8256(4) 0.8648(3) 0.827730(4)
4 0.7494(3) 0.9149(2) 0.8328(2) 0.8650(2) 0.892982(2)
5 0.6993(6) 0.8437(7) 0.7845(6) 0.7700(7) 0.853188(3)
6 0.8528(1) 0.9567(1) 0.9319(1) 0.9397(1) 0.952825(1)
7 0.5766(12) 0.7494(10) 0.6591(11) 0.6397(12) 0.710512(11)
8 0.7466(4) 0.9050(4) 0.8323(3) 0.8501(4) 0.785154(8)
9 0.6878(8) 0.8242(8) 0.7642(7) 0.7665(8) 0.774302(9)
10 0.5933(11) 0.7037(12) 0.6420(12) 0.6736(11) 0.656515(12)
11 0.4782(14) 0.6097(14) 0.5392(14) 0.5488(13) 0.550340(14)
12 0.4456(15) 0.5879(15) 0.5029(15) 0.5042(15) 0.531258(15)
13 0.6901(7) 0.7463(11) 0.7272(9) 0.7717(6) 0.715834(10)
14 0.6284(10) 0.7496(9) 0.6983(10) 0.7013(10) 0.785382(6)
15 0.4833(13) 0.6500(13) 0.5515(13) 0.5466(14) 0.636357(13)
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Table 12: Input and output weights for the fifteen city produced by neutral DEA model (12).

DMU Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
1 0.0000213 0.0011895 0.0002484 0.0000213 0.0000213 0.0000213
2 0.0002843 0.0013351 0.0001060 0.0000228 0 0
3 0.0019023 0.0006373 0.0000678 0.0000229 0.0000229 0.0000229
4 0.0014866 0.0007299 0.0000828 0.0000219 0.0000219 0.0000219
5 0.0004415 0.0007011 0.0006772 0.0000244 0.0000244 0.0000244
6 0.0012579 0.0005974 0.0005070 0.0000256 0.0000256 0.0000256
7 0 0.0012907 0.0002849 0.0000232 0 0
8 0.0003678 0.0011601 0.0000184 0.0000184 0.0000184 0.0000184
9 0 0.0013607 0.0002966 0.0000049 0 0.0895484
10 0.0010646 0.0010537 0 0 0.7455351 0
11 0.0001925 0.0010527 0.0000356 0.0000163 0 0
12 0.0003809 0.0009819 0.0000062 0.0000158 0 0
13 0.0016737 0.0000059 0.0001854 0.0000059 0.0000059 0.0399867
14 0.0032269 0 0.0001115 0.0000238 0 0
15 0.0002404 0.0011290 0.0000897 0.0000193 0 0

5. CONCLUSIONS

Cross-efficiency evaluation is an effective method to rank DMUs in DEA. The
major problem, however, is that DEA suffers from a potential flaw, i.e., the ex-
istence of multiple optimal solutions, which results in different efficiency scores,
thus in different ranking for DMUs. In the present article, we proposed a model
that can decrease the consumption contribution of each input while increasing the
production contribution of each output to select an appropriate solution among
the multiple optimal solutions. The proposed method seems to be more logical
compared to the previous methods because it adopts the same strategy to the
evaluation of the performance DMUs in DEA.

The factor that seems to be appealing in cross-efficiency evaluation is to include
all the inputs and outputs of other DMUs in the cross-efficiency evaluation of a
given DMU to the extent possible. To do so, it is strongly recommended to avoid
the selection of non-zero weights, which our model provides to the extent possible.
This further indicates the advantage of the proposed method over the existing
methods. Our method, considered as a neutral model, is able to offer different
ranking in the efficiency evaluation of DMUs. According to Wang and Chin [30],
basically, by a neutral model the problem of selecting between aggressive and
benevolent formulas can be evaded.

In the paper, they were presented two examples to compare the proposed
method with the other methods. In the proposed method, in the first phase,
the optimal value of the objective function in model (11) has been primarily com-
puted. These values were used in the second phase(model (12)) so that the unique
optimal weights and as much as possible non-zero weights were obtained. We have
found that the weights obtained from the proposed method show fewer numbers
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of zero weights than the other methods, as a result of which more inputs and out-
puts have contributed to the evaluation of the performance of each unit. Also, the
choice of optimal weights among multiple optimized weights is based on reducing
the input share and increasing the share of outputs for each unit independently in
evaluating unit performance.

Therefore, the advantages of this method, compared with other methods, are
the reduction of the number of zero weights and the selection of optimal weights
based on the share of the optimal use of resources and the production of outputs
in the performance evaluation, regardless of how other units perform. A problem
that is not addressed in Wang’s way is the use of the optimal share (decrease)
of inputs in addition to increasing the share of outputs that we have achieved by
modifying their model.
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