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Abstract: In this work, we develop CASVM and CANN algorithms for semi-supervised
classification problem. The algorithms are based on a combination of ensemble clustering
and kernel methods. A probabilistic model of classification with the use of cluster ensem-
ble is proposed. Within the model, error probability of CANN is studied. Assumptions
that make probability of error converge to zero are formulated. The proposed algorithms
are experimentally tested on a hyperspectral image. It is shown that CASVM and CANN
are more noise resistant than standard SVM and kNN.
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1. INTRODUCTION

In recent decades, there has been a growing interest in machine learning and
data mining. In contrast to classical methods of data analysis, in this area much at-
tention is paid to modeling human behavior, solving complex intellectual problems
of generalization, revealing patterns, finding associations, etc. The development of
this area was boosted by the ideas arising from the theory of artificial intelligence.

The goal of pattern recognition is to classify objects into several classes. A finite
number of features describe each object. Classification is based on precedents; the
objects, for which the classes they belong to are known. In classical supervised
learning, the class labels are known for all the objects in the sample. New objects
are to be recognized as belonging to the one of the known classes. Many problems
arising in various areas of research can be reduced to problems of classification.

In classification problems, group methods are widely used. They consist in the
synthesis of results obtained by applying different algorithms to a given source
information, or in selection of optimal, in some sense, algorithms from a given
set. There are various ways of defining group classifications. The formation of
recognition as an independent scientific theory is characterized by the following
stages:

- the appearance of large number of various incorrect (heuristic) methods and
algorithms to solve practical problems, oftentimes applied without any serious
justification;

- the construction and research of collective (group) methods, providing a so-
lution to the problem of recognition based on the results;

- processing of initial information by separate algorithms [1-4].
The main goal of cluster analysis is to identify a relatively small number of

groups of objects that are as similar as possible within the group, and as different
as possible from other groups. This type of analysis is widely used in information
systems when solving problems of classification and detection of trends in data:
when working with databases, analyzing Internet documents, image segmentation,
etc. At present, a sufficiently large number of algorithms for cluster analysis have
been developed. The problem can be formulated as follows. There is a set of
objects described by some features (or by a distance matrix). These objects are to
be partitioned into a relatively small number of clusters (groups, classes) so that
the grouping criterion would take its best value. The number of clusters can be
either selected in advance or not specified at all (in the latter case, the optimal
number of clusters must be determined automatically). A quality criterion usually
is understood as a certain function, depending on the scatter of objects within the
group and the distances between groups.

By now, considerable experience has been accumulated in constructing both
separate taxonomic algorithms and their parametric models. Unlike the recogni-
tion problems in related areas, in this area universal methods for solving taxonomic
problems have not yet been created, and the current ones are generally heuristic.
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Current methods include: the construction of classes, based on the allocation of
compact groups; separation of classes using separating surfaces; the construction
of classes using auxiliary ”masks”, ”signatures”. The main criteria that determine
the quality of classification based on the natural definition of the optimal partition
are the following: the compactness of the classes to be formed, the separability of
classes and the classification stability of objects forming the class.

Recently, cluster analysis has been actively developing an approach based on
collective decision-making. It is known that algorithms of cluster analysis are not
universal: each algorithm has its own specific area of application: for example,
some algorithms can better cope with problems in which objects of each cluster
are described by ”spherical” regions of multidimensional space; other algorithms
are designed to search for ”tape” clusters, etc. In the case when the data are of a
heterogeneous nature, it is advisable to use not one algorithm but a set of different
algorithms to allocate clusters. The collective (ensemble) approach also makes it
possible to reduce the dependence of grouping results on the choice of parameters
of the algorithm, to obtain more stable solutions in the conditions of ”noisy” data,
if there are ”omissions” in them [5-9].

Ensemble approach allows improving the quality of clustering. There are sev-
eral main directions in the methods of constructing ensemble solutions of cluster
analysis: based on the consensus distribution, on the co-associative matrices, on
the models of the mixture of distributions, graph methods, and so on. There are
a number of main methods for obtaining collective cluster solutions: the use of
a pairwise similarity/difference matrix; maximization of the degree of consistency
of decisions (normalized mutual information, Adjusted Rand Index, etc.) Each
cluster analysis algorithm has some input parameters, for example, the number
of clusters, the boundary distance, etc. In some cases, it is not known what pa-
rameters of the algorithm work best. It is advisable to apply the algorithm with
several different parameters rather than one specific parameter.

In this work semi-supervised learning is considered. In semi-supervised learn-
ing, the class labels are known only for a subset of objects in the sample. The
problem of semi-supervised learning is important for the following reasons:

- Unlabeled data are cheap;
- Labeled data may be difficult to obtain;
- Using unlabeled data along together with labeled data may increase the qual-

ity of learning.
There are many algorithms and approaches to solve the problem of semi-

supervised learning [10]. The goal of the work is to devise and test a novel approach
to semi-supervised learning. The novelty lies in the combination of algorithms of
collective cluster analysis [11,12] and kernel methods (support vector machines
SVM [13] and nearest neighbor NN), as well as in theoretical analysis of the er-
ror probability of the proposed method. In the coming sections, a more formal
problem statement will be given, some cluster analysis and kernel methods will be
reviewed, the proposed methods will be described, and its theoretical and experi-
mental ground will be provided.
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2. FORMAL PROBLEM STATEMENT

2.1. Formal Problem Statement of Semi-Supervised Learning

Suppose we have a set of objects X to classify and finite set of class labels
Y. All objects are described by features. A feature of an object is the following
mapping f :X→Df , where Df - set of values of a feature.

Depending on Df features can be of the following types:
- Binary features: Df ={0,1}.
- Numerical features: Df = R.
- Nominal features: Df - finite set.
- Ordered features: Df - finite ordered set.
For a given feature vector f1,...,fm, vector x = (f1(α),...,fm(α)) is called feature

descriptor of object α ε X. Further, in the text we do not distinguish between an
object and its feature descriptor. In the problem of semi-supervised learning at
the input we have a sample XN = {x1,...,xn} of objects from X.

There are two types of objects in the sample:
- Xc = {x1,...,xk} - labeled objects with the classes they belong to: Yc =

{y1,...,yk};
- Xu = {xk+1,...,xn} - unlabeled objects.
There are two formulations of the classification problem statement. In the first,

we are to conduct so-called inductive learning, i.e. build a classification algorithm
a = X→Y, which will classify objects from Xu and the new objects from Xtest,
which were unavailable at the time of building of the algorithm.

The second is so-called transductive learning. Here we get labels only for
objects from Xu with minimal error. In this work, we consider the second variant
of problem statement.

The following example shows how semi-supervised learning differs from a su-
pervised learning.

Example: Label objects are given at the input Xc ={x1,...,xk} with their
respective classes Yc{y1,...,yk}, where y1 ε {0,1}, yi =1,...,k. The objects have two
features and their distribution is shown in Figure 1.

Unlabeled data is also given Xu = {xk+1,...,xn} as shown in Figure 2.
Suppose that a sample from a mixture of normal distributions is given. Let’s

estimate the density of the classes throughout the data set at only on the labeled
data, after which we construct the separating curves. Then, from Figure 3 it can
be seen that the quality of the classification using the full set of data is higher.

2.2. Ensemble Cluster Analysis

In the problem of ensemble cluster analysis, several partitions (clustering)
S1, S2, Sr are considered. They may be obtained by:

- the results of various algorithms for cluster analysis;
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Figure 1: Features of objects

Figure 2: Labeled objects Xc with unlabeled objects Xu

- the results of several runs of one algorithm with different parameters.
For example, Figure 4 shows examples of different partitions for 4 sets. Differ-

ent colors correspond to different clusters.
To construct a matrix of average differences, clustering of all available objects

X = {x1,...,xN} is done by an ensemble of several different algorithms µ1,...,µM .
Each algorithm gives Lm variants of partition, m = 1, ...,M . Based on the results
of the algorithms, a matrix H of average differences is built for objects of X. The
matrix elements are equal to:

h(i, j) =

M∑
m−1

αm
1

Lm

Lm∑
i−1

hm(i, j) (1)

where i, j ε {1, ..., N} - objects’ numbers (i 6= j), αm ≥ 0 - initial weights so

that
M∑
m−1

αm = 1;hm(ij) = 0, if pair (ij) belong to different clusters in l - h variant

of partition, given by algorithms µm and 1, if it belongs to the same cluster.
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Figure 3: Obtained class densities: ) - by labeled data; b) -by unlabeled data

Figure 4: Examples of various distributions for 4 classes

Weights αm may be same or, for example, may be set with respect to quality
of each clustering algorithm. The selection of optimal weights is researched in [6].

The results of the ensemble work can be presented in the form of the following
table 1, where for each partition and for each point the assigned cluster number is
stored [2].

Table 1: Ensemble work
In this work semi-supervised learning is considered. In semi-supervised learning

the classes are known only for a subset of objects in the sample. The problem of
semi-supervised learning is important for the following reasons:

- unlabeled data is cheap;
- labeled data may be difficult to obtain;
- using unlabeled data along with some labeled data may increase the quality

of learning.
There are many algorithms and approaches to solve the problem of semi-

supervised learning [10]. The goal of the work is to devise and test a novel approach
to semi-supervised learning. The novelty lies in the combination of algorithms of
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collective cluster analysis [11,12] and kernel methods (support vector machines
SVM [13] and nearest neighbor NN), as well as in theoretical analysis of the error
of the proposed method. In the coming sections a more formal problem statement
will be given, some cluster analysis and kernel methods will be reviewed, the pro-
posed methods will be described, and its theoretical and experimental ground will
be provided.

Cluster ensembles combine multiple clusters of a set of objects into one con-
solidated clustering, often called a consensus solution.

3. KERNEL METHODS OF CLASSIFICATION

To solve the classification problem, kernel methods are widely used, based on
the so-called ”kernel trick”. To demonstrate the essence of this ”trick”, consider
the support vector machine method (SVM) - the most popular kernel method of
classification. SVM is a binary classifier, although there are ways to refine it for
multiclassification.

3.1. Binary Classification with SVM

In the problem of dividing into two classes (the problem of binary classifica-
tion), a training sample of objects X = {x1, ..., xn} is at the input with classes
Y = {y1, ..., yn}, y1ε{+1,−1}, for i = 1, ..., n, where object are points in m - di-
mensional space of feature descriptors. We are to divide the points by hyperplane
of dimension (m−1). In the case of linear class separability, there exist an infinite
number of separating hyperplanes. It is reasonable to choose a hyperplane, the dis-
tance from which to both classes is maximized. An optimal separating hyperplane
is a hyperplane that maximizes the width of the dividing strip between classes.
The problem of the support vector machine method consists in constructing an
optimal separating hyperplane. The points lying on the edge of the dividing strip
are called support vectors.

A hyperplane can be represented as < w, x > +b = 0, where <,> - scalar
product, w - vector perpendicular to separating hyperplane, and b - an auxiliary
parameter. Support vector method builds decision function in in the form of
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F (x) = sign(

n∑
i−1

λici < x1, x > +b) (2)

It is important to note that the summation goes only along support vectors for
which λi 6= 0. Objects xεX with F (x) = 1 will be assigned one class, and objects
with F (x) = 0 another.

With linear inseparability of classes, one can perform a transformation ϕ :
X → G of object space X to a new space G of a higher dimension. The new
space is called is called ”rectifying”, because the objects in the space can already
be linearly separable.

Decision function F (x) depends on scalar products of objects, rather that the
objects themselves. That is why scalar products < x, x‘ > can be substituted by
products of < ϕ(x), ϕ(x‘) > kind in the space G. In this case the decision function
F (x) will look like this:

F (x) = sign(

n∑
i−1

λici < (ϕx1), ϕ(x) > +b) (3)

Function K(x, x‘) =< ϕ(x), ϕ(x‘) > is called kernel. The transition from scalar
products to arbitrary kernels the ”kernel trick”. Selection of the kernel determines
the rectifying space and allows to use linear algorithms (like SVM) to linearly
non-separable data.

3.2. Mercer Theorem

Function K, defined on a finited set of objects X, can be set as K = (K(xi, xj)),
where xi, xjεX. In kernel classification methods, a theorem is widely known that
establishes a necessary and sufficient condition for the matrix to define a certain
kernel:

Theorem (Mercer). Matrix K = (K(xi, xj)) of size p× p is the kernel ma-
trix if and only if it symmetric K(xi, xj) = K(xj , xi) and nonnegatively defined:
for any zεRp the following condition holds: zTKz ≥ 0.

4. PROPOSED METHOD

The idea of the method is to construct a similarity matrix (1) of all objects
from the input sample X. The matrix will be compiled by applying different
clustering algorithms to X. The more a pair of objects are classified as belonging
to one class the more similar they will be. Two possible variants of prediction for
unlabeled classes Xu will be proposed using similarity matrix. Further the idea of
the algorithms will be described in detail. The following theorem holds:
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Theorem 1. Let µ1, ..., µM - be algorithms of clustering analysis , each al-
gorithm gives Lm variants of partition, m = 1, ...,M, hlm(x, x‘) = 0, if a pair of
objects (x, x‘) belongs to different clusters in l - th variant of partition, given by
algorithm µm and 1, if it belongs to the same cluster. αm ≥ 0 - initial weights

such that
M∑
m−1

αm = 1. Then function H(x, x‘) =
M∑
m−1

αm
1
Lm

hlm(x, x‘) satisfies

the condition of Mercer theorem.
Proof. It is obvious that function H(x, x‘) symmetric. Let Clmr - be the set

of indices of objects that belong to r - th cluster, given by m - th algorithmin l -
th variant of partition. Let’s show that H(x, x‘) nonnegatively defined.

Let take arbitrary zεRP and show that zTHz ≥ 0

zTHz =

p∑
i.j−1

M∑
m−1

αm
1

Lm

Lm∑
l−1

hlm(i, j)zizj =

M∑
m−1

αm
1

Lm

Lm∑
l−1

P∑
i.j−1

hlm(i, j)zizj =

∑
SMm−1αm

1

Lm

Lm∑
l−1

(
∑

i.jεClm
l

zizj + ...+
∑

i.jεClm
Klm

zizj) = (4)

M∑
m−1

αm
1

Lm

Lm∑
l−1

((
∑
ioClm

l

zi)
2 + ...+ (

∑
ieClm

Klm

zi)
2) ≥ 0.

Thus, function H(x, x‘) can be used as a kernel in kernel methods of classifi-
cation. For instance, in support vector machines (SVM) and in nearest neighbor
method (NN). Further, the two variants of the algorithm that implement the pro-
posed method are described:

Algorithm CASVM

Input: objects Xc with their classes Yc and objects Xu, number of clustering
algorithms M , number of clustering Lm by each algoritm µm,m = 1, ...,M

Output: classes of objects Xu.
1. Cluster objects Xc ∪ Xu by algorithms µ1, ..., µM , and get Lm variants of

partitions from each algorithm µm,m = 1, ...,M .
2. Computer matrix H for Xc ∪Xu by formula (1).
3. Train SVM with labeled data Xc, using matrix H as kernel.
4. By means of SVM predict classes of unlabeled data Xu.
End of algorithm

Algorithm CANN

Input: objects Xc with given classes Yc and objects Xu, number of clustering
algorithms M , number for clusters Lm
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Output: classes of objects Xu.
1. Cluster objects Xc ∪ Xu Cluster objects by algorithms µ1, ..., µM , get Lm
variants of partitions from each algorithm µm,m = 1, ...,M .

2. Compute H for Xc ∪Xu by formula (1).
3. Use NN: for each unlabeled object xεXu = {xk+1, ..., xN} assign the most

similar class in sense H(x, x‘) of labeled object x‘εXc = {x1, ..., xk}.
Formally written: xi = argmaxH(xi, xj), i = k + 1, ..., Nj = 1...k. End of

algorithm
Note that in the proposed algorithms there is no need to store matrix H in memory
N × N entirely: it is enough to store the clustering matrix of size N × L, where

L =
M∑
l−1

Lm, in this case H can be computed dynamically. In practice, L << N ,

for example, when working with image pixels.

5. THEOETICAL ANALYSIS OF THE METHOD

Let’s recall the problem statement. At the input we have sample of objects
XN{x1, ..., xN}. There are two types of objects in the sample:

Xc = {x1, ..., xk} - labeled objects with classes Yc = {y1, ..., yk}, Ic = {1, ..., k}
- object indices

Xu = {xk+1, ..., xN} - unlabeled objects, Iu = {k + 1, ..., N} - indices of the
objects.

For simplicity, suppose that the number of different algorithms in the ensemble
is algorithms is M = 1, i.e. the algorithms µ = µ1 makes L = L1 clasterizations
according to parameters Ω1, ...,ΩL, that are chosen from the given set. Let us con-
sider these parameters as independent and equally distributed random variables.

Let’s introduce the following notations for xi, xjεXN :
hl(xi, xj) = {1, if algorithm µ in variant l unites the pair (xixj) 0 - otherwise}

And the following quantities L1(xixj) =
L∑
l=1

hl(xixj), L0(xixj) = L−L1(xixj),

which are the number of variants in whcih the algorithm voted for the union of
pair (xixj), or against it, respectively. Let Y (x) - be hidden from us true labels of
unlabeled objects xεXu.

Let’s introduce a random variable:

Z(xixj) =

{
{1, ifY (xi) = Y (xj)

0ifY (xi) 6= Y (xj)
(5)

Denote

q0(xixj) = P [h1(xixj) = 0|Z(xixj) = 0], q1(xixj) = P [h1(xixj) = 1|Z(xixj) = 1]
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conditional probabilities of correct decision for the partition (union) of the pair
into the same cluster (different clusters) correspondently.

Let us assume that parameters Ω1, ...,ΩL stay independent under any value of
Z(xixj). Let us consider any arbitrary pair of points x = εXu and x‘εXc. Let the
algorithms of the ensembl assign the pair to one cluster by majority of votes, and
the object x is given label y = y‘, where y‘ is class label, corresponding to object
x‘.
The following theorem holds.

Theorem 2. Assume for any element of the ensemble the following condition
holds: COVZ,Ω1,...,ΩL

[Z(x, x‘), h1(x, x‘)] > 0, lε{1, ..., L}. Then under the above
assumption of the model, conditional probability of error classification of point x
tends to zero, when L1(x, x‘)→∞ and L0(x, x‘) = const.

The last condition means that the overwhelming majority of voices in the
ensemble are given for the unification of this pair into one cluster. The condition
of positivity of covariance implies that the clustering algorithm tends to make a
correct decision with respect to a given pair of points. The proof of Theorem 2 is
given in the Appendix.

Corollary. Let the following holds for a pair of points : q0(x, x‘) > 1
2 ,

q1(x, x‘) > 1
2 . Then Per(x)→ 0 under L1 →∞.

Proof. Let’s show, that under the given conditions the following holds:
cov[Z(xi, xj), h(xi, xj)] > 0. Let’s omit arguments xi, xj for simplicity of writing.
Thus we have:
q0

p00
p00+p01

> 1
2 , therefore p00 > p01; similarly from q1 = p11

p10+p11
> 1

2 follows that

p11 > p10. According to Bernulli distribution property, cov[Z, h] = p00p11−p01p10.
It means cov[Z, h] > 0.

The corollary shows that the probability of classification error tends to zero
under the assumption that the used algorithms correctly assign pairs of objects to
one or different clusters with probability more 1/2, i.e., do not guess.

6. EXPERIMENTAL SETUP

A typical RGB image contains three channels: the intensity values for each of
the three colors. In some cases, this is not enough to get complete information
about the characteristics of the object being shot. To obtain data on the properties
of objects that are indistinguishable by the human eye, hyper spectral images are
used.

For an experimental analysis of the developed algorithm, we used picture
Salinas-A [17]. The image was collected by the 224-band AVIRIS sensor over
Salinas Valley, California. The image size is 83 x 86; each pixel is characterized by
the vector of 204 spectral intensities; the image spatial resolution is 3.7 m. The
scene contains six types of vegetation and a bare soil. Figure 5a) illustrates the
image: a grayscale representation is obtained from the 10th channel. Figure 5b)
shows the ground truth image; different classes are presented with different colors
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(the colors do not match any vegetation patterns; they are used just to distinguish
between classes).

Figure 5: Salinas-A hyperspectral image: 10th channel (); groundtruth classes (b).

In an experimental analysis of the algorithm, 1% of the pixels selected at ran-
dom for each class made up the labeled sample; the remaining ones were included
in the unlabeled set. To study the effect of noise on the quality of the algorithm,
randomly selected r% of the spectral brightness values of the pixels in different
channels were subjected to a distorting effect: the corresponding value x was re-
placed by a random variable from interval [x(1 − p), x(1 + p)], where r, p - initial
parameters.

The noisy data table containing the spectral brightness values of the pixels
across all channels was fed to the input of the CASVM algorithm, and the K-
means algorithm was chosen as the basic algorithm for constructing the cluster
ensemble.

Different variants of partitions were obtained by random selection of three
channels. Number of clusters K = 7. To speed up the operation of the K-means
algorithm and to obtain more diverse groupings, the number of iterations was
limited to 1.

Since the proposed algorithm implements the idea of distance metric learning, it
would be natural to compare it with a similar algorithm (SVM method), which uses
the standard Euclidean metric, under similar conditions (the algorithm parameters
recommended by default in Matlab environment).

Table 2 shows the accuracy values of the classification of the unlabeled pixels
of the Salinas-A scene for some values of the noise parameters. The running time
of the algorithm was about 3 seconds on a dual-core Intel Core i5 processor with
a clock speed of 2.8 GHz and 4 GB of RAM. As it is shown in the table, CASVM
algorithm has better noise resistance than SVM algorithm.
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Table 2: Accuracy of CASVM and SVM under various noise values.

7. CONCLUSION AND DISCUSSION

The paper has considered one of the variants of the problem of pattern recog-
nition: the task of semi-supervised learning. The algorithms CASVM and CANN
were developed to solve this problem. They use a combination of collective cluster
analysis and kernel based classification. Both theoretical grounds and experimen-
tal confirmations of the usefulness of the proposed methodology were presented.
The proposed combination allows one to use positive features of both approaches:
receive stable decisions in noise conditions, in the presence of complex data struc-
tures.

In our theoretical study, we a) proved that the co-association matrix obtained
with clustering ensemble is a valid kernel matrix and can be applied in kernel based
classification; b) proved that the conditional probability of classification error for
CANN tends to zero then increasing the number of elements in the ensemble, un-
der the condition of positivity of covariance between ensemble decisions and the
true status of the pair of data points. In the latter case, a probabilistic classifica-
tion model for clustering ensemble was proposed. The suggested model expands
theoretical concepts of classification and forecasting.

An experimental study of the proposed algorithms on a hyperspectral image
was performed. It was shown that the CASVM and CANN algorithms are more
noise-resistant than standard SVM and kNN.

Our theoretical investigation was limited by the assumed validity of a number
of assumptions, such as: availability of independent random choice of clustering
algorithms learning settings; positive covariance between clustering decisions and
the true status of data points. Of course, the truthfulness of these assumptions
can be criticized. In real clustering problems, the ensemble size is always finite and
the assumptions lying at the basis of limit theorems can be violated. However, our
study can be considered as a step to obtaining validating conditions which ensure
success of semi-supervised methodology because it is a yet unsolved problem.
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The authors plan to continue studying theoretical properties of clustering en-
sembles and their application in machine learning and data mining, in particular,
for regression problems and hyperspectral image analysis. The designed methods
will be used for genome-wide search for regulatory SNPs (rSNPs) associated with
susceptibility to oncohematology diseases based on ChIP-seq and RNA-seq exper-
imental data.
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Appendix
Proof of Theorem 2. Let h0

1(x, x‘), ..., h0
L(x, x‘)ε{0, 1} be the ensemble deci-

sions for the pair. For short, let us skip arguments x, x‘ until the proof end. Then
the conditional probability of error in classifying x equals:

Per(x) = P [Y (x) 6= Y (x‘)|h1 = h0
1, ..., hL = h0

L] =

= P [Z = 0|h1 = h0
1, ..., hL, ..., h

0
L] = (6)

=
P [Z = 0, h1 = h0

1, ..., hL = h0
L]

P [h1 = h0
1, ..., hL = h0

L]
=

=

L0∏
l=1

P [hl = 0|Z = 0]
L1∏
l=1

[hl = 1|Z = 0]P [Z = 0]

L0∏
l=1

P [hl = 0]
L1∏
l=1

P [hl = 1]

=
qL0
0 (1− q0)L1P = [Z = 0]

(P [hl = 0])L0(P [hl = 1])L1

.
Let us denote
p00 = P [Z = 0, h = 0], p01 = P [Z = 0, h = 1], p10 = P [Z = 1, h = 0], p11 =

P [Z = 1, h = 1], where h is a statistical copy of hl.
Random vector (Z, h) follows two-dimensional Bernulli distributionBer(p00, p01, p10).
Then

q0 =
p00

p00 + p01
, P [h = 0] = p00 + p10, P [Z = 0] = p00 + p01. (7)

One may suppose that 0 < p00, p01, p10, p11 < 1.
Thus

Per(x) =
pL0

00 p
L1
00 (p00 + p01)

[(p00 + p01)(p00 + p10)]L0 [(p00 + p01)(1− p00 + p10)]L1
= (8)

=
(p00 + p01)1−L0pL0

00

(p00 + p10)L0

pL1
01

(p00 + p01)L1(1− p00 − p10)L1
.

Denote A(L0) =
(p00+p01)1−L0p

L0
00

(p00+p10)L0
= const under fixed L0. Because 1 − p00 −

p10 = p01 + p11, we have
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Per(x) = A(L0) =

[
p01

(p00 + p01)(p01 + p11)

]L1

= A(L0)

[
P [Z = 0, h = 1]

P [Z = 0]P [h = 1]

]L1

.

(9)

From the condition of positiveness of the covariance between Z and h, one may
obtain: cov[1− Z, h] = - cov[Z, h] < 0. On the other hand,

cov[1−Z, h] = E[(1−Zh)]−E[1−Z]E[h] = P [Z = 0, h = 1]−P [Z = 0]P [h = 1]

.
Henceforth P [Z=0,h=1]

P [Z=0]P [h=1] < 1 and Per(x)→ 0 as L1∞

The Theorem is proved.


