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Abstract: In the present work we solve the problem of finding the fuzzy distance be-
tween two subsets of a fuzzy metric space for which we use a non-self fuzzy contraction
mapping from one set to the other. It is a fuzzy extension of the proximity point problem
which is by its nature a problem of global optimization. The contraction is defined here
by two control functions. We define a geometric property of the fuzzy metric space. The
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1. INTRODUCTION

In this paper we establish a proximity point result in a fuzzy metric space so
to find the fuzzy distance between two subsets. The problem originated from the
work of Eldred et al [9] and has been well studied during the decade through works
like [2, 5, 9, 15, 14, 16, 21, 22] . For our purpose we use a non-self contraction
mapping which is defined by two control functions. The fuzzy metric space on
which we deduce our results is as in George et al [10]. Due to its special features,
it has become the platform of several extensions of metric related studies [1, 3,
4, 6, 7, 11, 12, 13, 19]. The problem sought to be considered here is essentially
a global optimization problem which is solved by transforming it to a problem of
finding the optimal approximate solution to a fixed point equation for a non-self
contraction defined by use of two control functions. Control functions have been
used in several fixed point problems in metric spaces [20]. Here, as the contraction
function is non-self mapping, there is no exact solution of the fixed point equation.
The following are two special features of the present work.

1. We define and use a non-self contraction with two control functions.
2. We define and use a geometric property in the fuzzy metric space.

2. MATHEMATICAL PRELIMINARIES

George and Veeramani in their paper [10] introduced the following defini-
tion of fuzzy metric space. Throughout this paper, we use this definition of fuzzy
metric space.

Definition 1. [10] The 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an
arbitrary non-empty set, M is a fuzzy set on X2 × (0,∞) satisfying the following
conditions for each x, y, z ∈ X and t, s > 0:

() M(x, y, t) > 0,

() M(x, y, t) = 1 if and only if x = y,

() M(x, y, t) = M(y, x, t),

() M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) and

() M(x, y, .) : (0,∞) −→ (0, 1] is continuous,

where ∗ is a continuous t-norm, that is, a continuous function ∗ : [0, 1]2 −→
[0, 1] such that
(i) a ∗ b = b ∗ a for all a, b ∈ [0, 1],
(ii) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ [0, 1],
(iii) a ∗ 1 = a for all a ∈ [0, 1],
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].
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Let (X,M, ∗) be a fuzzy metric space. For t > 0 and r with 0 < r < 1, the open
ball B(x, t, r) with center x ∈ X is defined by

B(x, t, r) = {y ∈ X : M(x, y, t) > 1− r}.

A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and r with
0 < r < 1 such that B(x, t, r) ⊂ A. Let τ denote the family of all open subsets
of X. Then τ is a topology and is called the topology on X induced by the fuzzy
metric M . The topology τ is a Hausdorff topology [10]. In fact, the definition 2.1
is a modification of the definition given in [17] for ensuring Hausdorff topology of
the space.

Definition 2. [10] Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in X
is said to be convergent to a point x ∈ X if lim

n→∞
M(xn, x, t) = 1 for all t > 0.

Definition 3. [10] Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in X
is called a Cauchy sequence if for each ε with 0 < ε < 1 and t > 0, there exists a
positive integer n0 such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.

A fuzzy metric space is said to be complete if every Cauchy sequence is convergent
in it.

The following lemma was proved by Grabiec [11] for fuzzy metric spaces defined
by Kramosil et al [17]. The proof is also applicable to the fuzzy metric space given
in definition 2.1.

Lemma 4. [11] Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, .) is non-
decreasing for all x, y ∈ X.

Lemma 5. [18] M is a continuous function on X2 × (0,∞).

We will require for use in our results the following two functions.

Definition 6. (Ψ-function)[23] A function ψ : [0,∞)→ [0,∞) is a Ψ- function
if

() ψ is nondecreasing and continuous,

() Σ∞n=1ψ
n(t) <∞ for all t > 0, where ψn+1(t) = ψ(ψn(t)), n ≥ 1.

It is clear that ψ(t) < t for all t > 0 whenever ψ is a Ψ-function.

The following function is an example of a ψ - function:

ψ(t) =

{
t− t2

2 , if t ∈ [0, 1],
1
2 , t > 1.
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Definition 7. [20] A function φ : [0,∞)→ [0,∞) is a Φ- function if
(i) φ is nondecreasing and continuous,
(ii) φ(0) = 0.

Lemma 8. [23] If ∗ is a continuous t-norm, and {αn}, {βn} and {γn} are se-
quences such that αn → α, γn → γ as n → ∞, then lim

k→∞
(αk ∗ βk ∗ γk) =

α ∗ lim
k→∞

βk ∗ γ and

lim
k→∞

(αk ∗ βk ∗ γn) = α ∗ lim
k→∞

βk ∗ γ.

Lemma 9. [23] Let {f(k, .) : [0,∞) → [0, 1], k = 0, 1, 2, ......} be a sequence of
functions such that f(k, .) is continuous and monotone increasing for each k ≥
0. Then lim

k→∞
f(k, t) is a left continuous function in t and lim

k→∞
f(k, t) is a right

continuous function in t.

3. MAIN RESULTS

Definition 10. [24] Let (X,M, ∗) be a fuzzy metric space. The fuzzy distance of
a point x ∈ X from a nonempty subset A of X is

M(x,A, t) = sup
a∈A

M(x, a, t) for all t > 0

and the fuzzy distance between two nonempty subsets A and B of X is
M(A,B, t) = sup{M(a, b, t) : a ∈ A, b ∈ B} for all t > 0.

Let A and B be two nonempty disjoint subsets of a fuzzy metric space (X,M, ∗).
We write

A0 = {x ∈ A : ∃ y ∈ B such that M(x, y, t) = M(A,B, t) for all
t > 0},

B0 = {y ∈ B : ∃ x ∈ A such that M(x, y, t) = M(A,B, t) for all
t > 0}.

Definition 11. Let (X,M, ∗) be a fuzzy metric space and A, B are two non-empty
subsets of X. An element x∗ ∈ A is defined as a fuzzy best proximity point of the
mapping f : A→ B if it satisfies the condition that for all t > 0

M(x∗, fx∗, t) = M(A,B, t).

In the following we define a property of a pair of subsets in a fuzzy metric space.
It is essentially a geometric property.

Definition 12. Let (A,B) be a pair of nonempty disjoint subsets of a fuzzy metric
space (X,M, ∗). Then the pair (A,B) is said to satisfy the fuzzy P-property if for
all t > 0 and x1, x2 ∈ A, y1, y2 ∈ B,

M(x1, y1, t) = M(A,B, t) and M(x2, y2, t) = M(A,B, t)
jointly implies that

M(x1, x2, t) = M(y1, y2, t).
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The P -property is a geometric property which is automatically valid in Hilbert
spaces for non- empty closed and convex pairs of sets [21], but does not hold in
arbitrary Banach spaces. In metric spaces such property for pairs of subsets is
separately assumed for specific purposes. The above definition is a fuzzy extension
of that.

Definition 13. Let (X,M, ∗) be a fuzzy metric space and f : A → B be a map-
ping. The mapping f is non-self (φ − ψ)- contraction mapping if there exist Ψ-
function (definition 6) ψ, a Φ-function (definition 7) φ and 0 < c < 1 such that
for all t > 0 and x, y ∈ A we have

(
1

M(fx, fy, φ(ct))
− 1) ≤ ψ(

1

M(x, y, φ(t))
− 1). (3.1)

Note. The above contraction condition with some variations in the condition on
ψ has already appeared in the context of fixed point studies in probabilistic metric
spaces [8].

Theorem 14. Let (X,M, ∗) be a complete fuzzy metric space. Let A and B be
two closed subsets of X and f : A→ B be an (φ− ψ)− contractive mapping such
that the following conditions are satisfied.
(i) (A,B) satisfies the fuzzy P-property,
(ii) f(A0) ⊆ B0,
(iii) A0 is nonempty,
Then there exists an element x∗ ∈ A which is a fuzzy best proximity point of f .
Proof. By assumption (iii), A0 is nonempty. Let x0 ∈ A0. Since f(A0) ⊆ B0,
there exists x1 ∈ A0 such that

M(x1, fx0, t) = M(A,B, t) for all t > 0.
Again since f(A0) ⊆ B0, there exists x2 ∈ A0 such that

M(x2, fx1, t) = M(A,B, t) for all t > 0.
Continuing this process, we construct a sequence {xn} in A0 such that for all
n ≥ 1, for all t > 0,

M(xn, fxn−1, t) = M(A,B, t). (3.2)

Also, we can write the above as

M(xn+1, fxn, t) = M(A,B, t) for all n ≥ 1, for all t > 0. (3.3)

Since (A,B) satisfies the fuzzy P-property, we get from (3.2) and (3.3), for all
t > 0

M(xn, xn+1, t) = M(fxn−1, fxn, t) for all n > 1. (3.4)

From the property of φ it is clear that for each t > 0 there exists t0 > 0 such that
φ(t0) = t.
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Since f is (φ−ψ)− contraction and from the property of φ , we have for all n ≥ 1,
for all t > 0 there exist t0 > 0 such that

(
1

M(fxn−1, fxn, t)
− 1) = (

1

M(fxn−1, fxn, φ(t0))
− 1)

≤ (
1

M(fxn−1, fxn, φ(ct0))
− 1)

≤ ψ(
1

M(xn−1, xn, φ(t0))
− 1)

= ψ(
1

M(xn−1, xn, t)
− 1)

Therefore, we have for all n ≥ 1, for all t > 0,

(
1

M(fxn−1, fxn, t)
− 1) ≤ ψ(

1

M(xn−1, xn, t)
− 1). (3.5)

Combining (3.4) and (3.5), we have for all n ≥ 1, for all t > 0,

(
1

M(xn, xn+1, t)
− 1) ≤ ψ(

1

M(xn−1, xn, t)
− 1). (3.6)

If for some k > 0, xk = xk+1, then xk is a best proximity point of f .
Assuming xn−1 6= xn for all n ≥ 1, and making repeated applications of (3.6), we
have for all n ≥ 1, for all t > 0,

(
1

M(xn, xn+1, t)
− 1) ≤ ψn(

1

M(x0, x1, t)
− 1). (3.7)

Taking n→∞ in the above inequality (3.7), for all t > 0, we obtain
lim
n→∞

( 1
M(xn,xn+1,t)

−1) ≤ lim
n→∞

ψn( 1
M(x0,x1,t)

−1)→ 0 as n→∞, (by a property

of ψ).
that is, lim

n→∞
( 1
M(xn,xn+1,t)

− 1) = 0, which implies that for all t > 0,

lim
n→∞

M(xn, xn+1, t) = 1. (3.8)

Next, we show that {xn} is a Cauchy sequence in A. We suppose, if possible, that
{xn} is not a Cauchy sequence in A. Then definition 3 is not satisfied by the
sequence {xn} and, therefore, there exist some ε > 0 and some λ with 0 < λ < 1,
for which we can find two subsequences {xm(k)} and {xn(k)} of {xn} with

n(k) > m(k) > k such that

M(xm(k), xn(k), ε) ≤ (1− λ), (3.9)

for all positive integer k.
We may choose the n(k) as the smallest integer exceeding m(k) for which (3.9)
holds. Then, for all positive integer k,

M(xm(k), xn(k)−1, ε) > (1− λ) (3.10)
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Then, for all k ≥ 1, 0 < s < ε
2 , we obtain,

(1− λ) ≥ M(xm(k), xn(k), ε)

≥ M(xm(k), xm(k)−1, s) ∗M(xm(k)−1, xn(k)−1, ε− 2s)

∗ M(xn(k)−1, xn(k), s). (3.11)

For all t > 0, we denote

h1(t) = lim
k→∞

M(xm(k)−1, xn(k)−1, t). (3.12)

Taking limit supremum on both sides of (3.11), using (3.8), the properties of M
and ∗, by lemma (8), we obtain

(1− λ) ≥ 1 ∗ lim
k→∞

M(xm(k)−1, xn(k)−1, ε− 2s) ∗ 1 = h1(ε− 2s) (3.13)

Since M is bounded within the range in [0,1], continuous and, by lemma 4, mono-
tone increasing in the third variable t, it follows by an application of lemma 9 that
h1, as given in (3.12) is continuous from the left. From the above, letting s → 0
in (3.13), it then follows that

lim
k→∞

M(xm(k)−1, xn(k)−1, ε) ≤ (1− λ). (3.14)

Let,

h2(t) = lim
k→∞

M(xm(k)−1, xn(k)−1, t), t > 0. (3.15)

Again, for all k ≥ 1, s > 0,

M(xm(k)−1, xn(k)−1, ε+ s) ≥ M(xm(k)−1, xm(k), s) ∗M(xm(k), xn(k)−1, ε)

≥ M(xm(k)−1, xm(k), s) ∗ (1− λ), (by(3.10)).(3.16)

Taking limit infimum as k →∞ in (3.16), by virtue of (3.8), we obtain

h2(ε+ s) = lim
k→∞

M(xm(k)−1, xn(k)−1, ε+ s) ≥ lim
k→∞

M(xm(k)−1, xm(k), s) ∗ (1− λ)

= 1 ∗ (1− λ) = (1− λ). (3.17)

Since M is bounded within the range in [0,1], continuous and by lemma 4, it is
monotone increasing in the third variable t, it follows by an application of lemma
9 that h2, as given in (3.15) is continuous from the right.
From the above, letting s→ 0 in (3.17), it then follows that

lim
k→∞

M(xm(k)−1, xn(k)−1, ε) ≥ (1− λ). (3.18)

The inequalities (3.14) and (3.18) jointly imply that

lim
k→∞

M(xm(k)−1, xn(k)−1, ε) = (1− λ). (3.19)
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Again by (3.9),

lim
k→∞

M(xm(k), xn(k), ε) ≤ (1− λ) (3.20)

Also for all k ≥ 1, s > 0, we obtain
M(xm(k), xn(k), ε+2s) ≥M(xm(k), xm(k)−1, s)∗M(xm(k)−1, xn(k)−1, ε)∗M(xn(k)−1, xn(k), s)
Taking limit infimum as k → ∞ in the above inequality, using (3.8), (3.19) and
the properties of M and ∗, by lemma 8, we obtain
lim
k→∞

M(xm(k), xn(k), ε+ 2s) ≥ 1 ∗ lim
k→∞

M(xm(k)−1, xn(k)−1, ε) ∗ 1 = 1− λ.

Since M is bounded within the range in [0,1], is continuous and, by lemma 4,
monotone increasing in the third variable t, it follows by an application of lemma
9 that lim

k→∞
M(xm(k), xn(k), t) is continuous function of t from the right.

Taking s→ 0 in the above inequality, and using lemma 9, we obtain

lim
k→∞

M(xm(k), xn(k), ε) ≥ (1− λ), (3.21)

Combining (3.20) and (3.21), we obtain

lim
k→∞

M(xm(k), xn(k), ε) = (1− λ) (3.22)

From (3.3), we have

M(xm(k), fxm(k)−1, t) = M(A,B, t) (3.23)

M(xn(k), fxn(k)−1, t) = M(A,B, t) (3.24)

Since (A,B) satisfies the fuzzy P-property, we get from (3.23) and (3.24), for all
t > 0,

M(xm(k), xn(k), t) = M(fxm(k)−1, fxn(k)−1, t). (3.25)

Now by the property of φ, there exists ε0 > 0 such that φ(ε0) = ε.
Therefore, from the above and by (3.25),

(
1

M(xm(k), xn(k), ε)
− 1) = (

1

M(fxm(k)−1, fxn(k)−1, ε)
− 1)

= (
1

M(fxm(k)−1, fxn(k)−1, φ(ε0))
− 1)

≤ (
1

M(fxm(k)−1, fxn(k)−1, φ(cε0))
− 1)

≤ ψ(
1

M(xm(k)−1, xn(k)−1, φ(ε0))
− 1)

= ψ(
1

M(xm(k)−1, xn(k)−1, ε)
− 1)
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Taking k →∞ in the above inequality, we have
( 1

lim
k→∞

M(xm(k),xn(k),ε)
−1) ≤ ψ( 1

lim
k→∞

M(xm(k)−1,xn(k)−1,ε)
−1). (since ψ is continuous)

Using (3.19) and (3.22), we have
( 1
1−λ − 1) ≤ ψ( 1

1−λ − 1) < ( 1
1−λ − 1),

which is a contradiction.
Thus, it is established that {xn} is a Cauchy sequence. Since (X,M, ∗) is complete,
there exists x∗ ∈ A such that

lim
n→∞

xn = x∗.

Since f is (φ− ψ)- proximal contractive mapping, by using (3.1), we have for all
n ≥ 0, t > 0

(
1

M(fxn, fx∗, t)
− 1) = (

1

M(fxn, fx∗, φ(t0))
− 1)

≤ (
1

M(fxn, fx∗, φ(ct0))
− 1)

≤ ψ(
1

M(xn, x∗, φ(t0))
− 1)

≤ ψ(
1

M(xn, x∗, t)
− 1)

Taking limit n → ∞ on both sides of the above inequality, using the fact that
ψ(0) = 0, we have

fxn → fx∗ as n→∞.

From (3.3) and the above limit, for all t > 0

M(A,B, t) = M(xn+1, fxn, t) = M(x∗, fx∗, t) as n→∞.

Therefore, for all t > 0, M(x∗, fx∗, t) = M(A,B, t). This completes the proof.

4. ILLUSTRATION

Example 15. Suppose that X = R2 with fuzzy metric space
M((x, y), (x

′
, y
′
), t) = t

t+|x−x′ |+|y−y′ | and minimum t−norm ∗.
Consider the closed subsets A and B in the topology induced by the fuzzy metric
as

A = {(0, x) : x ∈ R},
B = {(1, x) : x ∈ R}.

Let ψ(t) = ct and φ(t) = t2, where 0 < c < 1. Let f : A → B be the mapping
defined by

f((0, x)) = (1, 1− e−c3x).
Here M(A,B, t) = t

1+t for all t > 0.



334 P., Saha, et al. / Determinimg Fuzzy Distance

Here A0 = A and B0 = B and f(A0) ⊆ B0.
Now we show that f satisfies fuzzy P - property.
Let u1 = (0, x1), u2 = (0, x2) ∈ A and v1 = (1, y1), v2 = (1, y2) ∈ B with

M(u1, v1, t) = M(A,B, t) for all t > 0 (4.1)

and

M(u2, v2, t) = M(A,B, t) for all t > 0 (4.2)

From (4.1), we get for all t > 0
t

t+1+|x1−y1| = t
t+1 ,

which implies that x1 = y1.
Similarly from (4.2), we get for all t > 0

x2 = y2.
Now for all t > 0

M(u1, u2, t) = t
t+|x1−x2|
= t

t+|y1−y2|
= M(v1, v2, t).

Hence f satisfies fuzzy P - property.
Let u = (0, x), v = (0, y) ∈ A. Without loss of generality, we may assume that
x < y.
Now for all t > 0,

(
1

M(fu, fv, φ(ct))
− 1) =

|e−c3x − e−c3y|
c2t2

=
c3e−c

3[x+θ(y−x)]|x− y|
c2t2

(Using MVT, where 0 < θ < 1)

≤ c|x− y|
t2

= c(
1

M(u, v, φ(t))
− 1)

= ψ(
1

M(u, v, φ(t))
− 1).

Hence f satisfies (φ− ψ)-proximal contraction.
Here (0, 0) ∈ A is the best proximity point of f .

Note: The above illustration indicates that our result is an effective generalization
of the fuzzy Banach contraction mapping principle given by Gregori and Sapena
[13] in complete fuzzy metric space since the latter is not applicable to the above
example.
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