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Abstract:Abstract:Abstract:Abstract: In this paper, we revisit the famous heuristic called nearest neighbor ( )N N  

for the traveling salesman problem under maximization and minimization goal. We 
deal with variants where the edge costs belong to interval [ ; ]a ta  for > 0a  and > 1t , 

which certainly corresponds to practical cases of these problems. We prove that NN is a 
( ) /+ 1 2t t -approximation for max [ ; ]TSP a ta  and a /( )+2 1t -approximation for 

min [ ; ]TSP a ta  under the standard performance ratio. Moreover, we show that these 

ratios are tight for some instances. 

Keywords:Keywords:Keywords:Keywords: Approximate algorithms, performance ratio, analysis of algorithms, traveling 
salesman problem. 

1. INTRODUCTION 

The classical traveling salesman problem can be formulated as follows: given 

nK , a complete graph on n  vertices with non-negative integer costs on its edges, the 

traveling salesman problem under minimization version, called min TSP  (resp. 

maximization, called max TSP ) consists of minimizing (resp. maximizing) the cost of a 

Hamiltonian cycle, the cost of such cycle is the sum of its edge's costs. Moreover, when 
the edge-weights are in the set { , ,..., , }+ −1 1a a b b , we will call of [ ; ]TSP a b  problem. 

Several restrictions of this problem have often been studied in the literature, like 
Euclidean, metric or 1, 2 cases and very elegant positive or negative approximation 
results have being produced by Arora [1], Christofides [2], Papadimitriou and 
Yannakakis [7], Engebretsen and Karpinski [3], Papadimitriou and Vempala [6]. There 
are no special studies about this heuristic when edge-weights are in the set 
{ , ,..., , }+ −1 1a a b b . 
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In this paper, we revisit some approximation results for Nearest Neighbor 
algorithm (noted NN) described the first time by Karg and Thompson [5], also called 
the next best method in some sequencing jobs to a single production facility. This very 
simple heuristic has already been mainly studied by Fisher et al. [4] for max TSP  and 

by Rosenkrantz et al. [8] for min −metric TSP  and consist in starting from any vertex 

and visiting constantly the nearest vertex that has not been visited. In [4], the authors 
present several polynomial-time approximation algorithms, among which Nearest 
Neighbor achieving approximation ration 1/2 for the maximization version whereas in 
[8], the results are less optimistic since they produce a ( / log )θ 1 n -approximation for 
minimization metric version, by using an approximation measure, called performance 
ratio, defined as: 

( ) ( )[ ] ( ) min ,
( ) ( )

ρ π
 

=  
 

A
A I OPT I

I
OPT I A I

 

where ( )A I  is the value of algorithm A  and ( )OPT I is the value of an optimal 
solution on the instance I  of a combinatorial problem π . 

The performance ratio is a number less than or equal to 1, and is equal to 1 
when ( ) ( )=A I OPT I . Note that, compared to some definitions, we have inverted the 
performance ratio in the case of the minimization problems. Hence, we will always 
consider the ratio value as being between 0 and 1. We say that A  is an r -
approximation if for any instance I , we have ( )ρ ≥A I r . 

A case that seems to be very common in practical situations appears when 

max min/d d  is upper bounded by a constant. We prove that, when edge-costs belong to 

the interval [ ; ]a ta , Nearest Neighbor is a ( ) /+ 1 2t t -approximation for the 
maximization problem and yields a /( )+2 1t -approximation for the minimization 
version. 

The previous guaranteed performance on theses heuristics are strengthened 
by our results in both versions. Moreover, we show that ratios are tight. 

2. THE NEAREST NEIGHBOR ALGORITHM 

This algorithm depends on the goal of the traveling salesman problem, so 
when we study the maximization case, we replace goal by max  else goal by min . 

[ ]goalNN  

inputinputinputinput: ( , )= nI K d  instance of goal TSP; 

outputoutputoutputoutput: An acyclic permutation p  of I ; 

Take arbitrarily ∈1x V ; 

Set { }= 1S x  and = 1z x ; 

While ≠S V  do 
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Take ∉y S  such that ( , ) { ( , ) | }= ∉d z y goal d z w w S  (line a); 

Set ( )=y p z  and =z y ; 

End while; 

( ) = 1p y x ; 

return p ; 

We assume that when there are ties in different steps of algorithm, they can 
be broken by taking the vertex with minimum index, so in particular we always start 
with vertex 1x . This algorithm yields an Hamiltonian cycle since an acyclic 

permutation describes a feasible solution by the set {( , ( )) | }∈x p x x V  (where p  points 

out to the successor of x  in the cycle) and its complexity-time is ( )2O n . 
The authors of [4] have proved by linear programming method that max TSP  

is 1/2-approximable, whereas we prove by a combinatorial technique that more 
generally max [ ; ]TSP a ta  is ( ) /+ 1 2t t -approximable for all > 1t . 

Theorem 1.1.Theorem 1.1.Theorem 1.1.Theorem 1.1. The algorithm max[ ]NN  is a 
+ 1
2

t
t

-approximation for max [ ; ]TSP a ta  

and this ratio is tight. 

Proof:Proof:Proof:Proof: Let ( , )= nI K d  be an instance on n  vertices, such that ( )≤ ≤a d e ta  for all edge 

e  and let *p  (resp. p ) be an acyclic permutation describing an optimal solution of I  
(resp. the solution returned by NN). We split V  into { | ( , ( ))= ∈ <1V x V d x p x  

*( , ( ))}< d x p x  and *{ | ( , ( )) ( , ( ))}= ∈ ≥2V x V d x p x d x p x . Note that ≠ ∅2V  since by 

construction ∈1 2x V . Moreover if ≠ ∅1V  then the nearest neighbor heuristic is 

optimal and we have the main key following result: 

* * *, ( ( ), ( )) ( , ( ))∀ ∈ ≥D1x V d p x p p x d x p x . (1.1) 

Indeed, let ∈ 1x V ; by construction *( )p x  correspond to a previous step of algorithm 

than x  (else ∈ 2x V ) and then at the step *( )p x , we have ∉x S  and the expected 

result. 
Finally, we have 

* *
max

* *

* *

max max

( ) ( , ( )) ( ( ), ( ))

( , ( )) ( ( ), ( )) | | | |

( , ( )) ( , ( ))

( ) ( ).

∈ ∈

∈ ∈

∈ ∈

= + ≥

≥ + + +

≥ + + ≥

≥ +

∑ ∑

∑ ∑

∑ ∑
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D
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2 1
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1

x V x V

x V x V

x V x V

NN I d x p x d p x p p x

d x p x d p x p p x a V a V

d x p x d x p x an

OPT I OPT I
t
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We now show that this ratio is tight. Let ( , )=n nJ K d  be an instance defined by: 

{ | }= ≤ ≤1 2iV x i n  and for all ,i j  such that ≤ ≤ < ≤1 2i n j n , we have 

( , ) ( , )− = =i j n i jd x x d x x ta  and ( , ) =i jd x x a . The nearest neighbor solution is described 

by , ( ) +∀ ≤ − = 12 1 i ii n p x x  and ( ) =2 1np x x  and an optimal solution by ,∀ ≤ −1i n  
* *( ) , ( )+ + += = 1i n i n i ip x x p x x  and * *( ) , ( )= =2 2 1n n np x x p x x . Finally, we have: 

max

( )( )( )ρ + + − += →1 1 2 1
2 2NN n

a n t a t
J

atn t
. ♦ 

In order to study the behavior minNN , we will establish a mathematical 

relation between respective solutions returned by algorithm on two instances linked by 
reduction. Moreover, we show that this relation remains true for maxOPT  and minOPT . 

Theorem 1.2.Theorem 1.2.Theorem 1.2.Theorem 1.2. The algorithm min[ ]NN  is 
+
2

1t
-approximation for min [ ; ]− TSP a ta  and 

this ratio is tight. 

Proof:Proof:Proof:Proof: Let ( , )= nI K d  be an instance on n  vertices of min [ ; ]− TSP a ta , set 

max max ( )∈= e Ed d e  and min min ( )∈= e Ed d e . We transform instance I  into instance 

( ) ( , )α ′= nI K d  just by changing the weight of edges by max min( ) ( )′ = + −d e d d d e . It is 

clear that ( )α I  is still an instance verifying ( )′≤ ≤a d e ta , so we can apply nearest 
neighbor algorithm on ( )α I  and we have: 

min max min max( ) ( ) ( ( ))α= + −NN I n d d NN I . (1.2) 

We show this equality by an inductive proof. Note minp  (resp. maxp ) the solution 

produces by minNN  (resp. maxNN ) on the instance I  (resp. ( )α I ). For an arbitrate 

step x  (we identify current step with last vertex visited) if w have min ( )=y p x  then 

, ( , ) ( , )∀ ∉ ≤z S d x y d x z  and max min max min, ( , ) ( , )′∀ ∉ = + − ≥ + −z S d x y d d d x y d d  

( , ) ( , )′− =d x z d x z , thus we have max ( )=y p x  and more generally for any vertex 

min max, ( ) ( )=x p x p x . 

Moreover, this equality also holds for the respective optimal solution of I  and 
( )α I : 

max max min min( ( )) ( ) ( )α = + −OPT I n d d OPT I . (1.3) 

Let *
minp  be an optimal solution of I , it is a feasible solution of ( )α I , thus we 

have min max min max( ) ( ) ( ( ))α≥ + −OPT I n d d OPT I . Conversely, since ( )α α =D I I , we also 

have min max min max( ) ( ) ( ( ))α≤ + −OPT I n d d OPT I . 

Thanks to the equality (1.3) and since min min( ) ≥OPT I d n , we also obtain: 

max min min min min( ( )) ( ) ( ) ( )α ≤ + − ≤OPT I n d t d OPT I tOPT I . (1.4) 
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Finally, add equality (1.2) to (1.3) and thanks to previous theorem and inequality (1.4), 
we have: 

min min max max

max

min

( ) ( ) ( ( )) ( ( ))

( ( ))

( )

α α

α

− = − ≤
−≤ ≤

−≤

1
2

1
2

NN I OPT I OPT I NN I

t
OPT I

t
t

OPT I

 

and the expected result holds. 
We show that this ratio is tight by considering the instances ( ) ( , )α ′=n nJ K d  

where ( , )=n nJ K d  is defined as in the previous theorem. Thus, we obtain: 

min
( ( ))

( ) ( )
ρ α = →

+ + − +
2 2

1 1 1NN n
an

J
a n at n t

. 

We give another proof of this theorem by a straightforward analysis of this 
heuristic in the special case where the edge-costs are only a  and ta . We split V  into 

{ | ( , ( )) }= ∈ =1V x V d x p x a  and { | ( , ( )) }= ∈ =2V x V d x p x ta  and we have that 1V  (resp. 

2V ) is isomorphic to the edge set of cost a  (resp. at ) taken by the heuristic, so we 

have: 

min ( ) | | | | ( ) | |= + = + −1 2 21NN I a V at V an a t V . (1.5) 

We do the same partition for an optimal solution *p ; so we split V  into 
* *{ | ( , ( )) }= ∈ =1V x V d x p x a  and * *{ | ( , ( )) }= ∈ =2V x V d x p x ta . We also have the 

following result: 

*
min ( ) ( ) | |= + − 21OPT I an a t V . (1.6) 

Moreover, the key following result establishes one relationship between sets , ,= 1 2iV i  

thanks to optimal acyclic permutation *p : 

* *( ) ⊆∩2 1 1p V V V . (1.7) 

Indeed, this mathematical relation shows that for each mistake of algorithm (i.e. 
*∈ ∩2 1x V V ), we can find a step for which the heuristic works well (i.e. ∈ 1y V ). The 

proof is not presented here. Finally, since *p  is a permutation, we have: 

* *

* * *

*

*

min

( ) | | ( ) | | ( ) | | ( ) | |

( ) | | ( ) | ( ) | ( ) | |

( ) | | ( )(| | | |)

( ( ) | |)
( ) .

− = − + − + − =

= − + − + − ≤

≤ − + − + ≤

≤ + − + − ≤
≤ + −

∩ ∩

∩ ∩

∩

∩

2 2 2 2 1 2

2 2 2 1 2

2 2 1 2

2 2

2 1 1 1 1

1 1 1

1 1

1 2

2

a t V a t V V a t V V a t V

a t V V a t p V V a t V

a t V V a t V V

an a t V V atn an

OPT I atn an
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Thus, we have: 

min

min

min

( ) ( ) | |

( )

( )

= + − ≤

≤ + ≤

+≤

21

1
2 2

1
2

NN I an a t V

atn
OPT I

t
OPT I

 

and the expected result holds. ♦ 

Finally let us notice we could show that this algorithm gives the same 
performance ratio for the two versions of Hamiltonian path problem (with or without a 
specified endpoint) through a slight modification of line a of algorithm. Nevertheless 
for the maximization version where the two endpoints are specified, this heuristic 
yields no constant approximation ratio when max min/d d  is not upper bounded by a 

constant. 
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