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Abstract: In the present work we solve the problem of finding the fuzzy distance be-
tween two subsets of a fuzzy metric space for which we use a non-self fuzzy contraction
mapping from one set to the other. It is a fuzzy extension of the proximity point problem
which is by its nature a problem of global optimization. The contraction is defined here
by two control functions. We define a geometric property of the fuzzy metric space. The
main result is illustrated with an example. Our result extends a fuzzy version of the
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1. INTRODUCTION

In this paper we establish a proximity point result in a fuzzy metric space so
to find the fuzzy distance between two subsets. The problem originated from the
work of Eldred et al [9] and has been well studied during the decade through works
like [2, B, 9, 15, 14, 16 2T, 22] . For our purpose we use a non-self contraction
mapping which is defined by two control functions. The fuzzy metric space on
which we deduce our results is as in George et al [I0]. Due to its special features,
it has become the platform of several extensions of metric related studies [T}, [3]
40 [6] [7, 111 2], 13 19]. The problem sought to be considered here is essentially
a global optimization problem which is solved by transforming it to a problem of
finding the optimal approximate solution to a fixed point equation for a non-self
contraction defined by use of two control functions. Control functions have been
used in several fixed point problems in metric spaces [20]. Here, as the contraction
function is non-self mapping, there is no exact solution of the fixed point equation.
The following are two special features of the present work.

1. We define and use a non-self contraction with two control functions.
2. We define and use a geometric property in the fuzzy metric space.

2. MATHEMATICAL PRELIMINARIES

George and Veeramani in their paper [10] introduced the following defini-
tion of fuzzy metric space. Throughout this paper, we use this definition of fuzzy
metric space.

Definition 1. [10] The 3-tuple (X, M, x) is called a fuzzy metric space if X is an
arbitrary non-empty set, M is a fuzzy set on X2 x (0,00) satisfying the following
conditions for each x,y,z € X and t,s > 0:

() M(z,y,t) >0,

() M(z,y,t) =1 if and only if x =y,

() M(z,y,t) = M(y,x,1),

() M(z,y,t)* M(y,z,s) < M(z,2,t+s) and
() M(z,y,.): (0,00) — (0,1] is continuous,

where * is a continuous t-norm, that is, a continuous function x : [0,1]?> —
[0,1] such that
(i) axb="bxa for all a,b € [0,1],
(i1) a* (bxc) = (axb)*c for all a,b,c € 0,1],
(iii) a x 1 = a for all a € [0,1],
(iv) a b < c*d whenever a < ¢ and b < d, for each a,b,c,d € [0,1].
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Let (X, M, *) be a fuzzy metric space. For ¢ > 0 and r with 0 < r < 1, the open
ball B(z,t,r) with center z € X is defined by

A subset A C X is called open if for each x € A, there exist ¢t > 0 and r with
0 < r < 1 such that B(z,t,r) C A. Let 7 denote the family of all open subsets
of X. Then 7 is a topology and is called the topology on X induced by the fuzzy
metric M. The topology 7 is a Hausdorff topology [10]. In fact, the definition 2.1
is a modification of the definition given in [I7] for ensuring Hausdorff topology of
the space.

Definition 2. [10] Let (X, M, x) be a fuzzy metric space. A sequence {x,} in X
is said to be convergent to a point x € X if lim M (xz,,z,t) =1 for all t > 0.
n—oo

Definition 3. [10] Let (X, M, x) be a fuzzy metric space. A sequence {x,} in X
is called a Cauchy sequence if for each € with 0 < e <1 and t > 0, there exists a
positive integer ng such that M (x,, xm,t) > 1 — ¢ for each n,m > nyg.
A fuzzy metric space is said to be complete if every Cauchy sequence is convergent
in it.

The following lemma was proved by Grabiec [11] for fuzzy metric spaces defined

by Kramosil et al [17]. The proof is also applicable to the fuzzy metric space given
in definition 2.1.

Lemma 4. [11] Let (X, M, *) be a fuzzy metric space. Then M(x,y,.) is non-
decreasing for all x,y € X.

Lemma 5. [I8] M is a continuous function on X? x (0,00).

We will require for use in our results the following two functions.

Definition 6. (U-function)[23] A function i : [0,00) — [0,00) is a V- function
if

() ¥ is nondecreasing and continuous,
() B4 (t) < oo for all t > 0, where Y™ TH(t) = (" (), n > 1.

It is clear that ¥(t) <t for allt > 0 whenever ¥ is a VU-function.

The following function is an example of a 1) - function:

W){ t—L2, ifte [0,1],

1
1, t>1.
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Definition 7. [20] A function ¢ : [0,00) — [0,00) is a D- function if
(i) ¢ is nondecreasing and continuous,

(ii) $(0) = 0.

Lemma 8. [23] If x is a continuous t-norm, and {an}, {Bn} and {y.} are se-
quences such that o, — a, v, — v as n — oo, then klim (g * B * ) =
— 0

ax lim By xv and
k—o0

lim (o * B * vn) = ax lim B, * 7.
k—o00 k—oo

Lemma 9. [23] Let {f(k,.) : [0,00) — [0,1],k = 0,1,2,......} be a sequence of

functions such that f(k, .) is continuous and monotone increasing for each k >

0. Then klim f(k,t) is a left continuous function in t and lim f(k,t) is a right
— 00

k—oco
continuous function in t.

3. MAIN RESULTS

Definition 10. [Z]] Let (X, M, *) be a fuzzy metric space. The fuzzy distance of
a point x € X from a nonempty subset A of X is
M(z, A, t) = supM(z,a,t) for allt >0
€A

and the fuzzy distance between two nonempty subsets A and B of X 1is
M(A, B,t) = sup{M(a,b,t) : a € A,b € B} for allt > 0.

Let A and B be two nonempty disjoint subsets of a fuzzy metric space (X, M, x).
We write
Ay ={zx € A: 3y € B such that M(z,y,t) = M(A, B,t) for all
t > 0},
By ={y € B: 3z € A such that M(z,y,t) = M(A, B,t) for all
t > 0}.

Definition 11. Let (X, M, ) be a fuzzy metric space and A, B are two non-empty
subsets of X. An element x* € A is defined as a fuzzy best proximity point of the
mapping f : A — B if it satisfies the condition that for all t > 0

M(z*, fa*,t) = M(A, B,t).

In the following we define a property of a pair of subsets in a fuzzy metric space.
It is essentially a geometric property.

Definition 12. Let (A, B) be a pair of nonempty disjoint subsets of a fuzzy metric
space (X, M, ). Then the pair (A, B) is said to satisfy the fuzzy P-property if for
allt >0 and x1,z2 € A, y1,y2 € B,

M(xz1,y1,t) = M(A, B,t) and M(x2,y2,t) = M (A, B,t)
jointly implies that

M(l‘l,IQ,t) = M(yl,yg,t).
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The P-property is a geometric property which is automatically valid in Hilbert
spaces for non- empty closed and convex pairs of sets [21], but does not hold in
arbitrary Banach spaces. In metric spaces such property for pairs of subsets is
separately assumed for specific purposes. The above definition is a fuzzy extension
of that.

Definition 13. Let (X, M,x*) be a fuzzy metric space and f : A — B be a map-
ping. The mapping f is non-self (¢ — 1 )- contraction mapping if there exist V-
function (deﬁnition@ Y, a P-function (deﬁnition@ ¢ and 0 < ¢ < 1 such that
forallt >0 and z,y € A we have

1 1
( -1 <Y
M (fx, fy, ¢(ct)) M (z,y, ()
Note. The above contraction condition with some variations in the condition on

1) has already appeared in the context of fixed point studies in probabilistic metric
spaces [g].

~1). (3.1)

Theorem 14. Let (X, M, x*) be a complete fuzzy metric space. Let A and B be
two closed subsets of X and f : A — B be an (¢ —1p)— contractive mapping such
that the following conditions are satisfied.
(i) (A, B) satisfies the fuzzy P-property,
(i) f(Ao) C Bo,
(#ii) Ag is nonempty,
Then there exists an element x* € A which is a fuzzy best proximity point of f.
Proof. By assumption (i), Ay is nonempty. Let xg € Ag. Since f(Aog) C By,
there exists x1 € Ay such that

M(z1, fxo,t) = M(A, B,t) for all t > 0.
Again since f(Ag) C By, there exists xo € Ag such that

M (o, fa1,t) = M(A, B,t) for all t > 0.
Continuing this process, we construct a sequence {x,} in Ay such that for all
n>1, forallt >0,

M(xnafxn—lat) :M(AaBat)~ (32)
Also, we can write the above as
M(xpt1, fon,t) = M(A,B,t) forall n>1,forall t>0. (3.3)

Since (A, B) satisfies the fuzzy P-property, we get from (3.2) and (3.3), for all
t>0

M(xnazn-‘rlat) = M(fll?n_hfl'n,t) fOT’ all n>1. (34)

From the property of ¢ it is clear that for each t > 0 there exists tyg > 0 such that
p(to) = t.
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Since f is (p—1p)— contraction and from the property of ¢ , we have for alln > 1,
for allt > 0 there exist tg > 0 such that

1 1

S Frnfomt) = WiGan s, fom ot "
Sz o
S
= df(m -1)
Therefore, we have for alln > 1, for all t > 0,
G~V < G~ ) (3.5)

Combining (3.4) and (3.5), we have for alln > 1, for allt > 0,

1 1
— D <Y —1). 3.6
(M(-Tnaxn+1at) ) - w(M(xnflaxn7t) ) ( )
If for some k > 0, x = xk11, then xy is a best proximity point of f.
Assuming x,—1 # x, for alln > 1, and making repeated applications of (3.6]), we
have for alln > 1, for allt > 0,

1 1

oy V<Y Gy~ (57)

Taking n — oo in the above inequality (3.7)), for all t > 0, we obtain

nlggo(m -1 < nlgrgown(m —1) — 0 asn — oo, (by a property
of ).
that is, nl;ngo(m — 1) =0, which implies that for all t > 0,
lim M(xp, Tpi1,t) = 1. (3.8)
n—oo

Next, we show that {z,} is a Cauchy sequence in A. We suppose, if possible, that
{zn} is not a Cauchy sequence in A. Then definition @ is not satisfied by the
sequence {x,} and, therefore, there exist some € > 0 and some A with 0 < X < 1,
for which we can find two subsequences {Tpy,xy} and {Tyx)} of {zn} with

n(k) > m(k) >k such that

M (T (k) Tn(r), €) < (1= N), (3.9)

for all positive integer k.
We may choose the n(k) as the smallest integer exceeding m(k) for which (3.9)
holds. Then, for all positive integer k,

M (T (k)s Tr(ky—1,€) > (1= A) (3.10)
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Then, for all k > 1,0 < s < 5, we obtain,

(1=X) > M(Zmk)> Tn(k),€)
> M(Zmk)s Tmk)—158) * M(Zm(r)y—1, Tn(k)—1,€ — 28)
* M(:Cn(k)—lv Tn(k)s 5). (3.11)

For allt > 0, we denote

ha(t) = Hm M (@ k)1, ey -1:1)- (3.12)

Taking limit supremum on both sides of (3.11), using (3.8]), the properties of M
and *, by lemma , we obtain

(I=X)>1x kliriloM(xm(k)_17xn(k)_1,e —28)*1 = hy(e—2s) (3.13)

Since M is bounded within the range in [0,1], continuous and, by lemma mono-
tone increasing in the third variable t, it follows by an application of lemmal[9 that
hi, as given in (3.12) is continuous from the left. From the above, letting s — 0

in (3.13), it then follows that

leIIoloM(.’[m(k)_l, Tn(k)—1, 6) < (1 - )\) (314)
Let,
hg(t) = lim M(xm(k)_l,xn(k)_l,t),t > 0. (315)
k—o00

Again, for all k> 1,5 >0,

> M(Zmk)—1> Tm(k)> S) ¥ M(Zm(k)s Tr(k)—1, €)
> M(xm(k)—l, T (k) 8) * (1 - >‘)7 ‘m@' )6)
Taking limit infimum as k — oo in (3.16), by virtue of (3.8), we obtain

M (2 (k) =1, T (k)—1, € + 5)

ho(e+s) = Hm M(Zp(r)—1, Trk)—15 € +8) = Hm M (Zpk)—1, Trm(r), 8) * (1 = A)

k—o0 k—o0

—1x(1-A)=(1-X). (3.17)

Since M is bounded within the range in [0,1], continuous and by lemma 4, it is
monotone increasing in the third variable t, it follows by an application of lemma
9 that ha, as given in s continuous from the right.

From the above, letting s — 0 in , it then follows that

m M (k) -1, Tn(r)—1,€) > (1 = A). (3.18)
k—o00

The inequalities (3.14]) and (3.18) jointly imply that
lim M(xm(k)—h Ln(k)—1, 6) = (1 - )‘) (319)

k—oc0
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Again by (3.9),

lim M(:Um(k),xn(k), 6) < (1 — )\) (3.20)

k—o0

Also for all k > 1,5 > 0, we obtain
M (2 (), Truhy s €428) = M Ty Ty =15 8)F M (T (k) =15 T (k) =15 )FM (T (k) =15 Tn(k) S)
Taking limit infimum as k — oo in the above inequality, using (3.8), and
the properties of M and *, by lemma 8, we obtain
Hm M (2 k), Tn(ry, € +25) > 1 lim M (2 )—1, Tnk)—1,€) x 1 =1 — A
k

k—o0 —00
Since M is bounded within the range in [0,1], is continuous and, by lemma 4,

monotone increasing in the third variable t, it follows by an application of lemma

9 that Bm M (2 k), Tn(k),t) s continuous function of t from the right.
k—o0
Taking s — 0 in the above inequality, and using lemma 9, we obtain

lim M(xm(k), Tn(k)s €) > (1-N), (3.21)
k—o0
Combining (3:20) and (3.21), we obtain
A M (& k), Tnry, €) = (1= A) (3.22)
From (3.3), we have
M(xm(k)vfxm(k)fht) = M(AaBat) (323)
M(xn(k)vfxn(k)flat) = M(AaBat) (324)

Since (A, B) satisfies the fuzzy P-property, we get from (3.23)) and (3.24), for all
t>0,

M (2 (k)s Trk) t) = M(fTmgy—15 fTnr)—1,1)- (3.25)

Now by the property of ¢, there exists g > 0 such that ¢(ep) = €.
Therefore, from the above and by (3.25)),

(M(mm<k;$n<k>7 & b= (M(fxmw)—jfmn(k)—h o &
- (M(fﬂﬁm(k)hflﬂ?n(k)h #(e0)) D
e P Fve o
= w(M(xm(k)—lvxln(k)—la de0)) D
= ( ! 1)

M (Z (k) =1, Tn(k)—1, €)
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Taking k — oo in the above inequality, we have
L 5= 1) <4 1 1). (since 1 is continuous)

kIL%oM(Im(k) YT (k) € kli)H;oM(wm(k)—laajn(k)—lxe)

Using (3.19) and , we have
(5~ 1) < wlks 1) < (5 — 1),
which is a contradiction.
Thus, it is established that {x,,} is a Cauchy sequence. Since (X, M, x) is complete,
there exists x* € A such that

lim z, = z".

n—oo
Since f is (¢ — )~ proxzimal contractive mapping, by using (3.1]), we have for all
n>0,t>0

g O e ey Y
S ey R
< VG
< w(m -1

Taking limit n — oo on both sides of the above inequality, using the fact that
»(0) =0, we have

fxn, — fax* asn — co.
From (3.3) and the above limit, for allt >0
M(A,B,t) = M(zpy1, fan,t) = M(x*, fa*,t) as n — co.

Therefore, for allt > 0, M(x*, fa*,t) = M (A, B,t). This completes the proof.

4. ILLUSTRATION

Example 15. Suppose that X = R? with fuzzy metric space
’ ’ . + L. -
. M((z,y),(x ,y ),1t) = T Ty .and minimum t—norm >l<..
Consider the closed subsets A and B in the topology induced by the fuzzy metric
as

A={(0,z):z € R},
B={(1,z):z € R}.
Let (t) = ct and ¢(t) = t2, where 0 < ¢ < 1. Let f : A — B be the mapping

defined by

F((0,2)) = (1,1 — '),

Here M(A, B,t) = 1-t‘,-t for allt > 0.
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Here Ag = A and By = B and f(Ap) C By.
Now we show that [ satisfies fuzzy P- property.
Let uy = (0,21), ug = (0,22) € A and vy = (1,y1), voa = (1,y2) € B with

M(uy,v1,t) = M(A, B,t) for allt >0 (4.1)
and
M (ug,ve,t) = M(A, B,t) for allt >0 (4.2)
From , we get fortall t>0 )
It ei—yi] L

which implies that 1 = y;.
Similarly from , we get for all t > 0
T2 = Y2.
Now for allt >0
M(ul, Uz, t) = L

W—mfl
= -yl
= M(v1,v9,t).
Hence [ satisfies fuzzy P- property.
Let u = (0,z),v = (0,y) € A. Without loss of generality, we may assume that
T <y.
Now for allt > 0,

R S il i
M(fu, fv,¢(ct)) N 212
3=’ [z+0(y—2)] |5 —
== 2 ] (Using MVT, where 0 < 0 < 1)
212
clr —y|
<
1
=c(f—— — 1
iGaoomy Y
1

(e —1).
v 0wy Y
Hence f satisfies (¢ — 1)-proximal contraction.
Here (0,0) € A is the best proximity point of f.

Note: The above illustration indicates that our result is an effective generalization
of the fuzzy Banach contraction mapping principle given by Gregori and Sapena
[13] in complete fuzzy metric space since the latter is not applicable to the above
example.
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