
Yugoslav Journal of Operations Research
30 (2020), Number 1, 3–17
DOI: https://doi.org/10.2298/YJOR190115004D

INFLUENCE OF A NEIGHBORHOOD SHAPE
ON THE EFFICIENCY OF CONTINUOUS
VARIABLE NEIGHBORHOOD SEARCH

Milan DRAŽIĆ
Faculty of Mathematics, University of Belgrade,

Studentski trg 16, 11000 Belgrade, Serbia
mdrazic@matf.bg.ac.rs

Received: January 2019 / Accepted: February 2019

Abstract: The efficiency of a Variable neighborhood search metaheuristic for contin-
uous global optimization problems greatly depends on geometric shape of neighborhood
structures used by the algorithm. Among the neighborhoods defined by balls in `p,
1 ≤ p ≤ ∞ metric, we tested the `1, `2, and `∞ ball shape neighborhoods, for which
there exist efficient algorithms for obtaining uniformly distributed points. On many chal-
lenging high-dimensional problems, our exhaustive testings showed that, popular and the
easiest for implementation, `∞ ball shape of neighborhoods performed the worst, and
much better efficiency was obtained with `1 and `2.

Keywords: Global Optimization, Continuous Optimization, Metaheuristic Algorithms,

Variable Neighbourhood Search.

MSC: 90C59, 90C06, 90C30.

1. VNS FOR CONTINUOUS OPTIMIZATION

The goal of this paper is to explore the influence of neighborhood structure
shapes on the efficiency of a Variable Neighborhood Search metaheuristic (VNS).
The continuous unconstrained global optimization problem, with technically in-
troduced box constraints, has the form

global min
x∈S

f(x), S = {x ∈ Rn | ai ≤ xi ≤ bi, i = 1, 2, . . . , n}

where f : Rn → R is a continuous function. In many cases when local minima
are present, such problem can be very difficult. For large dimensions of the prob-
lem, the number of local minima grows exponentially with the dimension, making

4 M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS

the problem NP-hard. Exact methods can be applied only to the lower problem
dimensions, so heuristic approaches are the only way to obtain good approximate
solutions.

The VNS metaheuristic was first introduced by Mladenović and Hansen in
[1, 2] for combinatorial optimization problems, and the applications to continuous
optimization problems were given in [2, 3, 4]. The VNS approach has been im-
plemented within the software package GLOB for unconstrained and constrained
continuous optimization problems [5, 6, 7, 8] with several neighborhood structures
and random point distributions.

The basic steps of the VNS metaheuristic are given as follows:

Algorithm VNS

/* Initialization */
01 Select the set of neighborhood structures Nk, k = 1, . . . , kmax,

with corresponding random point distributions
02 Choose an arbitrary initial point x ∈ S
03 Set x∗ ← x, f∗ ← f(x)

/* Main loop */

04 repeat the following steps until the stopping condition is met

05 Set k ← 1
06 repeat the following steps until k > kmax

07 Shake: Generate at random a point y ∈ Nk(x∗)
08 Apply some local search method from y to obtain a local

minimum y′

09 if f(y′) < f∗ then
10 Set x∗ ← y′, f∗ ← f(y′) and goto line 05

11 endif
12 Set k ← k + 1
13 end
14 end
15 Stop. Point x∗ is an approximate solution of the problem.

A good local optimizer is desirable to locate a local minimum efficiently, but
for avoiding the local optima trap, the shaking step is crucial. Efficiency in finding
better local minima depends on the geometry of neighborhoods and the random
point distribution used in shaking step.

2. NEIGHBORHOODS INDUCED BY `p METRIC

In order to induce a set of neighborhood structures Nk on the solution space
S, the usual approach is to use some distance function ρ(x, y) that specifies the
distance between points x, y ∈ S. For the continuous optimization problems,
where S ⊆ Rn, ρ(x, y) is most often defined by Euclidean, rectangular, or other
`p metric:

ρ(x, y) = ||x− y||p =

(
n∑

i=1

|xi − yi|p
)1/p

, (1 ≤ p <∞),

M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS 5

or

ρ(x, y) = ||x− y||∞ = max
1≤i≤n

|xi − yi|, (p =∞).

These metrics lead to different geometric shapes of neighborhoods that are to be
explored. The neighborhood Nk(x) denotes a set of points in the k–th neighbor-
hood of x and, using the metric ρ, it is defined as a ball

Nk(x) = {y ∈ S | ρ(x, y) ≤ ρk},

or spherical shell

Nk(x) = {y ∈ S | ρk−1 ≤ ρ(x, y) ≤ ρk},

where ρk is the radius (size) of Nk(x) monotonically increasing with k.
The simplest for implementation is to generate a uniformly distributed random

point in `∞ ball. If zi are uniformly distributed points from the interval [0, 1], then

yi = xi + 2ρk(zi − 0.5), i = 1, . . . , n .

This simplicity is the main reason why `∞ neighborhoods are so popular in imple-
mentations.

n `1 `2 `∞ n `1 `2 `∞
2 2 3.1416 4 20 4.3100e-13 2.5807e-02 1.0486e+06
3 1.3333 4.1888 8 30 4.0480e-24 2.1915e-05 1.0737e+09
4 0.66667 4.9348 16 40 1.3476e-36 3.6047e-09 1.0995e+12
5 0.26667 5.2638 32 50 3.7019e-50 1.7302e-13 1.1259e+15
6 0.088889 5.1677 64 60 1.3856e-64 3.0963e-18 1.1529e+18
7 0.025397 4.7248 128 70 9.8559e-80 2.4323e-23 1.1806e+21
8 0.0063492 4.0587 256 80 1.6892e-95 9.4265e-29 1.2089e+24
9 0.0014109 3.2985 512 90 8.3323e-112 1.9676e-34 1.2379e+27

10 0.00028219 2.5502 1024 100 1.3583e-128 2.3682e-40 1.2677e+30

Table 1: Unit ball volumes in three different metrics

Uniformly distributed point in `p ball for 1 ≤ p <∞ can be obtained with the
acceptance-rejection method by repeatedly generating uniformly generated point
in `∞ ball until it is also within the `p ball. For a large space dimension n this
method is very inefficient due to huge volume differences between `∞ and `p balls,
see Table 1 and Figure 1. Fortunately, there are efficient algorithms for generating
uniformly distributed points inside `2 and `1 balls. Also, it is not hard to obtain
uniformly distributed points in spherical shells for `∞, `2 and `1 metrics.

Along with the uniformly distributed points in `1 ball (or spherical shell), a
special random point distribution in `1 was proven to be very efficient for some
problems. The random point y is obtained in two steps: first a random point
z = (z1, z2, . . . , zn) on the `1 unit sphere is generated using the special distribution:
(i) z1 is taken uniformly on [−1, 1], zk is taken uniformly from [−Ak, Ak], where

6 M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS

1 2 3 4 5 6 7 8 9 10

dimension

10-4

10-2

100

102

104

vo
lu

m
e

Volume of unit ball

l
1

l
2

l

0 10 20 30 40 50 60 70 80 90 100

dimension

10-150

10-100

10-50

100

1050

vo
lu

m
e

Volume of unit ball

l
1

l
2

l

Figure 1: Volumes of `1, `2 and `∞ unit balls

Ak = 1−|z1|− . . .−|zk−1|, k = 2, . . . , n−1, and the last zn takes An with random
sign; (ii) coordinates of z are permuted randomly. After that, a random radius
uniformly distributed in [0, ρk] (or [ρk−1, ρk]) is determined in order to get a point
y in Nk(x).

In the further analysis, we denote the shapes of neighborhoods as follows: S1,
S2, and S3 for `1, `2, and `∞ balls and spherical shells with uniformly distributed
random points, and S1s for `1 ball and the spherical shell with the special distri-
bution, described above.

The main goal of this paper is to examine the effectiveness of neighborhood
shapes in the shaking step of the VNS algorithm. This step represents the di-
versification part of the VNS metaheuristic, which is crucial for escaping from a
local minimum to better solutions in the solution space. Local search represent
the intensification part of the algorithm, responsible for efficiency of finding a local
minimum reachable from the generated random point. In order to discover the
influence of neighborhood shapes on the VNS algorithm efficiency, we test S1, S1s,
S2 and S3 neighborhood shapes both in ball and spherical shell variants, while
all other algorithm parameters are fixed. The results should be valuable to soft-
ware developers implementing the VNS metaheuristic for continuous optimization
problems.

3. COMPUTATIONAL EXPERIMENTS

For all the tests, we used the software package GLOB, a test platform for
numerical experiments with various variants of the VNS ([5]). GLOB is coded in
ANSI C programming language as a single core console application. It supports
neighborhood structures S1, S1s, S2, and S3, described in the previous section,
and has a choice of several local minimizers. All the experimental results were
obtained using a PC equipped with an Intel Core i7-6700 3.4 GHz processor with
16 GB RAM running 64bit Windows 7.

In all the tests, we used kmax = 10 neighborhoods with radii ri calculated auto-
matically as a geometrical sequence of numbers. The tolerance for detecting that

M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS 7

the optimal solution was found was set to 1e-6 for smooth problems, and 1e-4 for
non-smooth problems. Steepest descend local minimizer was used for smooth prob-
lems, and Nelder–Mead with restarts for non-smooth problems. Although some
other local minimizers could be more effective, we did not use them because their
role is not significant for testing effectiveness of different neighborhood shapes. In
each test, the maximum run time limit was set to 30 sec. Execution time and the
number of function and gradient evaluations were recorded until the global mini-
mum was reached within the given tolerance, or the time limit was reached. A test
run was considered successful if the global minimum was reached before the time
limit. Each test was repeated 20 times with a different initial random point, and
the average results are reported. The computer effort was calculated as Nf +nNg

for the steepest descend method, and Nf for Nelder–Mead method, where Nf and
Ng are the number of function and gradient calls, and n is the dimension of the
problem.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5−4−3−2−1012345
−5

0

5

10

15

20

ab

f(
a,

b)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0
0.1

0.2
0.3

0.4
−4

−2

0

2

4

6

8

ab

f(
a,

b)

Figure 2: Trefethen 4 function with bounds [-5,5]×[-5,5], and [−0.2, 0.2] × [0.0, 0.4].

A set of test functions was chosen to represent challenging problems in high
dimension solution spaces, or with many local minima, which makes them hard or
impossible to solve by direct methods.

8 M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS

Trefethen 4 function. We start with a two dimensional problem with many
local minima proposed in [9] (problem 4), see also [10]. This test instance has 2
variables a, b ∈ [−5, 5]:

f(a, b) = esin(50a) + sin(60eb) + sin(70 sin a) + sin(sin(80b))−

− sin(10(a+ b)) + (a2 + b2)/4.

The global optimum of f(a, b) is fmin = −3.306868647. The graph of this function
on two different scales is presented in Figure 2.

ball shell
n shape comp.eff. time comp.eff. time

2 S1 101,549 0.021 134,690 0.028
S1s 84,980 0.018 169,424 0.035
S2 111,385 0.023 410,290 0.083
S3 109,617 0.022 285,342 0.058

Table 2: Results for Trefethen 4 function

The computational results are presented in Table 2. The first column contains
the dimension of the problem, and used neighborhood shape in the second, as
denoted in the previous section. The average computer efforts and execution times
in seconds from 20 runs are presented in the third and fourth columns for ball
shape neighborhoods, and in the fifth and sixth column for spherical shell shapes.
In every run, the global minimum was reached within the 30 sec time limit. It
is evident from the results that ball neighborhood shapes are more efficient than
shell shapes for the same metric. Comparing different metrics, shape S1s showed
to be the most successful, although the other shapes did not perform significantly
worse.

Rosenbrock function.

f(x) =

n−1∑
i=1

(
100(xi+1 − x2

i)2 + (1− xi)2
)

for −10 ≤ xi ≤ 10, i = 1, . . . , n. The global minimum is fmin = 0. This function
is a standard problem for optimization algorithms performance testing. Local
minimizers as steepest descend (used here within VNS) and Nelder-Mead exhibit
poor performance if used alone, without VNS algorithm.

The results for Rosenbrock function for problem dimension up to 200 are pre-
sented in Table 3. In every run the global minimum was reached within the 30 sec
time limit. The first observation is that there is no significant difference in perfor-
mance between ball and spherical shell variant of neighborhoods. Neighborhood
shape S3 performed the worst for both small and large space dimensions. Shape
S1s was slightly better than S1 in all cases. Shape S2 was competitive with S1s
and S1 for n ≤ 150, but for n = 200, it was significantly less efficient.

M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS 9

ball shell
n shape comp.eff. time comp.eff. time
10 S1 175,251 0.007 188,667 0.007

S1s 125,028 0.005 106,047 0.004
S2 134,256 0.006 135,278 0.006
S3 379,827 0.014 336,029 0.013

20 S1 272,472 0.012 249,717 0.011
S1s 240,418 0.010 241,514 0.010
S2 213,283 0.009 224,682 0.009
S3 479,981 0.019 523,073 0.021

50 S1 738,750 0.029 744,078 0.030
S1s 670,541 0.026 697,932 0.027
S2 1,001,924 0.044 827,911 0.036
S3 10,132,164 0.440 8,279,130 0.361

100 S1 2,342,324 0.090 2,352,889 0.091
S1s 2,189,264 0.081 2,095,220 0.077
S2 2,044,212 0.079 2,165,929 0.087
S3 23,679,282 1.015 27,870,293 1.206

150 S1 3,752,823 0.139 3,747,885 0.139
S1s 3,375,741 0.120 3,315,324 0.119
S2 3,957,138 0.152 3,679,985 0.140
S3 40,560,739 1.695 30,906,761 1.290

200 S1 6,678,584 0.249 6,318,854 0.236
S1s 5,564,922 0.198 5,439,822 0.194
S2 29,566,111 1.549 11,141,342 0.529
S3 74,860,051 3.130 105,666,113 4.462

Table 3: Results for Rosenbrock function

Ackley function. Proposed in [11, 12]:

f(x) = 20 + e− 20 exp

(
−0.2

√
1

n

∑n

i=1
x2
i

)
− exp

(
1

n

∑n

i=1
cos(2πxi)

)
for −15 ≤ xi ≤ 30, i = 1, . . . , n, has a global minimum fmin = 0, and 45n local
minima. The graph of this function for n = 2 on two different scales is presented
in Figure 3.

−15 −10 −5 0 5 10 15 20 25 30

−10

0

10

20

30
0

5

10

15

20

25

x
1

x
2

f(x
)

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1

0

1

2

0

1

2

3

4

5

6

7

8

x
1

x
2

f(x
)

Figure 3: Ackley function for n = 2 with bounds [-15,30]×[-15,30], and [−2, 2] × [−2, 2].

The results for Ackley function for problem dimension up to 50 are presented
in Table 4. In every run, the global minimum was reached within the 30 sec time
limit. As in the previous test problems, there is no significant difference in per-
formance between ball and spherical shell variant of the neighborhoods. Contrary

10 M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS

ball shell
n shape comp.eff. time comp.eff. time
10 S1 62,151 0.013 53,513 0.012

S1s 63,889 0.014 65,680 0.014
S2 49,823 0.011 50,588 0.011
S3 43,811 0.009 42,456 0.009

20 S1 194,772 0.054 200,953 0.055
S1s 215,500 0.058 228,459 0.061
S2 142,364 0.039 155,474 0.043
S3 138,594 0.038 135,496 0.037

30 S1 427,888 0.132 400,766 0.124
S1s 486,548 0.145 528,480 0.158
S2 263,078 0.082 281,063 0.087
S3 255,680 0.078 261,403 0.081

40 S1 824,502 0.273 817,231 0.269
S1s 1,031,772 0.324 1,205,204 0.382
S2 457,885 0.151 431,186 0.143
S3 410,697 0.135 436,004 0.144

50 S1 2,277,783 0.774 1,623,275 0.554
S1s 2,247,472 0.732 2,195,793 0.720
S2 632,166 0.218 616,375 0.215
S3 756,055 0.259 762,336 0.262

Table 4: Experimental results for Ackley function

to Rosenbrock function, neighborhood shapes S2 and S3 performed significantly
better than S1 and S1s, S1s beeing the worst overall. While S3 was better for
smaller dimensions, S2 was the best for n = 50. Good performance of S2 shape
can be explained by spherical symmetry of the function on larger scale.

Rastrigin function.

f(x) = 10n+

n∑
i=1

(
x2
i − 10 cos(2πxi)

)
for −5.12 ≤ xi ≤ 5.12, i = 1, . . . , n, has a global minimum fmin = 0 and 11n local
minima. The graph of this function for n = 2 is presented in Figure 4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
0

1

2

3

4

x
y

R
T

(x
,y

)

Figure 4: Rastrigin function for n = 2 for with bounds [-1,1]×[-1,1].

M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS 11

ball shell
n shape comp.eff. time succ. error comp.eff. time succ. error
10 S1 49,021 0.009 20 60,399 0.012 20

S1s 36,362 0.007 20 38,373 0.007 20
S2 78,146 0.014 20 70,869 0.013 20
S3 93,857 0.018 20 95,451 0.018 20

20 S1 259,948 0.063 20 239,873 0.058 20
S1s 126,846 0.030 20 121,491 0.029 20
S2 407,110 0.095 20 462,573 0.108 20
S3 585,289 0.136 20 544,657 0.129 20

30 S1 540,162 0.147 20 599,701 0.165 20
S1s 250,345 0.068 20 222,695 0.061 20
S2 1,404,324 0.372 20 1,917,442 0.508 20
S3 2,213,492 0.587 20 2,281,569 0.615 20

40 S1 1,138,379 0.334 20 1,376,997 0.407 20
S1s 435,630 0.125 20 451,957 0.132 20
S2 2,651,781 0.763 20 2,980,924 0.862 20
S3 8,193,466 2.351 20 8,323,397 2.413 20

50 S1 1,950,614 0.598 20 1,953,808 0.608 20
S1s 701,919 0.210 20 738,755 0.224 20
S2 3,651,184 1.116 20 3,474,303 1.063 20
S3 26,463,963 7.952 20 29,761,343 9.034 20

60 S1 2,936,964 0.918 20 2,902,176 0.919 20
S1s 1,011,087 0.311 20 972,489 0.303 20
S2 3,605,867 1.140 20 3,100,591 0.984 20
S3 62,799,699 19.333 10 0.60 54,233,167 16.777 12 0.50

70 S1 4,199,080 1.336 20 4,166,472 1.339 20
S1s 1,526,418 0.475 20 1,358,786 0.433 20
S2 4,205,767 1.356 20 4,315,736 1.404 20
S3 0 2.64 0 2.54

80 S1 6,021,715 1.952 20 5,700,173 1.871 20
S1s 1,680,877 0.535 20 1,846,936 0.595 20
S2 5,729,992 1.899 20 5,669,393 1.879 20
S3 0 5.32 0 5.42

90 S1 7,157,711 2.367 20 7,237,914 2.429 20
S1s 2,397,990 0.772 20 2,261,338 0.743 20
S2 8,717,552 2.924 20 8,537,969 2.886 20
S3 0 9.90 0 9.55

100 S1 9,368,881 3.162 20 9,209,980 3.144 20
S1s 2,971,556 0.971 20 2,845,786 0.945 20
S2 14,066,449 4.844 20 12,093,366 4.207 20
S3 0 14.32 0 14.78

Table 5: Results for Rastrigin function

The results for Rastrigin function for problem dimension up to 100 are pre-
sented in Table 5. Since not all runs were successful in finding the global minimum
within the 30 sec time limit, two new columns are introduced. Columns marked
”succ.” contain the number of runs in which the global minimum was reached with
proposed tolerance within the time limit. In cases when not all test runs were suc-
cessful, columns marked ”error” contain the average optimal function value error.
Columns ”comp.eff.” and ”time” contain average computer effort and execution
time in seconds for the successful runs.

Results from Table 5 show that there is no significant difference between ball
and spherical shell neighborhood variants, shell variant being slightly more effi-
cient on average. Neighborhood shape S3 performed very inefficient, and for high
problem dimensions it failed to provide the global minimum in every run. Shape
S1s performed the best, while S1 and S2 were comparable, S1 being consistently

12 M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS

better than S2.

Molecular potential energy (MPE) function. Introduced in [13], see also [6],
this function was proposed for testing methods for global minimization of potential
energy of molecules:

f(x) =

n∑
i=1

(
1 + cos 3xi +

(−1)i√
10.60099896− 4.141720682 cosxi

)
for 0 ≤ xi ≤ 5, i = 1, . . . , n, has a global minimum fmin = −0.0411183034 · n and
3n local minima.

ball shell
n shape comp.eff. time succ. % error comp.eff. time succ. % error
10 S1 30,015 0.010 20 34,439 0.011 20

S1s 13,809 0.005 20 13,359 0.004 20
S2 34,772 0.011 20 34,596 0.011 20
S3 118,409 0.038 20 80,510 0.026 20

20 S1 194,198 0.083 20 244,582 0.106 20
S1s 46,391 0.021 20 51,333 0.023 20
S2 166,932 0.072 20 178,088 0.076 20
S3 10,794,746 4.489 20 7,722,668 3.228 20

30 S1 552,584 0.267 20 739,538 0.362 20
S1s 110,277 0.057 20 122,178 0.063 20
S2 358,984 0.178 20 376,430 0.188 20
S3 41,512,825 19.299 1 11.60 54,488,832 25.555 1 8.96

40 S1 1,530,434 0.786 20 1,486,620 0.771 20
S1s 185,029 0.104 20 198,909 0.113 20
S2 583,497 0.317 20 594,570 0.324 20
S3 0 27.13 0 30.86

50 S1 3,315,594 1.763 20 2,696,179 1.442 20
S1s 289,291 0.173 20 317,072 0.192 20
S2 899,990 0.515 20 1,009,371 0.575 20
S3 0 39.24 0 41.44

60 S1 5,665,036 3.063 20 6,034,739 3.268 20
S1s 455,756 0.282 20 514,346 0.323 20
S2 1,941,462 1.143 20 1,555,161 0.914 20
S3 0 50.98 0 55.29

70 S1 7,844,683 4.273 20 8,460,620 4.628 20
S1s 607,348 0.391 20 669,236 0.436 20
S2 3,654,745 2.250 20 3,421,294 2.101 20
S3 0 66.50 0 64.63

80 S1 13,784,376 7.798 20 14,689,218 8.055 20
S1s 788,130 0.520 20 836,788 0.555 20
S2 6,237,038 4.039 20 6,767,309 4.363 20
S3 0 76.38 0 73.89

90 S1 18,575,697 10.219 20 18,658,937 10.264 20
S1s 1,020,315 0.688 20 1,158,930 0.787 20
S2 12,529,044 8.608 20 10,116,006 6.880 20
S3 0 78.86 0 82.95

100 S1 26,394,502 14.359 20 25,194,108 13.807 19 0.10
S1s 1,357,828 0.925 20 1,530,488 1.061 20
S2 17,011,040 11.940 20 17,261,623 12.228 20
S3 0 86.93 0 83.93

Table 6: Results for MPE function

The results for Molecular potential energy (MPE) function for problem dimen-
sions up to 100 are presented in Table 6. Like in the case of Rastrigin function,

M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS 13

neighborhood shape S3 performed very inefficient, failing to provide global minima
even for problem dimension n = 30. Shape S1s performed the best, exceptionally
better than others. Comparing shapes S1 and S2, shape S2 performed better
than S1. Results also show that there is no significant difference between ball and
spherical shell neighborhood variants, precedence varying from case to case. Nev-
ertheless, for the most efficient S1s shape, ball variant performed slightly better
than the spherical shell variant.

We also tested the efficiency of neighborhood shapes on four non-differentiable
functions in high-dimensional space. From the set of 10 test problems proposed in
[14], we chose 4 most challenging problems (see [15]). They are as follows:

Generalization of MXHILB function.

f(x) = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

xj
i+ j − 1

∣∣∣∣∣∣
for −10 ≤ xi ≤ 10, i = 1, . . . , n, has a global minimum fmin = 0.

ball shell

n shape comp.eff. time succ. error comp.eff. time succ. error

30 S1 134,520 0.305 20 135,012 0.317 20

S1s 123,354 0.281 20 123,354 0.283 20

S2 138,366 0.314 20 138,366 0.321 20

S3 142,601 0.324 20 142,601 0.328 20

40 S1 1,831,959 6.834 20 1,880,604 6.999 20

S1s 572,084 2.116 20 480,358 1.767 20

S2 294,221 1.094 20 273,001 1.004 20

S3 6,631,926 24.539 3 1.14E-04 5,080,383 19.171 6 1.08E-04

50 S1 1,727,061 10.142 7 1.25E-04 3,386,658 19.828 6 1.21E-04

S1s 1,056,715 6.152 19 9.96E-05 1,420,834 8.223 20

S2 609,996 3.486 20 657,980 3.842 20

S3 0 2.66E-04 0 2.63E-03

Table 7: Results for Generalization of MXHILB function

The results for Generalization of MXHILB function for problem dimensions n =
30, 40, 50 are presented in Table 7. Ball and spherical shell neighborhood variants
performed the same on average, with no significant difference. For n = 30 all
four neighborhood shapes were effective, S1s being slightly better. Neighborhood
shape S3 led to optimal solutions only in several runs for n = 40, and none for
n = 50. Shape S1 also couldn’t reach optimal solutions in most runs for n = 50,
and for n = 40 it was very inefficient. Although the shape S1s was the best for
n = 30, n = 40 and n = 50, the shape S2 performed the best with a significant
margin.

Number of active faces function.

f(x) = max
1≤i≤n

g(−
n∑

j=1

xj), g(xi)

 , g(y) = ln(|y|+ 1)

14 M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS

for −10 ≤ xi ≤ 10, i = 1, . . . , n, has a global minimum fmin = 0.

ball shell

n shape comp.eff. time succ. error comp.eff. time succ. error

30 S1 262,705 0.475 20 261,016 0.468 20

S1s 187,764 0.336 20 187,764 0.336 20

S2 188,018 0.338 20 188,018 0.337 20

S3 302,300 0.542 20 259,477 0.466 20

40 S1 4,420,157 11.805 10 1.22E-04 5,731,825 15.208 12 1.12E-04

S1s 1,445,912 3.770 20 1,050,530 2.727 20

S2 1,475,094 3.870 20 1,095,937 2.841 20

S3 0 2.29E-04 5,393,734 14.292 1 2.63E-04

50 S1 0 2.03E-04 5,601,173 22.458 1 2.31E-04

S1s 2,503,346 9.856 13 1.07E-04 3,843,610 15.238 12 1.04E-04

S2 3,965,567 15.544 6 1.10E-04 3,414,306 13.521 8 1.07E-04

S3 0 6.91E-03 0 6.98E-04

Table 8: Results for Number of active faces function

The results for Number of active faces function for problem dimension up to
n = 50 are presented in Table 8. There was no significant difference between ball
and spherical shell neighborhood variants, advantage varying from case to case.
Neighborhood shape S3 performed the worst, particularly bad for n = 40 and 50.
Shape S1 follows, struggling to obtain optimal solutions for n = 40. Neighborhood
shapes S1s and S2 performed much better. Shape S1s was slightly more effective
than S2 for n = 30 and 40, and it reached optimal solutions in more cases than S2
for n = 50.

Chained Mifflin 2 function.

f(x) =

n−1∑
i=1

(−xi + 2(x2
i + x2

i+1 − 1) + 1.75|x2
i + x2

i+1 − 1|)

for −10 ≤ xi ≤ 10, i = 1, . . . , n, has a global minimum fmin = −20.6535 for
n = 30, fmin = −27.7243 for n = 40 and fmin = −34.7950 for n = 50.

ball shell

n shape comp.eff. time succ. % error comp.eff. time succ. % error

30 S1 1,676,231 2.251 20 1,524,497 2.043 20

S1s 948,998 1.241 20 832,751 1.091 20

S2 1,202,220 1.587 20 1,228,610 1.618 20

S3 3,156,177 4.299 20 4,078,934 5.561 20

40 S1 3,723,598 7.522 19 0.02 4,160,843 8.467 20

S1s 2,575,037 5.141 20 2,792,982 5.55 20

S2 3,713,276 7.325 20 3,189,617 6.316 20

S3 6,881,290 14.064 5 0.02 8,568,826 17.647 10 0.02

50 S1 5,103,430 16.252 14 0.02 5,174,332 16.653 13 0.02

S1s 4,133,162 12.829 18 0.02 4,214,633 13.095 19 0.02

S2 4,464,450 13.864 19 0.02 3,748,401 11.663 20

S3 0 0.05 0 0.04

Table 9: Results for Chained Mifflin 2 function

The results for Chained Mifflin 2 function for problem dimension up to n = 50
are presented in Table 9. Ball and spherical shell neighborhood variants performed

M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS 15

similarly, with no clear advantage between them. Neighborhood shape S3 again
performed the worst, particularly for n = 50. Among the other three shapes, S1
was the least competitive. Neighborhood shapes S1s and S2 performed the best,
S1s being the most efficient in most cases, and S2 reaching the optimal solution in
more cases than S1s for n = 50.

Chained crescent II function.

f(x) =

n−1∑
i=1

max{x2
i + (xi+1 − 1)2 + xi+1 − 1, −x2

i − (xi+1 − 1)2 + xi+1 + 1}

for −10 ≤ xi ≤ 10, i = 1, . . . , n, has a global minimum fmin = 0.

ball shell

n shape comp.eff. time succ. error comp.eff. time succ. error

30 S1 1,113,540 1.615 20 1,015,723 1.470 20

S1s 1,107,510 1.581 20 1,425,974 2.038 20

S2 1,103,026 1.581 20 1,556,183 2.241 20

S3 1,240,956 1.819 20 1,358,937 1.995 20

40 S1 4,993,715 10.769 8 1.18E-04 5,277,355 11.286 10 1.23E-04

S1s 4,854,389 10.093 17 1.08E-04 4,812,370 10.065 13 1.10E-04

S2 4,903,779 10.184 17 1.01E-04 6,450,901 13.516 19 9.99E-05

S3 8,035,215 17.272 7 1.22E-04 10,847,742 23.424 4 1.36E-04

50 S1 3,063,428 10.147 20 2,810,161 9.259 16 1.04E-04

S1s 2,628,553 8.488 20 1,359,642 7.521 18 1.02E-04

S2 2,397,515 7.710 20 2,636,275 8.411 20

S3 4,934,812 16.752 15 1.18E-04 3,904,913 13.144 13 1.11E-04

Table 10: Results for Chained Crescent II function

The results for Chained Crescent II function for problem dimension up to
n = 50 are presented in Table 10. Ball and spherical shell neighborhood vari-
ants performed similarly, without clear advantage between them. The VNS with
restarted Nelder-Mead as a local minimizer performed noticeably more effective
for n = 50 than for n = 40. The same effect was also noticed in [15] for some other
modifications of Nelder-Mead minimizers. Neighborhood shape S3 was the least
successful, followed by S1. Neighborhood shapes S1s and S2 were competitive in
speed, S2 being better overall since it reached optimal solutions in more cases than
S1s.

4. CONCLUSIONS

In this study we examined the influence of a neighborhood shape to the ef-
ficiency of the VNS metaheuristic for continuous unconstrained global optimiza-
tion problems. We considered neighborhoods defined as balls in `p metrics for
p = 1, 2,∞, along with spherical shells, the spaces between two concentric spheres.
The Most simple for software implementation, and thus most common, are `∞ balls
with uniform random point distribution (marked S3 in this study). Uniformly dis-
tributed points in `2 Euclidean ball (marked S2) and `1 ball (marked S1) can be

16 M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS

also used in the VNS by using efficient uniform random number generators for
these balls. Finally, we define a special random number distribution in `1 ball
(marked S1s), which proved to be very efficient for some problems.

Our exhaustive testing on a set of challenging smooth and non-differentiable
functions led to the following conclusions:

First, there was no significant difference in efficiency of VNS between ball and
spherical shell neighborhood shapes. They performed very similar, except for two-
dimensional Trefethen 4 function, which is considered as an easier problem due to
its low dimensionality. From the implementation point of view, introducing more
complicated spherical shell neighborhoods is not justified regarding the algorithm
efficiency.

Second, neighborhood shapes S1, S1s, S2, and S3 exhibited remarkably dif-
ferent performances, especially for high dimensional problems. S3 box-shaped
neighborhood, the easiest to implement, was inefficient, and often unsuccessful in
higher dimensions, for all test problems except for Ackley function, for which S2
performed slightly better than S3. So, using S3 alone, or together with the other
neighborhood shapes, can degrade performance of the VNS. S1s shape performed
the best overall, being the best in six test problems, and close to best S2 shape in
two cases. Only in one case, for Ackley function, S1s performed badly. Neighbor-
hood shape S2 performed badly only for low dimensional Trefethen 4 problem. It
performed the best in three test problems and close to best in the fourth. Com-
paring shapes S1 and S1s with the same geometry but different random point
distribution, S1 performed worse than S1s in all problems except the Ackley func-
tion, for which they both had poor performance. So, S1s and S2 are proved to be
the most successful.

Neighborhood shape S1s performed the best overall. In a few problems, S2
performed the best, S1s being close. Only in one problem, S2 was the best, and
S1s performed poorly. From implementation point of view, neighborhood shape
S1s (`1 ball with special random distribution) is the best choice if used alone. If
the implementation can combine more neighborhood shapes, neighborhood shape
S1s in combination with S2 (`2 ball with uniform random distribution) would be
overall more efficient than the other shape combinations for test problems from
this study.

Future work will focus on experiments with more neighborhood shapes and
more random distributions. Also, combinations of neighborhood shapes within
the VNS will be tested.

Acknowledgement: This research was supported by the Ministry of Education,
Science and Technology of Serbia, project number 174010.

REFERENCES

[1] Mladenović, N., Hansen, P., ”Variable neighborhood search”, Computers & Operations
Research, 24 (1997) 1097–1100.

M. Dražić / Influence of a Neighborhood Shape on the Efficiency of C-VNS 17

[2] Hansen, P., Mladenović, N., ”An introduction to variable neighborhood search”, Meta-
heuristics, Springer, Boston, MA, 1999 (433–458).

[3] Brimberg, J., Hansen, P., Mladenović, N., Taillard, E., ”Improvements and comparison of
heuristics for solving the uncapacitated multisource weber problem”, Operations Research,
48 (3) (2000) 444–460.

[4] Mladenović, N., Petrović, J., Kovačević-Vujčić, V., Čangalović, M., ”Solving spread spec-
trum radar polyphase code design problem by tabu search and variable neighborhood
search”, European Journal of Operational Research, 151 (2003) 389–399.

[5] Dražić, M., Kovačević-Vujčić, V., Čangalović, M., Mladenović, N., ”GLOB – a new VNS-
based software for global optimization”, Global optimization, Springer, Boston, MA, 2006
(135–154),.

[6] Dražić, M., Lavor, C., Maculan, N., Mladenović, N., ”A continuous variable neighborhood
search heuristic for finding the three-dimensional structure of a molecule”, European Journal
of Operational Research, 185 (3) (2008) 1265–1273.

[7] Mladenović, N., Dražić, M., Kovačević-Vujčić, V., Čangalović, M., ”General variable neigh-
borhood search for the continuous optimization”, European Journal of Operational Re-
search, 191 (3) (2008) 753–770.

[8] Carrizosa, E., Dražić, M., Dražić, Z., Mladenović, N., ”Gaussian variable neighborhood
search for continuous optimization”, Computers & Operations Research, 39 (9) (2012) 2206–
2213.

[9] Trefethen, L., ”A hundred-dollar, hundred-digit challenge”, SIAM news, 35 (1) (2002) 01–
02.

[10] Audet, C., Béchard, V., Digabel, S., ”Nonsmooth optimization through mesh adaptive direct
search and variable neighborhood search”, Journal of Global Optimization, 41 (2) (2008)
299–318.

[11] http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar files/-
TestGO files/Page295.htm.

[12] http://tracer.lcc.uma.es/problems/ackley/ackley.html.
[13] Lavor, C., Maculan, N., ”A function to test methods applied to global minimization of

potential energy of molecules”, Numerical algorithms, 35(2) (2004) 287–300.
[14] Haarala, M., Miettinen, K., Mäkelä, M., ”New limited memory bundle method for large-

scale nonsmooth optimization”, Optimization Methods and Software, 19 (6) (2004) 673–692.
[15] Dražić, M., Dražić, Z., Mladenović, N., Urošević, D., Zhao, Q., ”Continuous variable neigh-

bourhood search with modified Nelder–Mead for non-differentiable optimization”, IMA
Journal of Management Mathematics, 27 (1) (2014) 75–88.

