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Abstract: The eccentric connectivity index of a connected graph G is the sum over
all vertices v of the product dG(v)eG(v), where dG(v) is the degree of v in G and eG(v)
is the maximum distance between v and any other vertex of G. We characterize, with
a new elegant proof, those graphs which have the smallest eccentric connectivity index
among all connected graphs of a given order n. Then, given two integers n and p with
p ≤ n − 1, we characterize those graphs which have the smallest eccentric connectivity
index among all connected graphs of order n with p pendant vertices.
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1. INTRODUCTION

A chemical graph is a representation of the structural formula of a chemical
compound in terms of graph theory where atoms are represented by vertices and
chemical bonds by edges. Arthur Cayley [1] was probably the first to publish
results that consider chemical graphs. In an attempt to analyze the chemical
properties of alkanes, Wiener [12] has introduced the path number index, nowadays
called Wiener index, which is defined as the sum of the lengths of the shortest paths
between all pairs of vertices. Mathematical properties and chemical applications
of this distance-based index have been widely researched.

Numerous other topological indices are used to help describe and under-
stand the structure of molecules [11, 7] by means of studies on quantitative
structure-property relationship (QSPR) and quantitative structure-activity rela-
tionship (QSAR). Among these indices, the eccentric connectivity index can be
defined as follows. Let G = (V,E) be a simple connected undirected graph. The
distance distG(u, v) between two vertices u and v in G is the number of edges of a
shortest path in G connecting u and v. The degree dG(v) of a vertex v in G is the
number of edges incident to v, while the eccentricity eG(v) of v is the maximum
distance between v and any other vertex in G, that is max{distG(v, w) | w ∈ V }.
The eccentric connectivity index ξc(G) of G is defined by

ξc(G) =
∑
v∈V

dG(v)eG(v).

This index was introduced by Sharma et al. in [10] and successfully used for
mathematical models of biological activities of diverse nature [2, 3, 8, 9, 6]. Re-
cently, Hauweele et al. [5] have characterized those graphs which have the largest
eccentric connectivity index among all connected graphs of a given order n. These
results are summarized in Table 1, where

• Kn is the complete graph of order n;

• Pn is the path of order n;

• Wn is the wheel of order n, i.e., the graph obtained by joining a vertex to
all vertices of a cycle of order n− 1;

• Mn is the graph obtained from Kn by removing a maximum matching and,
if n is odd, an additional edge adjacent to the unique vertex that still degree
n− 1;

• En,D is the graph constructed from a path u0−u1− . . .−uD by joining each
vertex of a clique Kn−D−1 to u0, u1 and u2.

In addition to the above-mentioned graphs, we will also consider the following
ones:

• Cn is the chordless cycle of order n;

• Sn,x is the graph of order n obtained by linking all vertices of a stable set
of n− x vertices with all vertices of a clique Kx. The graph Sn,1 is called a
star.
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Table 1: Largest eccentric connectivity index for a fixed order n

n optimal graphs
1 K1

2 K2

3 K3 and P3

4 M4

5 M5 and W5

6 M6

7 M7

8 M8 and E8,4

≥ 9 En,dn+1
3 e+1

Also, for n ≥ 4 and p ≤ n−3, let Hn,p be the graph of order n obtained by adding
a dominating vertex (i.e., a vertex linked to all other vertices) to the graph of
order n− 1 having p vertices of degree 0, and

• n− 1− p vertices of degree 1 if n− p is odd;

• n− 2− p vertices of degree 1 and one vertex of degree 2 if n− p is even.

For illustration, H8,3 and H9,3 are drawn on Figure 1. Note that H4,0 ' S4,2.
Moreover, H4,0 has two dominating vertices while H4,1 and Hn,p have exactly one
dominating vertex for all n ≥ 5 and p ≤ n− 3.

H8,3 H9,3

Figure 1: Two graphs with p = 3 pendant vertices
.

In this paper, we first give an alternative proof to a result of Zhou and Du [13]
showing that the stars are the only graphs with smallest eccentric connectivity
index among all connected graphs of a given order n ≥ 4. These graphs have
n− 1 pendant vertices (i.e., vertices of degree 1). We then consider all pairs (n, p)
of integers with p ≤ n − 1 and characterize the graphs with smallest eccentric
connectivity index among all connected graphs of order n with p pendant vertices.
A similar study appears in [4] where bounds on the Randić index are given for
graphs with fixed order and fixed number of pendant vertices.
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2. MINIMIZING ξc FOR GRAPHS WITH FIXED ORDER

K1 and K2 are the only connected graphs with 1 and 2 vertices, respectively,
while K3 and P3 are the only connected graphs with 3 vertices. Since ξc(K3) =
ξc(P3) = 6, all connected graphs of given order n ≤ 3 have the same eccentric
connectivity index. From now on, we therefore only consider connected graphs
with fixed order n ≥ 4. A proof of the following theorem was already given by
Zhou and Du in [13]. Ours is slightly different.

Theorem 1. Let G be a connected graph of order n ≥ 4. Then ξc(G) ≥ 3(n− 1),
with equality if and only if G ' Sn,1.

Proof. Let x be the number of dominating vertices (i.e., vertices of degree n− 1)
in G. We distinguish three cases.

• If x = 1, then let u be the dominating vertex in G. Clearly, eG(u) = 1 and
dG(u) = n − 1. All vertices v 6= u have eccentricity eG(v) = 2, while their
degree is at least 1 (since G is connected). Hence, ξc(G) ≥ (n−1)+2(n−1) =
3(n− 1), with equality if and only if all v 6= u have degree 1, i.e., G ' Sn,1.

• If x > 1, then all dominating vertices u have dG(u)eG(u) = n − 1, while all
non-dominating vertices v have dG(v) ≥ x ≥ 2 and eG(v) ≥ 2, which implies
dG(u)eG(u) ≥ 4. If n = 4, we therefore have ξc(G) ≥ 3n > 3(n− 1), while if
n > 4, we have ξc(G) ≥ 2(n− 1) + 4(n− 2) = 6n− 10 > 3(n− 1).

• If x = 0, then every pendant vertex v has eG(v) ≥ 3 since its only neighbor is
a non-dominating vertex. Since the eccentricity of the non-pendant vertices
is at least two, we have dG(v)eG(v) ≥ 3 for all vertices v in G, which implies
ξc(G) ≥ 3n > 3(n− 1).

The above theorem states that the stars are the only graphs with smallest
eccentric connectivity index among all connected graphs of a given order n ≥ 4.
All these extremal graphs have n − 1 pendant vertices. In the next section, we
give a similar characterization for graphs with a fixed order n and a fixed number
p of pendant vertices, where p is possibly strictly smaller than n− 1.

3. MINIMIZING ξc FOR GRAPHS WITH FIXED ORDER AND
FIXED NUMBER OF PENDANT VERTICES

Let G be a connected graph of order n ≥ 4 with p pendant vertices. Clearly,
p ≤ n − 1, and G ' Sn,1 if p = n − 1. For p = n − 2, let u and v be the two
non-pendant vertices. Note that u is adjacent to v since G is connected. Clearly,
G is obtained by linking x ≤ n − 3 vertices of a stable set S of n − 2 vertices to
u, and the n− 2− x other vertices of S to v. The n− 2 pendant vertices w have
dG(w) = 1 and eG(w) = 3, while eG(u) = eG(v) = 2 and dG(u) + dG(v) = n.
Hence, ξc(G) = 3(n−2)+2n = 5n−6 for all graphs of order n with n−2 pendant
vertices.
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The above observations show that all graphs of order n with a fixed number
p ≥ n− 2 of pendant vertices have the same eccentric connectivity index. As will
be shown, this is not the case when n ≥ 4 and p ≤ n− 3. We will prove that Hn,p

is almost always the unique graph minimizing the eccentric connectivity index.
Note that

ξc(Hn,p) =

{
n− 1 + 2p+ 4(n− p− 1) = 5n− 2p− 5 if n− p is odd
n− 1 + 2p+ 4(n− p− 2) + 6 = 5n− 2p− 3 if n− p is even.

Theorem 2. Let G be a connected graph of order n ≥ 4 with p ≤ n − 3 pendant
vertices and one dominating vertex. Then ξc(G) ≥ ξc(Hn,p), with equality if and
only if G ' Hn,p.

Proof. The dominating vertex u in G has dG(u)eG(u) = n−1, the pendant vertices
v have dG(v)eG(v) = 2, and the other vertices w have eG(w) = 2 and dG(w) ≥ 2.
Hence, ξc(G) is minimized if all non-pendant and non-dominating vertices have
degree 2, except one that has degree 3 if n − p − 1 is odd. In other words, ξc(G)
is minimized if and only if G ' Hn,p.

Theorem 3. Let G be a connected graph of order n ≥ 4, with at least two domi-
nating vertices.

• If n = 4 then ξc(G) ≥ 12, with equality if and only if G ' K4.

• If n = 5 then ξc(G) ≥ 20, with equality if and only if G ' S5,2 or G ' K5.

• If n ≥ 6 then ξc(G) ≥ 6n− 10, with equality if and only if G ' Sn,2.

Proof. Let x be the number of dominating vertices in G. Then dG(u)eG(u) = n−1
for all dominating vertices u, while eG(v) = 2 and dG(v) ≥ x for all other vertices
v. Hence, ξc(G) ≥ −2x2 + x(3n− 1).

• If n = 4 then ξc(G) ≥ f(x) = −2x2 + 11x. Since 2 ≤ x ≤ 4, f(2) =
14, f(3) = 15, and f(4) = 12, we conclude that ξc(G) ≥ 12, with equality if
and only if x = 4, which is the case when G ' K4.
• If n = 5 then ξc(G) ≥ f(x) = −2x2+14x. Since 2 ≤ x ≤ 5, f(2) = f(5) = 20

and f(3) = f(4) = 24, we conclude that ξc(G) ≥ 20, with equality if and
only if x = 2 or 5, which is the case when G ' S5,2 or G ' K5.
• If n ≥ 6 then −2x2 + x(3n − 1) is minimized for x = 2, which is the case

when G ' Sn,2.

Theorem 4. Let G be a connected graph of order n ≥ 4, with p ≤ n− 3 pendant
vertices and no dominating vertex. Then ξc(G) > ξc(Hn,p) unless n = 5, p = 0
and G ' C5, in which case ξc(G) = ξc(Hn,0) = 20.

Proof. Let U be the subset of vertices u in G such that dG(u) = eG(u) = 2. If U is
empty, then all non-pendant vertices v in G have dG(v) ≥ 2 and eG(v) ≥ 2 (since
G has no dominating vertex), and at least one of these two inequalities is strict,
which implies dG(u)eG(u) ≥ 6. Also, every pendant vertex w has eG(w) ≥ 3 since
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their only neighbor is not dominant. Hence, ξc(G) ≥ 6(n − p) + 3p = 6n − 3p.
Since p ≤ n− 3, we have ξc(G) ≥ 5n− 2p+ 3 > ξc(Hn,p).

So, assume U 6= ∅. Let u be a vertex in U , and let v, w be its two neighbors.
Also, let A = N(v) \ (N(w) ∪ {w}), B = (N(v) ∪ N(w)) \ {u}, and C = N(w) \
(N(v)∪{v}). Since eG(u) = 2, all vertices of G belong to A∪B∪C∪{u, v, w}. We
finally define B′ as the subset of B that contains all vertices b of B with dG(b) = 2
(i.e., their only neighbors are v and w).

Case 1 : v is adjacent to w.
A 6= ∅ else w is a dominating vertex, and C 6= ∅ else v is dominating. Let
G′ be the graph obtained from G by replacing every edge linking v to a vertex
a ∈ A with an edge linking w to a, and by removing all edges linking v to a
vertex of B \B′. Clearly, G′ is also a connected graph of order n with p pendant
vertices, and w is the only dominating vertex in G′. It follows from Theorem 2
that ξc(G′) ≥ ξc(Hn,p). Also,

• dG(u) = dG′(u) and eG(u) = eG′(u);

• dG(x) = dG′(x) and eG(x) ≥ eG′(x) for all x ∈ A ∪ C;

• dG(x) = dG′(x) and eG(x) = eG′(x) for all x ∈ B′;
• dG(x) > dG′(x) and eG(x) = eG′(x) for all x ∈ B \B′.

Hence, ∑
x∈A∪B∪C∪{u}

dG(x)eG(x) ≥
∑

x∈A∪B∪C∪{u}

dG′(x)eG′(x).

Moreover,

• dG(v)eG(v) + dG(w)eG(w) = 2(|A| + |B| + 2) + 2(|C| + |B| + 2) = 2|A| +
4|B|+ 2|C|+ 8;

• dG′(v)eG′(v) + dG′(w)eG′(w) = 2(|B′|+ 2) + |A|+ |B|+ |C|+ 2.

We therefore have

ξc(G)− ξc(G′) =
∑

x∈A∪B∪C∪{u}
dG(x)eG(x) + (dG(v)eG(v) + dG(w)eG(w))

−
∑

x∈A∪B∪C∪{u}
dG′(x)eG′(x)− (dG′(v)eG′(v) + dG′(w)eG′(w))

≥ (2|A|+ 4|B|+ 2|C|+ 8)− (2(|B′|+ 2) + |A|+ |B|+ |C|+ 2)
= |A|+ |C|+ 3(|B′|+ |B \B′|)− 2|B′|+ 2
= |A|+ |C|+ |B′|+ 3|B \B′|+ 2 > 0

This implies ξc(G) > ξc(G′) ≥ ξc(Hn,p).

Case 2 : v is not adjacent to w, and both A ∪ (B \ B′) and C ∪ (B \ B′) are
nonempty.
Let G′ be the graph obtained from G by adding an edge linking v to w, by replacing
every edge linking v to a vertex a ∈ A with an edge linking w to a, and by removing
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all edges linking v to a vertex of B \ B′. Clearly, G′ is also a connected graph of
order n with p pendant vertices. As in the previous case, we have∑

x∈A∪B∪C∪{u}

dG(x)eG(x) ≥
∑

x∈A∪B∪C∪{u}

dG′(x)eG′(x).

Moreover, eG(v) ≥ 2 and eG(w) ≥ 2, while eG′(v) ≤ 2 and eG′(w) = 1, which
implies

• dG(v)eG(v) + dG(w)eG(w) ≥ 2(|A| + |B| + 1) + 2(|C| + |B| + 1) = 2|A| +
4|B|+ 2|C|+ 4;

• dG′(v)eG′(v) + dG′(w)eG′(w) ≤ 2(|B′|+ 2) + |A|+ |B|+ |C|+ 2.

We therefore have

ξc(G)− ξc(G′) ≥ (2|A|+ 4|B|+ 2|C|+ 4)− (2(|B′|+ 2) + |A|+ |B|+ |C|+ 2)
= |A|+ |C|+ |B′|+ 3|B \B′| − 2.

If B\B′ 6= ∅, w is the only dominating vertex in G′, and ξc(G)−ξc(G′) > 0. It then
follows from Theorem 2 that ξc(G) > ξc(G′) ≥ ξc(Hn,p). So assume B \ B′ = ∅.
Since A ∪ (B \B′) 6= ∅, and C ∪ (B \B′) 6= ∅, we have A 6= ∅ and C 6= ∅. Hence,
once again, w is the only dominating vertex in G′, and we know from Theorem 2
that ξc(G′) ≥ ξc(Hn,p).

• If |B′| ≥ 1, |A| ≥ 2 or |C| ≥ 2, then ξc(G) > ξc(G′) ≥ ξc(Hn,p).

• If |B′| = 0 and |A| = |C| = 1, there are two possible cases:

– if the vertex in A is not adjacent to the vertex in C, then n = 5, p = 2,
G ' P5 and G′ ' H5,2. Hence, ξc(G) = 24 > 16 = ξc(Hn,p);

– if the vertex in A is adjacent to the vertex in C, then n = 5, p = 0,
G ' C5 and G′ ' H5,2. Hence, ξc(G) = ξc(Hn,p) = 20;

Case 3 : v is not adjacent to w, and at least one of A ∪ (B \B′) and C ∪ (B \B′)
is empty.

Without loss of generality, suppose A∪ (B \B′) = ∅. We distinguish two subcases.

Case 3.1 : B′ = ∅.
Since n ≥ 4, C 6= ∅. Also, since p ≤ n − 3, there is a non-pendant vertex r ∈ C.
Let G′ be the graph obtained from G by removing the edge linking u and v and
by linking v to w and to r. Note that G′ is a connected graph of order n with
p pendant vertices : while v was pendant in G, but not u, the situation is the
opposite in G′. Note also that Theorem 2 implies ξc(G′) ≥ ξc(Hn,p) since w is the
only dominating vertex in G′. We then have:

• dG(u) = 2, dG′(u) = 1 and eG(u) = eG′(u) = 2, which gives dG(u)eG(u) −
dG′(u)eG′(u) = 2;
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• dG(v) = 1, dG′(v) = 2 eG(v) = 3 and eG′(v) = 2, which gives dG(v)eG(v) −
dG′(v)eG′(v) =−1;

• dG(w) = n − 2, dG′(w) = n − 1 eG(w) = 2 and eG′(w) = 1, which gives
dG(w)eG(w)− dG′(w)eG′(w) = n− 3;

• dG′(r) = dG(r) + 1, eG(r) = 3 and eG′(w) = 2, which gives dG(r)eG(r)−
dG′(r)eG′(r)=dG(r)−2;

• dG′(c)=dG(c) and eG(c) > eG′(c) for all c ∈ (C\{r}). Since r has a neighbor
in C of degree at least 2, we have

∑
c∈C\{r}(dG(c)eG(c)− dG′(c)eG′(c) ≥ 2).

Hence, ξc(G) − ξc(G′) ≥ 2 − 1 + n− 3︸ ︷︷ ︸
>0

+ dG(r)− 2︸ ︷︷ ︸
≥0

+2 > 0, which implies

ξc(G) > ξc(G′) ≥ ξc(Hn,p).

Case 3.2 : B′ 6= ∅.
Let b1, . . . , b|B′| be the vertices in B′. Remember that the unique neighbors of
these vertices are v and w. Let G′ be the graph obtained from G as follows. We
first add an edge linking v to w. Then, for every odd i < |B′|, we add an edge
linking bi to bi+1 and remove the edges linking v to bi and to bi+1. We then have

• dG(x) = dG′(x) and eG(x) = eG′(x) for all x ∈ B′ ∪ C ∪ {u};
• dG(v) = |B′|+ 1, dG′(v) ≤ 3, eG(v) ≥ 2, and eG′(v) ≤ 2;

• dG(w) = |B′|+ |C|+ 1, dG′(w) = |B′|+ |C|+ 2, eG(w) = 2, and eG′(w) = 1.

Hence,

ξc(G)− ξc(G′) = dG(v)eG(v) + dG(w)eG(w)− dG′(v)eG′(v) + dG′(w)eG′(w)
≥ 2(|B′|+ 1) + 2(|B′|+ |C|+ 1)− 6− (|B′|+ |C|+ 2)
= 3|B′|+ |C| − 4.

If |B′| ≥ 2 or |C| ≥ 2, then ξc(G) − ξc(G′) > 0, and since w is then the only
dominating vertex in G′, we know from Theorem 2 that ξc(G) > ξc(G′) ≥ ξc(Hn,p).
So, assume |B′| = 1 and |C| ≤ 1:

• if |C|= 0 then n = 4, p = 0, G ' C4 and G′ ' H4,0, which implies ξc(G) =
16>14=ξc(Hn,p);

• if |C| = 1 then n = 5, p = 1, ξc(G) = 23 and G′ ' H5,1, which implies
ξc(G) > 20 = ξc(Hn,p).

We can now combine these results as follows. Assume G is a connected graph
of order n with p pendant vertices. If p ≥ 1, then G has at most one dominating
vertex, and it follows from Theorems 2 and 4 that Hn,p is the only graph with
maximum eccentric connectivity index. If p = 0 and n = 4, then G cannot contain
exactly one dominating vertex, and Theorems 3 and 4 show that K4 is the only
graph with maximum eccentric connectivity index. If p = 0 and n = 5, Theorems
2, 3, and 4 show that H5,0, S5,2, K5, and C5 are the only candidates to minimize the
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eccentric connectivity index, and since ξc(H5,0) = ξc(S5,2) = ξc(K5) = ξc(C5) = 20,
the four graphs are the optimal ones. If p = 0 and n ≥ 6, then we know from
Theorems 2, 3, and 4 that Sn,2 and Hn,0 are the only candidates to minimize the
eccentric connectivity index. Since ξc(S6,2) = 26 < 27 = ξc(H6,0), ξc(S7,2) = 32 >
30 = ξc(H7,0) and ξc(Sn,2) = 6n − 10 > 5n − 3 ≥ ξc(Hn,0) for n ≥ 8, we deduce
that S6,2 is the only graph with maximum eccentric connectivity index when n = 6
and p = 0, while Hn,0 is the only optimal graph when n ≥ 7 and p = 0. This is
summarized in the following Corollary.

Corollary 5. Let G be a connected graph of order n ≥ 4 with p ≤ n− 3 pendant
vertices.

• If p ≥ 1 then ξc(G) ≥ ξc(Hn,p), with equality if and only if G ' Hn,p;

• If p = 0 then

– if n = 4 then ξc(G) ≥ 12, with equality if and only if G ' K4;

– if n = 5 then ξc(G) ≥ 20, with equality if and only if G ' H5,0, S5,2,
K5 or C5;

– if n = 6 then ξc(G) ≥ 26, with equality if and only if G ' S6,2;

– if n ≥ 7 then ξc(G) ≥ ξc(Hn,0), with equality if and only if G ' Hn,0.

4. CONCLUSION

We have given a new elegant proof for characterizing the connected graphs
of fixed order that have the smallest eccentric connectivity index. We have then
characterized those graphs which have the minimum eccentric connectivity index
among all connected graphs with a fixed order n and a fixed number p of pendant
vertices. Such a characterization for graphs with a fixed order n and a fixed size
m was given in [13]. It reads as follows.

Theorem 6. Let G be a connected graph of order n with m edges, where n− 1 ≤
m <

(
n
2

)
. Also, let

k =

⌊
2n− 1−

√
(2n− 1)2 − 8m

2

⌋
.

Then ξc(G) ≥ 4m − k(n − 1), with equality if and only if G has k dominating
vertices and n− k vertices of eccentricity 2.

It is, however, an open question to characterize the graphs with largest eccentric
connectivity index among those of fixed order n and fixed size m. The following
conjecture appears in [5], where En,D,k is the graph of order n constructed from a
path u0 − u1 − . . .− uD by joining each vertex of a clique Kn−D−1 to u0 and u1,
and k vertices of the clique to u2.
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Conjecture 7. Let G be a connected graph of order n with m edges, where n−1 ≤
m ≤

(
n−1
2

)
. Also, let

D =

⌊
2n+ 1−

√
17 + 8(m− n)

2

⌋
and k = m−

(
n−D + 1

2

)
−D + 1.

Then ξc(G) ≤ ξc(En,D,k), with equality if and only if G ' En,D,k or D = 3,
k = n− 4 and G is the graph constructed from a path u0−u1−u2−u3, by joining
1 ≤ i ≤ n−3 vertices of a clique Kn−4 to u0, u1, u2 and the n−4− i other vertices
of Kn−4 to u1, u2, u3.
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