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Abstract: In this paper, we considered a multi-objective stochastic transportation
problem where the supply and demand parameters follow extreme value distribution hav-
ing three-parameters. The proposed mathematical model for stochastic transportation
problem cannot be solved directly by mathematical approaches. Therefore, we converted
it to an equivalent deterministic multi-objective mathematical programming problem.
For solving the deterministic multi-objective mathematical programming problem, we
used an ε-constraint method. A case study is provided to illustrate the methodology.



338 M.M. Acharaya, et al. / Multi-Objective Stochastic Transportation Problem

Keywords: Multi-Objective Programming, Stochastic Programming Problem, Trans-

portation Problem, Extreme Value Distribution, ε-Constraint Method.

MSC: 90B06, 90C15, 90C29.

1. INTRODUCTION

Mathematical models for the transportation problem are concerned about the
optimal way by which an item produced at various industrial facilities can be
transported to various stockrooms. To solve a transportation problem means to
fulfill the destination requirements within the limitation requirements of operat-
ing production capacity constraints at the minimum cost. However, in real life
situation, we may face multi-objective transportation problems.

Multi-objective transportation problem(MOTP) is one of the vector minimum
linear programming problems from the various classes, in which constraints are
imbalanced and every objective is non-commensurable and conflicts with each
other.

The parameters of the MOTP are available amounts at the supply focuses,
and amounts required at the request focuses. In general, in real life situation,
these parameters are unstable or unknown exactly. Lack of exactness is known
as randomness or vagueness. Randomness is addressed by probability theory and
vagueness by fuzzy set theory. When a mathematical programming problem deals
with uncertainty, it is known as a stochastic mathematical model. One of the
popular ways to address randomness is via a distribution function depending on
regression.

In the real world decision making circumstances, we regularly need to settle
on a choice under questionable information or data. In many concrete situations,
it is difficult to present the mathematical models using random parameters. So,
true issues have been demonstrated by thinking about probabilistic vulnerability
parameters. Stochastic programming (SP) is a standout amongst the most critical
methodologies to handle the uncertainty.

Stochastic programming(SP) problem is one of the mathematical programming
problems that involves randomness. At the point when uncertainty occurs on the
market demands for a commodity, the issue of booking shipments from supply
points to demand points is called a stochastic transportation problem [27].

In general, the coefficient of the MOTP are described by unverifiable param-
eters, for example, by random, fuzzy, and multi-choice parameters. Different re-
searchers have been considering different indicators containing random variables
such as normal, log-normal, exponential, Cauchy, Weibull and others for the source
and destination parameters of MOTP in SP model. Therefore, in our work, atten-
tion has been given to solving the above problem as a multi-objective stochastic
transportation problem(MOSTP) where the supply and demand parameters follow
three-parameter extreme value distribution.

This paper is organized as follows. Following the introduction section, in Sec-
tion 2, the literature survey is stated. Basic preliminary is included in Section 3.
In Section 4 the mathematical model is defined and its deterministic equivalent
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form is derived. Case study, its discussion, and results are included in Section 5
and Section 6, respectively. The paper is concluded in Section 7.

2. LITERATURE SURVEY

In mathematics and economics, the study of optimal transportation and alloca-
tion of resources is known as the transportation theory. A French mathematician,
Gaspard Monge [12], formalized the problem in 1781, but major advances in the
field of transportation were made by Leonid Kantorovich, a Soviet, Russian math-
ematician and economist, during Second World War. Due to the founder of the
problem, it is sometimes referred to as the Monge-Kantorovich transportation
problem. Hitchcock presented transportation problem in 1941, and Koopmans de-
veloped it in detail in 1960 [14, 12, 2, 13, 19]. Dantzig in 1963 primarily developed
an efficient method for transportation problem derived from the simplex algorithm
[28, 19].

Many researchers studied MOTP and its solution methods. Zangiabadi and
Maleki [30] applied fuzzy goal programming to determine an optimal compromise
solution for the MOTP by assuming that each objective function has a fuzzy goal.
Mousa et al. [16] presented an efficient evolutionary algorithm for solving MOTP
by integrating the merits of both genetic algorithm (GA) and local search (LS).
Zaki et al. [29] proposed an efficient genetic algorithm for solving MOTP and the
algorithms that integrated the merits of both GA and LS scheme. Yeola and Jahav
[28] proposed a method parallel to New Row Maxima Method and used a fuzzy
programming technique with fuzzy linear membership function for different costs
to solve MOTP. In real life situations, we face the parameters of MOTP which are
not steady, not known exactly, and stochastic in nature. In this regard, different
researchers have discussed a stochastic programming(SP) problem.

Dantzig [6] formulated the stochastic programming (SP) model in 1955. The
first optimization problem with disjoint chance constraints was defined by Charnes
et al. [4]. Various models have been suggested by several researchers on stochastic
linear programming [15, 9, 7, 8, 1, 3, 24].

Many researchers studied MOSTP and its solution methods. Mahapatra et
al. [14] discussed the solution procedure of multi-objective minimization type
problems (i.e. non-commensurable and conflicting in nature) where supplies and
demands are normal random variables. They applied a fuzzy programming tech-
nique for solving the deterministic MOTP. Roy and Mahapatra [22] concentrated
on MOSTP, involving an inequality type constraints in which all parameters are
log-normal random variables and the coefficients of the objectives are interval
numbers. They used weighted sum method for solving the equivalent determinis-
tic problem. Again, Roy et al. [21], presented a stochastic transportation prob-
lem where supply and demand parameters follow exponential distribution and
cost coefficients of objective function are multi-choice. Biswal and Samal [2] pre-
sented both single objective and multi-objective stochastic transportation prob-
lems with Cauchy random variables, or multi-choice type and their deterministic
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equivalents. They used goal programming method to solve the equivalent deter-
ministic problem by taking cost coefficients of the objective function, associated
with transportation problem as multi-choice type. Roy[19] worked on multi-choice
stochastic transportation problem where the supply and demand parameters of the
constraints follow Weibull distribution. Quddoos et al.[18] developed on an multi-
choice stochastic transportation problem and obtained a summed up equivalent
deterministic model of it, where accessibility and request parameters follow general
form of distribution. Roy et al. [23] investigated the study of multi-choice MOTP
under the light of conic scalarizing function. Chávez et al. [5], taking genuine con-
textual investigation, broadened a stochastic multi-objective minimum cost flow
model for perishable agrarian items by comprising street transportation. As of
late, Roy et al. [20] examined MOTP under intuitionistic fuzzy environment.

Also, from the literature survey, we found papers of Quddoos et al.[18] and
Mahapatra et al.[13]. Quddoos et al.[18] concentrated on multi-choice stochastic
transportation problem where the supply and demand parameters of the con-
straints follow general form of distribution. In a similar manner, Mahapatra et
al.[13] concentrated on multi-choice stochastic transportation problem where the
supply and demand parameters of the constraints follow extreme value distribu-
tion. Both papers considered cost coefficients of the objective function associated
with transportation problem are to be multi-choice type for a single objective
stochastic transportation problem. In addition, the supply and demand parame-
ters of the constraints follow two-parameter form of distribution. In this paper,
a novel strategy is developed for multi-objective stochastic transportation prob-
lem(MOSTP) involving three-parameter extreme value distribution. The main
difference between this paper and the above two papers is listed as follows. First,
we are concentrated on multi-objective but not multi-choice. Second, the parame-
ters involved in our model are three-parameter and not two-parameter as in both
of the above two papers.

To set up the solution procedures for the above problem, it was changed into
an equivalent deterministic model. Then, a standard mathematical programming
technique is used to tackle it. The derived model is discussed in Section 4, and
implemented on a case study in Section 5.

3. BASIC PRELIMINARIES

A historical survey by Kotz and Nadarajah [10] shows that the extreme value
distribution has curious and fascinating number of variety of applications involving
natural phenomena such as rainfall, floods, wind blasts, wind speeds, air contami-
nation, corrosion, and delicate advanced mathematical results on point forms and
consistently varying functions. Extreme value distributions are used to describe
the limiting distribution of the minimum or maximum of n observations selected
from an exponential family of distributions such as normal, gamma, and expo-
nential. It is also used to model the distributions of breaking strength of metals,
capacitor breakdown voltage, and gust velocities encountered by airplanes [11].
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Further, Parsons and Lal [17] in their paper, found that the extreme value distri-
bution better fits to data than three-parameter Weibull [11]. Kotz and Nadarajah
[10] usually considered extreme value distributions to compromise the following
three families:

Type 1, (Gumbel-type distribution) Probability density function of a ran-
dom variable X is given by:

f(x) =
1

θ
e
x−µ
θ exp[−e

x−µ
θ ], −∞ < x <∞, θ > 0. (1)

where µ is location parameter and θ is scale parameter.

Type 2, (Frechet-type distribution) Probability density function of a ran-
dom variable X is given by:

f(x) =

{
0, x < µ,

α
θ

(
x−µ
θ

)−α−1
e−(

x−µ
θ )−α x ≥ µ.

. (2)

where µ is location parameter and θ > 0 is scale parameter and α > 0 shape
parameter.

Type 3, (Weibull-type distribution) Probability density function of a ran-
dom variable X is given by:

f(x) =

{
α
θ

(
µ−x
θ

)α−1
e−(

µ−x
θ )α x ≤ µ,

0, x > µ.
. (3)

where µ is location parameter and θ > 0 is scale parameter and α > 0 shape
parameter.

The three types of distribution are presented as members of a single family, called
generalized extreme value distributions [26, 10] with a probability density function
of a random variable X given as follows.

f(x) =
1

θ

[
1 + α(

x− µ
θ

)

]− 1
α−1

e−[1+α( x−µθ )]
− 1
α

(4)

where µ represents location parameter, θ > 0 represents scale parameter, and
α 6= 0 shape parameter. The range of X depends on the value of α: it is bounded
by µ+ ( θα ) from above for α > 0, i.e., −∞ < x < µ+ ( θα ); and it is bounded from

below for α < 0 i.e., µ+ ( θα ) < x <∞. The shape parameter α determines which
extreme value distribution is represented.

So, in this paper, we present a solution procedure for MOSTP involving ran-
dom variables which follow generalized extreme value distribution with known
parameters. In the whole section of the paper we use extreme value distribution,
or generalized extreme value distribution. To establish the solution procedures of
the proposed problem, we transform the problem into an equivalent deterministic
multi-objective model.
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4. MULTI-OBJECTIVE STOCHASTIC TRANSPORTATION
PROBLEM(MOSTP) INVOLVING THREE-PARAMETER

EXTREME VALUE DISTRIBUTION

Mathematically, MOSTP where randomness is considered in the right-hand-
side constraints is expressed as:
Model-I

min: Zk(x) =

m∑
u=1

n∑
v=1

ckuvxuv, k = 1, 2, · · ·,K. (5)

Subject to:

P

(
n∑
v=1

xuv ≤ au

)
≥ 1− γu, u = 1, 2, · · ·,m. (6)

P

(
n∑
v=1

xuv ≥ bv

)
≥ 1− δv, v = 1, 2, · · ·, n. (7)

xuv ≥ 0,∀u and v. (8)

where 0 < γu < 1,∀u and 0 < δv < 1,∀v. au(u = 1, 2, ···,m) and bv(v = 1, 2, ···, n)
are considered as extreme value random variables, and ckuv(u = 1, 2, · · ·,m; v =
1, 2, · · ·, n; k = 1, 2, · · ·,K) are the cost coefficients associated with the decision
variables in the objective function, P represents probability, γu and δv are the
admissible violates in probability of the uth and vth constraints.

4.1. Transformation technique

Due to the presence of probabilistic parameters in the constraints, the pro-
posed mathematical model can not be solved directly using mathematical methods.
Therefore, the proposed problem is transformed to its equivalent multi-objective
deterministic mathematical programming problem. In three different cases, the
probabilistic constraints will be transformed to their equivalent deterministic con-
straints.

1. Only au(u = 1, 2, · · ·,m) follow three-parameter extreme value distri-
bution: Here au(u = 1, 2, · · ·,m) are assumed independent RVs that follow
extreme value distribution with location, scale, and shape parameters, rep-
resented as µu, θu, and αu respectively, with aspiration level 0 < γu < 1.
The probability density function (pdf) of the uth constraint au is given in
(9).

f(au) =
1

θu

(
1 + αu

(
au − µu
θu

))−1
αu
−1

e−(1+αu( au−µuθu
))
−1
αu
, u = 1, 2, · · ·,m.
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(9)

where θu > 0, αu 6= 0.
To solve the problems in (5) to (8), we establish the deterministic form of
the problem. From chance constraints in (6), we have

P

(
n∑
v=1

xuv ≤ au

)
≥ 1− γu

=⇒ P

(
au ≥

n∑
v=1

xuv

)
≥ 1− γu

=⇒
∫ ∞

n∑
v=1

xuv

f(au)dau ≥ 1− γu

=⇒
∫ ∞

n∑
v=1

xuv

1

θu

(
1 + αu

(
au − µu
θu

))−1
αu
−1

e−(1+αu( au−µuθu
))
−1
αu
dau ≥ 1− γu

Applying simple integration technique and rearranging the above equation,
we get the result in (10).

n∑
v=1

xuv ≤ µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 , u = 1, 2, · · ·,m. (10)

Using (10) in (6), we establish an equivalent deterministic model of Model-I
as expressed in Model-II.
Model-II

min: Zk(x) =

m∑
u=1

n∑
v=1

ckuvxuv, k = 1, 2, · · ·,K. (11)

Subject to:

n∑
v=1

xuv ≤ µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 , u = 1, 2, · · ·,m. (12)

m∑
u=1

xuv ≥ bv, v = 1, 2, · · ·, n. (13)

xv ≥ 0, v = 1, 2, · · ·, n. (14)

where

m∑
u=1

µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 ≥ n∑
v=1

bv (feasibility condition)
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2. Only bv(v = 1, 2, · · ·, n) follow three parameter extreme value dis-
tribution: Let bv(v = 1, 2, · · ·, n) be independent RVs that follow extreme
value distribution with location, scale, and shape parameters represented by
µ
′

v, θ
′

v, and α
′

v respectively, with aspiration level 0 < δv < 1.
The probability density function (pdf) of the vth constraint bv is given in
(15).

f(bv) =
1

θ′v

(
1 + α

′

v

(
b
′

v − µ
′

v

θ′v

))−1

α
′
v

−1

e
−
(
1+α

′
v

(
bv−µ

′
v

θ
′
v

))−1

α
′
v

, v = 1, 2, · · ·, n.

(15)

where θ
′

v > 0, α
′

v 6= 0.
To solve the problems in (5) to (8), we establish the deterministic form of
the problem. From chance constraints in (7), we have

P

(
m∑
u=1

xuv ≥ bv

)
≥ 1− δv

=⇒ P

(
bv ≤

m∑
u=1

xuv

)
≥ 1− δv

=⇒ 1− P

(
m∑
u=1

xuv ≤ bv

)
≥ 1− δv

=⇒
∫ ∞
m∑
u=1

xuv

f(bv)dbv ≤ δv

=⇒
∫ ∞
m∑
u=1

xuv

1

θ′v

(
1 + α

′

v

(
b
′

v − µ
′

v

θ′v

))−1

α
′
v

−1

e
−
(
1+α

′
v

(
bv−µ

′
v

θ
′
v

))−1

α
′
v

dbv ≤ δv

Applying simple integration technique and rearranging the above equation,
we get the result in (16).

m∑
u=1

xuv ≥ µ
′

v +
θ
′

v

α′v


 1

ln
(

1
1−δv

)
α

′
v

− 1

 , v = 1, 2, · · ·, n. (16)

Using (16) in (7), we establish an equivalent deterministic model of Model-I
as expressed in Model-III.
Model-III

min: Zk(x) =

m∑
u=1

n∑
v=1

ckuvxuv, k = 1, 2, · · ·,K. (17)
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Subject to:

m∑
u=1

xuv ≥ µ
′

v +
θ
′

v

α′v


 1

ln
(

1
1−δv

)
α

′
v

− 1

 , v = 1, 2, · · ·, n. (18)

n∑
v=1

xuv ≤ au, u = 1, 2, · · ·,m. (19)

xv ≥ 0, v = 1, 2, · · ·, n. (20)

where

m∑
u=1

µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 ≥ n∑
v=1

bv (feasibility condition)

3. Both au(u = 1, 2, · · ·,m) and bv(v = 1, 2, · · ·, n) follow three parameter
extreme value distribution: Assume that both au(u = 1, 2, · · ·,m) and
bv(v = 1, 2, ···, n) are independent RVs that follow extreme value distribution.
Using (12) in Model-II, we have

n∑
v=1

xuv ≤ µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 , u = 1, 2, · · ·,m.

and using (16) in Model-III, we have

m∑
u=1

xuv ≥ µ
′

v +
θ
′

v

α′v


 1

ln
(

1
1−δv

)
α

′
v

− 1

 , v = 1, 2, · · ·, n.

Using the above two equations, we establish an equivalent deterministic
model of (5) to (8), expressed in Model-IV.
Model-IV

min: Zk(x) =

m∑
u=1

n∑
v=1

ckuvxuv, k = 1, 2, · · ·,K. (21)

Subject to:

n∑
v=1

xuv ≤ µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 , u = 1, 2, · · ·,m. (22)
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m∑
u=1

xuv ≥ µ
′

v +
θ
′

v

α′v


 1

ln
(

1
1−δv

)
α

′
v

− 1

 , v = 1, 2, · · ·, n. (23)

xuv ≥ 0,∀u and v. (24)

where

m∑
u=1

µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 ≥ n∑
v=1

µ′v +
θ
′

v

α′v


 1

ln
(

1
1−δv

)
α

′
v

− 1




(feasibility condition)

4.2. ε-Constraint method as a solution method for deterministic MOTP

Algorithm:

Step-1: Select Zk(x), (for k = 1) and solve it as a single objective mathematical
programming problem subject to the constraints.

min: Z1(x) =

m∑
u=1

n∑
v=1

cuvxuv

Subject to:

n∑
v=1

xuv ≤ µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 , u = 1, 2, · · ·,m.

m∑
u=1

xuv ≥ µ
′

v +
θ
′

v

α′v


 1

ln
(

1
1−δv

)
α

′
v

− 1

 , v = 1, 2, · · ·, n.

xuv ≥ 0,∀u and v.

where

m∑
u=1

µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 ≥ n∑
v=1

µ′v +
θ
′

v

α′v


 1

ln
(

1
1−δv

)
α

′
v

− 1




(feasibility condition)

Let x(1) be the ideal solution. Then identify the ideal solutions x(2), x(3), ...,
x(K) for the second, third, ..., Kth different objective functions respectively.
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Table 1: Pay-Off Matrix

Z1(x) Z2(x) ... ZK(x)

x(1) Z11(x) Z12(x) ... Z1K(x)
x(2) Z21(x) Z22(x) ... Z2K(x)

...
...

... ...
...

x(K) ZK1(x) ZK2(x) ... ZKK(x)

Step-2: Formulate a pay-off matrix by evaluating all of the objective functions
individually.

Step-3: Determine the bounds for kth objective function Zk(x) as the best lower
bound Lkb and worst upper bound Ukw, k = 1, 2, ...,K. The bounds of εk, k =
1, 2, ...,K, which is the point in the range of Zk(x), is also obtained as
Lkb ≤ εk ≤ Ukw.

Step-4: Using εk, k = 1, 2, ...,K, define K number of single objective different
problems as follows.

(i) For k = 1, Zk(x) is solved as a single objective mathematical program-
ming problem subject to the original constraints and new constraint as
Zk(x) ≤ εk, k = 2, 3, ...,K(k 6= 1).

(ii) For k = 2, Zk(x) is solved as a single objective mathematical program-
ming problem subject to the original constraints and new constraint as
Zk(x) ≤ εk, k = 1, 3, ...,K(k 6= 2).

(iii) Continue the process K times for K different objective functions.

Step-5: Solve the deterministic model by using an appropriate mathematical pro-
gramming method to find an optimal compromise solution for different values
of εk, k = 1, 2, ...,K.

5. CASE STUDY

The “AAgfresh.com”(name changed) is an online vegetable and fruits market-
place to buy fresh vegetables and organic fruits in Cuttack and Bhubaneswar of
Odisha, India. Currently, they do home delivery of fresh vegetables and fruits to
their consumers in Bhubaneswar, Cuttack, Angul, Koraput of Odisha, India within
12 hours from the time of buying online. The main purpose is to maximize the
profit by minimizing the transportation cost, transportation time or delivery time
and loss during transportation through a given route. The total transportation
cost of carrying per unit, transportation time per unit and loss during transporta-
tion per unit from sources to destinations along with availability and demands are

unit in this measurement is 100KG
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represented by the matrix in Tables 2 to 4 with specified probability levels(SPL)
respectively. However, the supply and demand may not be known previously.
This is due to different unpredictable factors such as weather, season, different
social activities, and so forth. After discussing with managers of the company
and analyzing the past data, it is finalized that supply and demand parameters
must follow extreme value distribution with known parameters. To manage the
issue emerging due to previously mentioned cases, a MOSTP approach has been
considered. Let xuv represent the allocations(or amounts) which are nonnegative
real variables. Let Au(u = 1, 2) represent sources where fruits and vegetables are
accessible, A1 = Bhubaneswar, A2 = Cuttack, and Rv(v = 1, 2, 3, 4) represent re-
quest where fruits and vegetables are required, R1 = Bhubaneswar, R2 = Cuttack,
R3 = Angul, R4 = Koraput.

Table 2: Transportation Cost per unit(in Rupees)

R1 R2 R3 R4 SPL of Supply
A1 12 15 17 19 0.01
A2 15 12 16 18 0.02

SPL of Demand 0.04 0.05 0.06 0.07

Table 3: Transportation time per unit(in hours)

R1 R2 R3 R4 SPL of Supply
A1 0.5 1 1.4 1.75 0.01
A2 1 0.5 1.3 1.7 0.02

SPL of Demand 0.04 0.05 0.06 0.07

Table 4: Loss during transportation per unit(in Rupees)

R1 R2 R3 R4 SPL of Supply
A1 2 5 7 9 0.01
A2 5 2 6 8 0.02

SPL of Demand 0.04 0.05 0.06 0.07

By using the information provided in the Tables 2 to 4, one can formulate the
mathematical stochastic transportation programming model as expressed in (25)-
(29).

min Z1(x) = 12x11+15x12+17x13+19x14+15x21+12x22+16x23+18x24 (25)

min Z2(x) = 0.5x11+x12+1.4x13+1.75x14+x21+0.5x22+1.3x23+1.7x24 (26)
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min Z3(x) = 2x11 + 5x12 + 7x13 + 9x14 + 5x21 + 2x22 + 6x23 + 8x24 (27)

Subject to:

P

(
4∑
v=1

xuv ≤ Au

)
≥ 1− γu, u = 1, 2. (28)

P

(
2∑

u=1

xuv ≥ Rv

)
≥ 1− δv, v = 1, 2, 3, 4. (29)

xuv ≥ 0, u = 1, 2, 3; v = 1, 2, 3, 4 and 0 < γu < 1, 0 < δv < 1,∀u, v.
where Z1=Total transportation cost per unit(in Rupees), Z2=Total delivery time(in
hours), and Z3=Total loss during transportation per unit(in Rupees).
With specified probability level(SPL) of supplies, i.e., Au for u = 1, 2, and deman-
ders, i.e., Rv for v = 1, 2, 3, 4, one can represent in Tables 5 and 6 respectively by
taking three known parameters of extreme value distribution.

Table 5: Location, scale and shape parameters for supplies Au with SPL values

Location parameter Scale parameter Shape parameter SPL (γu)
µ1 = 36.5 θ1 = 5.8 α1 = 9 γ1 = 0.01
µ2 = 37 θ2 = 6.4 α2 = 10 γ2 = 0.02

Table 6: Location, scale and shape parameters for demands Ru with SPL values

Location parameter Scale parameter Shape parameter SPL (δv)

µ
′

1 = 25.45 θ
′

1 = 6.2 α
′

1 = 7 δ
′

1 = 0.04

µ
′

2 = 24.15 θ
′

2 = 6.9 α
′

2 = 6 δ
′

2 = 0.05

µ
′

3 = 13.5 θ
′

3 = 7.3 α
′

3 = 5 δ
′

3 = 0.06

µ
′

4 = 11.5 θ
′

4 = 7.8 α
′

4 = 4 δ
′

4 = 0.07

Using the information provided in Tables 5 and 6, we developed the deterministic
MOTP as expressed in (30) to (38).

min Z1(x) = 12x11+15x12+17x13+19x14+15x21+12x22+16x23+18x24 (30)

min Z2(x) = 0.5x11+x12+1.4x13+1.75x14+x21+0.5x22+1.3x23+1.7x24 (31)
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min Z3(x) = 2x11 + 5x12 + 7x13 + 9x14 + 5x21 + 2x22 + 6x23 + 8x24 (32)

Subject to:

4∑
v=1

x1v ≤ 35.8555563 (33)

4∑
v=1

x2v ≤ 36.3600008 (34)

2∑
u=1

xu1 ≥ 24.98612715 (35)

2∑
u=1

xu2 ≥ 24.980376691 (36)

2∑
u=1

xu3 ≥ 12.0384627 (37)

2∑
u=1

xu4 ≥ 9.57421155 (38)

xuv ≥ 0, u = 1, 2; v = 1, 2, 3, 4

One can check that the feasibility condition is satisfied, i.e.,

2∑
u=1

µu +
θu
αu

 1

ln
(

1
γu

)
αu

− 1

 = 72.2155571

4∑
v=1

µ′v +
θ
′

v

α′v


 1

ln
(

1
1−δv

)
α

′
v

− 1


 = 71.57917809

The deterministic MOTP expressed in (30) to (38) is transformed to a single
objective transportation problem and solved using ε-constraint method. Applying
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the steps of the ε-constraint method and LINGO [25] software, three ideal solutions
are obtained as:

X(1) = (x11, x12, x13, x14, x21, x22, x23, x24)
T

= (24.98613, 0.0, 10.23305, 0.0, 0.0, 24.98038, 1.805413, 9.574212)
T

X(2) = (x11, x12, x13, x14, x21, x22, x23, x24)
T

= (24.98613, 0.0, 0.6588386, 9.574212, 0.0, 24.98038, 11.37962, 0.0)
T

X(3) = (x11, x12, x13, x14, x21, x22, x23, x24)
T

= (24.98613, 0.0, 10.23305, 0.0, 0.0, 24.98038, 1.805413, 9.574212)
T

where the value of Z1 = 974.78239, Z2 = 57.45401, and Z3 = 258.99054. A pay-
off matrix is formulated in Table 7 using the three ideal solutions.

Table 7: Pay-Off Matrix

Z1(x) Z2(x) Z3(x)

X(1) 974.78239 57.93272 258.99054
X(2) 974.78232 57.45401 258.990526
X(3) 974.78239 57.93272 258.99054

From the pay-off matrix, we obtained the upper and lower bounds of the objective
functions. From the bounds of the objective functions, one can determine εk, k =
1, 2, 3. Here in our case, all the objective functions are minimization type and
so εk, k = 1, 2, 3 lie between the best lower bound and worst upper bounds of
the objective functions, i.e., for objective functions 1, 2, and 3 respectively, we
represent it as follows.

974.78232 < ε1 < 974.78239

57.45401 < ε2 < 57.93272

258.990526 < ε3 < 258.99054.

Hence, the deterministic problem formulated in (30) to (38) is transformed as a
single objective by taking first, second, and third objective functions separately as a
single objective function in (39) to (47), (48) to (56) and (57) to (65) respectively,
and taking the other constraints and one of the objective functions as a new
constraint.

min Z1(x) = 12x11+15x12+17x13+19x14+15x21+12x22+16x23+18x24 (39)

Subject to:

0.5x11 + x12 + 1.4x13 + 1.75x14 + x21 + 0.5x22 + 1.3x23 + 1.7x24 ≤ ε2 (40)

2x11 + 5x12 + 7x13 + 9x14 + 5x21 + 2x22 + 6x23 + 8x24 ≤ ε3 (41)
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4∑
v=1

x1v ≤ 35.8555563 (42)

4∑
v=1

x2v ≤ 36.3600008 (43)

2∑
u=1

xu1 ≥ 24.98612715 (44)

2∑
u=1

xu2 ≥ 24.980376691 (45)

2∑
u=1

xu3 ≥ 12.0384627 (46)

2∑
u=1

xu4 ≥ 9.57421155 (47)

xuv ≥ 0, u = 1, 2; v = 1, 2, 3, 4

min Z2(x) = 0.5x11+x12+1.4x13+1.75x14+x21+0.5x22+1.3x23+1.7x24 (48)

Subject to:

12x11 + 15x12 + 17x13 + 19x14 + 15x21 + 12x22 + 16x23 + 18x24 ≤ ε1 (49)

2x11 + 5x12 + 7x13 + 9x14 + 5x21 + 2x22 + 6x23 + 8x24 ≤ ε3 (50)

4∑
v=1

x1v ≤ 35.8555563 (51)

4∑
v=1

x2v ≤ 36.3600008 (52)
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2∑
u=1

xu1 ≥ 24.98612715 (53)

2∑
u=1

xu2 ≥ 24.980376691 (54)

2∑
u=1

xu3 ≥ 12.0384627 (55)

2∑
u=1

xu4 ≥ 9.57421155 (56)

xuv ≥ 0, u = 1, 2; v = 1, 2, 3, 4

min: Z3(x) = 2x11 + 5x12 + 7x13 + 9x14 + 5x21 + 2x22 + 6x23 + 8x24 (57)

Subject to:

12x11 + 15x12 + 17x13 + 19x14 + 15x21 + 12x22 + 16x23 + 18x24 ≤ ε1 (58)

0.5x11 + x12 + 1.4x13 + 1.75x14 + x21 + 0.5x22 + 1.3x23 + 1.7x24 ≤ ε2 (59)

4∑
v=1

x1v ≤ 35.8555563 (60)

4∑
v=1

x2v ≤ 36.3600008 (61)

2∑
u=1

xu1 ≥ 24.98612715 (62)

2∑
u=1

xu2 ≥ 24.980376691 (63)
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2∑
u=1

xu3 ≥ 12.0384627 (64)

2∑
u=1

xu4 ≥ 9.57421155 (65)

xuv ≥ 0, u = 1, 2; v = 1, 2, 3, 4

Taking six different values for ε1, ε2, and ε3 in the intervals [974.78232 , 974.78239],
[57.45401 , 57.93272] and [258.990526 , 258.99054], respectively for the objective
functions Z1, Z2, and Z3, we can find the optimal solutions of first, second, and
third objective functions in Tables 8 to 10.
From Tables 8 to 10 one can observe that an efficient solution for Z1, Z2 and Z3

is obtained for a value of X∗(1), X∗(2) and X∗(3) respectively as listed below.

X∗(1) = (24.98613, 0.0, 0.6588885, 9.574162, 0.0, 24.98038, 11.37957, 0.49958E − 04)
T

X∗(2) = (24.98613, 0.0, 0.6588386, 9.574212, 0.0, 24.98038, 11.37962, 0.0)
T

X∗(3) = (24.98613, 0.0, 0.6588885, 9.574162, 0.0, 24.98038, 11.37957, 0.49958E − 043)
T

From those values, the best optimal value for Z1 = 974.782322 at X∗(1), X∗(3),
Z2 = 57.454006 at X∗(2) and Z3 = 258.990517 at X∗(1), X∗(3). Hence, the best
compromise solution is

X∗ = (x11, x12, x13, x14, x21, x22, x23, x24)
T

= (24.98613, 0.0, 0.6588885, 9.574162, 0.0, 24.98038, 11.37957, 0.49958E − 04)
T
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Again the values of the objective functions are

Z1(X∗(1)) = 974.782322, Z1(X∗(2)) = 974.782324, Z1(X∗(3)) = 974.782322,

Z2(X∗(1)) = 57.454008, Z2(X∗(2)) = 57.454006, Z2(X∗(3)) = 57.454008,

Z3(X∗(1)) = 258.990517, Z3(X∗(2)) = 258.990518, Z3(X∗(3)) = 258.990517.

6. RESULT and DISCUSSION

From the tabular results shown above, Tables (8 to 10), it is found that the min-
imum transportation cost per unit is Rs 974.782322, the minimum delivery time
per unit is 57.454006 hours, and the minimum loss cost per unit is Rs 258.990517.
It is observed that amount of fruits and vegetables sold per unit from Bhubaneswar
and Cuttack are 24.98613 and 24.98038 respectively. So, fruits and vegetables sold
from Bhubaneswar to their customers and from Cuttack to their customers are
almost same. Next to this, the amount per unit sold from Cuttack to customers to
Angul is 11.37957 and the amount per unit sold from Bhubaneswar to customers
in Koraput is 9.574162. The amount per unit sold from Bhubaneswar to customers
in Angul is 0.6588885. The least amount per unit sold from Cuttack to customers
in Koraput is 0.49958E-04. Nothing was sold from Bhubaneswar to customers in
Cuttack and vice-versa.

In general, for the online market, it is necessary to minimize distance and
maximize the number of customers. But here, for fruits and vegetables to maintain
profitability, there is a need for minimum cost loss of the transportation time.
Therefore, the proposed model is developed keeping into account the quantity of
vegetables and fruits sold from source to destinations where loss of transportation
time is minimized. So, the proposed method gives minimum aggregate time and
minimum total cost.

7. CONCLUSION

In this study, we proposed a solution procedure for solving multi-objective
stochastic transportation problems (MOSTP) by considering random variables as
the supply and demand points that follows three-parameter extreme value dis-
tribution. We gave three different cases, (i) only the supply points follow three-
parameter extreme value distribution and the others are deterministic, (ii) only
the demand points follow three-parameter extreme value distribution and the oth-
ers are deterministic, and lastly both supply and demand points follow three-
parameter extreme value distribution and all other parameters are assumed to
be deterministic. We have derived the deterministic equivalent model of MOSTP
and the feasibility condition for all of the three cases. The multi-objective deter-
ministic nonlinear programming problem was solved using ε−constraint technique
and LINGO 14.0 package. For clarification, a case study on the online market is
provided to illustrate the methodology when both the supply and demand points
follow three parameter extreme value distribution. However, other multi-objective
techniques, namely, goal programming, weighting method, fuzzy programming
method, etc. could be used.
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