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Abstract: Cuts combination of plane details leads to optimization of material use and
shortening of cutting time. However, the problem of cutting plan realization arises. This
plan has to satisfy the following restrictions: (1) part cut off a sheet does not require
further cuts (constructing of OE-route); (2) there are some restrictions on placement of
pierce points (constructing of PPOE-cover). In this paper we consider the problem of
enumeration the OE-chains for cutting plan with combined cuts and necessary conditions
of realizable cutting.

Keywords: Ordered Enclosing, Pierce point placement, Enumeration, Routing problem,

Cutting, Technological restrictions, Cut realization.

MSC: .

1. INTRODUCTION

Laser cutting is one of the major cutting processes used to manufacture sheet
metal products. Hence, the routing problem for a cutting tool is actual. The task of
determining the trajectory is to define the exact sequence of cuts. The development
of industrial automation has led to the emergence of numerical control technology
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equipment used for cutting sheet materials. New technologies allow cutting along
an arbitrary path with sufficient accuracy.

The advantage of using laser cutting is the minimum of such indicators as
cutting width and thermal deformations.

The main constraints for laser cutting are:
(1) all elements of the inner contours must be cut before the outer contour is

completely covered (OE-chains [1]);
(2) avoid crossings of the cutting trajectory, touches are allowed (NOE-chains

[2, 3, 24]);
(3) thermal effects should be taken into account because heating of a metal

sheet occurs during cutting [4];
(4) constraints on placing the pierce point (constructing of PPOE-cover [5]);
(5) the summary time need for cutting (time for cut, time for air moves, time

for piercing etc.) should be shortened.
Papers [2] and [6] contain classification of routing problems for cutting tool, and

their authors admit that ECP (Endpoint Cutting Problem) and ICP (Intermittent
Cutting Problem) technologies allow to reduce the waste of material, shorten the
lengths of cutting and air moves due to the possibility of combining the boundaries
of the cut out parts. The problems of reducing material waste and maximizing
combination of the detail fragment contours are solved at the stage of creating the
cutting plan.

Despite the obvious advantages of the ECP and ICP technologies, currently
the majority of papers (for example, [2, 7, 8, 9, 10, 11, 12, 13, 14]) are devoted
to the development of the GTSP (General Travelling Salesman Problem) or CCP
(Continuous Cutting Problem) technologies which do not involve the combination
of the details contours. Thus, when using these technologies, the length of the
trajectory is equal to the sum of the perimeters of all the contours, and the number
of pierce points is equal to the number of contours.

A number of papers [15, 16, 17] discuss constructing the efficient algorithms for
cutting plans in which combining the contours is allowed. To solve this problem the
authors of [15] use graph theory, and the algorithm considered in this paper allows
to construct additional edges between odd degree vertices. Nevertheless, algorithm
from [15] is not enough formalized and proved to be the ”one algorithm for solving
routing problem with some restrictions”. This algorithm works only for plane
graphs admitting completion to a plane Euler graph. In [17] the author considers
the same problem as in [15] but formalized it in details giving the definition of a
route with restrictions for a plane graph (this type of routes is called OE-routes)
and not only the algorithm for solving the problem for Eulerian graph but also
for solving Chinese Postman Problem (CPP). Thus, algorithm for obtaining the
solution of this problem is given for a plane connected graph.

The recent advances are given in our later papers [3, 5, 18]. In [3] we con-
sider the algorithm that transforms the initial plane Eulerian graph to a plane
4-regular graph for which the routing problem can be solved in polynomial time
by constructing an AOE-chain, i.e. the chain where adjacent edges are neighbours
in the cyclic order relatively their common vertex, and the inner part of passed
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cycle does not contain not passed edges. This transformation means splitting of
all vertices of degree 2k, k ≥ 3 to k fictive ones and adding a cycle containing
k fictive edges incident to these vertices. Then, we construct the AOE-chain for
the obtained 4-regular graph. This trail is to be the NOE-chain (non-intersecting
OE-chain) for the initial graph after absorbing all the fictive edges and vertices
obtained while splitting vertices of the initial graph. Some relevant algorithms
and proofs are discussed in [5, 18].

To solve the routing problem, the cutting plan may be represented as a plane
graph as following [18].

Let plane S be a model of a metal sheet, and plane graph G be a model of
a cutting plan. Let E(G) be a set of edges of graph G, which are plane Jordan
curves with pairwise disjoint interiors homeomorphic to open segments. The set
of vertices V (G) is represented by the set of bounding points of these curves.

Let for any J ⊆ G (part of a cutter trajectory) the theoretical-set union of its
inner faces be designated as Int(G) (the union of all its components S \ J without
outer face). Then Int(G) may be interpreted as a part cut of a sheet. Let the
initial part of a route in graph G be considered as a part of a graph containing all
vertices and edges belonging to this part of a route. This allows formalizing the
claim to a cutter as a condition of absence of the initial route part inner faces of
graph G intersection with graph G edges not yet included to any chain yet. Such
type of routes is called OE-routes [19].

We define the following functions for each edge E ∈ E(G) to represent the
image of cutting plan as a plane graph G = (V,E) [17]:

• vk(e), k = 1, 2, be vertices incident to edge e;

• fk(e) be a face placed on the right-hand side when moving over edge e from
vertex vk(e) to vertex v3−k(e), k = 1, 2;

• lk(e) be the edge incident to face f3−k(e) and vk(e), k = 1, 2;

• rk(e) be the edge incident to face fk(e) and vk(e), k = 1, 2.

As functions vk(e), fk(e), lk(e), rk(e), k = 1, 2, constructed on graph G =
(V,E) edges define incident vertices for each edge, incident faces, and adjacent
edges, the following statement holds. Functions vk(e), fk(e), lk(e), rk(e), k = 1, 2
constructed on graph G = (V,E) edges define plane graph G = (V,E) up to
homeomorphism [1].

The space complexity of such a representation is O(|E| · log2 |V |). There is no
problem to get these functions. In fact, they are defined at stage of interpreting
the cutting plan in terms of graph G. This is minimal information needed to
represent of any plane graph up to homeomorphism. Using the known coordinates
of images of graph G = (V,E) vertices, and nesting fragments of the cutting plan
(the images of graph G = (V,E) edges) any route in graph G may be interpreted
as a tool trajectory.

The data structures used for storage the cutting plan data and information of
the plane graph is given in [27].
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The aim of our paper is to consider the enumeration problem of the OE-chains
for cutting plan with combined cuts and to give necessary conditions of realizable
cutting.

Section 2 is devoted to main definitions, data representation, and brief review
of basic algorithms for OE-chains constructing. Here we present the theorem on
the cardinality of OE-cover for a plane graph, and discuss the parallel algorithm
for getting the minimal possible cardinality OE-cover.

In section 3 we introduce the definitions of PPOE-chains and discuss the neces-
sary conditions of cutting realization. Let us mention that by constructing PPOE-
cover for graph G, we solve the routing problem for a cutter with restrictions on
pierce point placement.

2. OE-ROUTES FOR PLANE GRAPHS

For the convenience of the reader, we give the basic definitions and key algo-
rithms from our earlier papers.

2.1. OE-cycles for Eulerian graphs

Definition 1. [20, 19] Let chain C = v1e1v2e2 . . . vk, 0 < k < |E(G)| and
Int (v1e1v2e2 . . . el) ∩ E(G) = ∅, 1 ≤ l ≤ k be called ordered enclosing (or OE)
chain.

Theorem 2. [20, 19] Let G be a plane Eulerian graph. Eulerian OE-cycle C =
ve1v1e2v2 . . . v|E(G)|−1e|E(G)|v exists for any vertex v ∈ V (G) incident to an outer
face of G.

Let us consider the enumeration problem for Eulerian OE-chains in plane Eu-
lerian graph. This problem is of practical interest when it is necessary to define all
the possible starting pierce points when the sequence of cutting is fixed. So, after
running algorithm of OE-chain construction we may choose any of the permissible
pierce points to get the OE-chain has started from it.

Definition 3. Graph of allowed transitions TG(v) for vertex v ∈ V (G) be a
graph whose vertices are the edges incident to vertex v, i.e. V (TG(v)) = EG(v),
and the set of edges be represented by allowed transitions between the edges.

Definition 4. System of allowed transitions TG (or shortly the system of
transitions) be a set

{TG(v) | v ∈ V (G)}

where TG(v) be transitions graph of vertex v.

Let us consider some statements proved in [23] but now given in English.
Let G be a plane Eulerian graph and C(G) be OE-chain, TC(G) be the system

of transitions for chain C(G). Proposition 5 gives the estimation of the number of
OE-chains with a fixed transition system TC(G).
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Proposition 5. Let G(V,E) be a plane Eulerian graph without cut-vertices and
C(G) be OE-chain with system of transitions TC(G). Then the number of OE-
chains N for TC(G) satisfies the inequality 1 ≤ N ≤ 2 · |V (f0)|, V (f0) = {v| v ∈
f0}, and both upper and lower bounds are reachable.

Proof. The OE-chain C(G) exists due to theorem 2 [20]. Hence, the lower bound
is reachable. Let us fix the transition system TC(G) for OE-chain C(G). All
vertices of set V (f0) for this transition system may be divided into two classes:

V1 = {v : E(TG(v)) ∈ {e1, e2} : e1, e2 ∈ f0}

and
V2 = {v : E(TG(v)) ∈ {e1, e2} : e1, e2 /∈ f0} .

A transition system for V ∈ V1 allows not more than two OE-chains starting
from the edges bounding outer face. If we assume that a chain starts from an
edge not belonging to the outer face then it finishes at the edge not belonging
to outer face which means that it is not an OE-chain. Vice versa, for vertices
of set v ∈ V2 constructing OE-chain is possible only if we start by an edge not
belonging to the outer face. Otherwise, after returning to a chosen vertex v at
least one edge (that is not adjacent to the outer face) is to be enclosed. Thus,
the fixed transition system allows not more than 2 · |V (f0)| of OE-chains. Let us
show that this estimation is reachable. Let us consider the graph in figure 1. OE-

Figure 1: The example of graph with the system of non-intersected transitions

chain C1,1 = v1e1v3e3v2e2v1e6v2e5v3e4v1 for this graph induces transition system
TC1,1

(G) = {TG(v1), TG(v2), TG(v3)} where

V (TG(v1)) = {e1, e2, e4, e6}; E(TG(v1)) = {{e1, e4}, {e2, e6}};

V (TG(v2)) = {e2, e3, e5, e6}; E(TG(v2)) = {{e2, e3}, {e5, e6}};

V (TG(v3)) = {e1, e3, e4, e5}; E(TG(v3)) = {{e1, e3}, {e4, e5}}.
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There exists one more OE-chain

C1,2 = v1e2v2e3v3e1v1e4v3e5v2e6v1

for v1. Wherein for v2 ∈ f0 OE-chains

C2,1 = v2e6v1e2v2e3v3e1v1e4v3e5v2

and
C2,2 = v2e5v3e4v1e1v3e3v2e2v1e6v2

satisfy the transition system TC1,1(G), and for vertex v3 the following OE-chains

C3,1 = v3e4v1e1v3e3v2e2v1e6v2e5v3

and
C3,2 = v3e5v2e6v1e2v2e3v3e1v1e4v3

satisfy it. Thus, a graph with three vertices has six TC(G)-compatible OE-chains.
Let us consider the same graph with another transition system TC(G) (fig. 2).

The main difference of this transition system from the one in figure 1 is the inter-

Figure 2: The example of graph transition system of which has intersections

sected transitions at vertices v2 and v3.
In this case, graph has only one OE-chain

C = v2e3v3e4v1e1v3e5v2e2v1e6v2

for the defined XC(G). If we choose either vertex v1 or v3 we obtain that cycle
v1e1v3e5v2e2v1 encloses edge e3, which is not passed. Let us note that only e3 may
be chosen as the starting edge in this case. Hence the lower bound is reachable.
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According to a practical point of view, graphs whose upper bound are reachable
have particular interest. In the proof of proposition 5 (see [22]) it is clear that not
every OE-cycle induces a transition system for which the upper bound is reachable.
We also note that in order to find an appropriate transition system for which the
upper bound is reached, it is not enough to know only the initial vertex and the
initial edge.

Let us enumerate OE-chains for transition system of an A-chain [22].

Definition 6. [24] Let for Eulerian chain

T = v0, k1, v1, . . . , kn, vn, vn = v0

in graph G = (V,E) the cyclic order O±(v) is given for each vertex v ∈ V . This
order defines the transition system AG(v) ⊂ O±(v). If ∀v ∈ V (G) AG(v) = O±(v),
let transition system AG(v) be called full transition system.

Definition 7. [24] Eulerian AG-compatible chain T be called A-chain. Hence
the sequent edges of trail T (incident to vertex v) be the neighbours in cyclic order
O±(v).

The following statement on OE-cycles [23] holds for transition system of A-
chain.

Theorem 8. Let plane graph G = (V,E) without cut-vertices has an A-chain
C(G), and TC(G) be the transition system for this chain. If V (f0) is a set of
vertices adjacent to outer face, then there are 2 · |V (f0)| of OE-cycles for TC(G).

Proof. The proof that A-chain beginning and ending at vertex v0 ∈ f0 is also
OE-cycle is presented in [24].

Let us count the number of OE-cycles for the fixed transition system. Any OE-
cycle starts from v ∈ f0 and finishes at e ∈ f0 [24]. According to the statement of
this theorem no vertex vj ∈ f0, j = 1, . . . |v(f0)| is a cut-vertex, hence, there are
exactly two incident edges adjacent to the outer face. As soon as the transition
system corresponds to an A-chain and if vertex vj can be reached by one of these
edges, then the other edge is used for leaving this vertex. If both of these edges are
used only to reach vj , then the OE-condition is violated (in this case, one of these
entering vj edges is passed earlier than some inner edges). If both edges are used
for leaving vj , then the transition system XT (G) will have intersections. Such a
transition system does not satisfy any A-chain.

As soon as A-chain is a closed sequence of vertices and edges, it may start from
any vertex vj ∈ f0. If vj is the last vertex of an OE-chain, then it is necessary
that ej−1 ∈ f0 is sequence ej−1vjej . Actually, otherwise, the last edge ej−1 of
an OE-chain will be enclosed by a cycle of edges adjacent to the outer face. If
we take some vertex v ∈ V (f0) as a starting vertex of a chain, then according to
the predefined cyclic order O±(G) we may choose one of two incident edges to
leave this vertex. Hence, there are two OE-cycles for any vertex v ∈ V (f0). Since
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there are |V (f0)| vertices adjacent to the outer face then the number of OE-cycles
satisfying the transition system of an A-chain is equal to 2 · |V (f0)|.

If there are some cut-vertices for graph G(V,E), then the following statement
holds for transition system TC(G) of A-chain for this graph [23].

Theorem 9. Let plane graph G = (V,E) has K cut-vertices v1, . . . vK ∈ f0 and
let there exists A-chain T . Let TC(G) be the transition system of chain C(G), and
V (f0) be the set of vertices adjacent to outer face. There exist

2 · |V (f0)|+
K∑
i=1

(deg(vi)− 2)

OE-cycles for TC(G).

Proof. According to theorem 8, the plane graph G without cut-vertices has exactly
2 · |V (f0)| OE-cycles for transition system TC(G) satisfying any A-chain. Let
vi ∈ V (F0) be a cut-vertex with degree deg(vi) = 2 ·Mi. There are exactly Mi

edges in a cyclic order by which chain reaches this vertex and the same number
of edges by which it leaves this vertex. One pair of edges is already counted for
|V (f0)|, and Mi − 1 ways of beginning the OE-chain are not taken into account.
Summarizing by all cut-vertices, we get the expression from formulation of the
theorem.

Let us note that if TC(G) does not satisfy any A-chain, then the upper bound
cannot be reached even if chain C is a non-intersecting. This is confirmed by the
example shown in the figure 3.

There is no A-chain in this graph, nevertheless, it is possible to define the
system of non-intersecting transitions TC(G). For this graph, given the TC(G)
transition system shown in Figure 3, there are only five OE-chains starting at
different vertices of the outer face:

C1 = v0e7v1e1v0e2v1e4v2e5v1e6v2e3v0e9v2e8v0;

C2 = v0e8v2e9v0e3v2e6v1e5v2e4v1e2v0e1v1e7v0;

C3 = v1e1v0e2v1e4v2e5v1e6v2e3v0e9v2e8v0e7v1;

C4 = v2e3v0e9v2e8v0e7v1e1v0e2v1e4v2e5v1e6v2;

C5 = v2e9v0e3v2e6v1e5v2e4v1e2v0e1v1e7v0e8v2.

When constructing a chain from the vertex v1, it is possible to construct a chain
starting either from the edge e1 (in this case the chain C3 will be constructed, the
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Figure 3: The example of graph with the system of non-intersecing transitions not permitting
the A-chain

last edge of which will be e7), or from the edge e5 (in this case the last chain will
have edge e6, however the constructed chain

C6 = v1e5v2e4v1e2v0e1v1e7v0e8v2e9v0e3v2e6v1

will not be a OE-chain, because the edges e9 and e3, by the time of their inclusion
to the chain, will have already been enclosed by a cycle of passed edges).

A common transition system TC(G) of any OE-chain may have intersections
(the example of a chain satisfying the transition system with intersections is pre-
sented in figure 2). Thus, the number of OE-chains lays between 1 and 2 · |V (f0)|.
Hence, it is possible to choose any of these OE-chains as a route of a cutting tool.

2.2. OE-Routes for Any Plane Graphs

Definition 10. [19] Let the ordered sequence of edge-disjoint OE-chains be

C0 = v0e01v
0
1e

0
2...e

0
k0
v0k0

, (1)

C1 = v1e11v
1
1e

1
2...e

1
k1
v1k1

, . . . , (2)

Cn−1 = vn−1en−11 vn−11 en−12 ...en−1kn−1
vn−1kn−1

, (3)

covering graph G and such that

(∀m : m < n) ,

(⋃m−1

l=0
Int(Cl)

)
∩
(⋃n−1

l=m
Cl

)
= ∅,

be called a cover with ordered enclosing (OE-cover).
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Routes realizing OE-cover represent the ordered set of OE-chains and contain
additional idle passes (edges) between the end of current chain and beginning of
the next. Constructing of OE-cover for graph G solves the given routing problem.
The most interesting covers are those with minimal number of chains, and their
length, because of the transition from one chain to another, corresponds to an idle
pass of a cutter.

Definition 11. [19] Let minimal cardinality ordered sequence of edge-disjoint OE-
chains for plane graph G be called Eulerian cover with ordered enclosing
(Eulerian OE-cover).

Constructing of an OE-route for graph G solves the above stated tool path
problem when a part cut of a sheet does not require any further cuts (see constraint
(1)). Routes with a minimum number of chains are of the major interest since the
transition from one chain to another corresponds to the air move.

It is common that the estimation of Eulerian OE-cover cardinality is given by
the following theorem.

Theorem 12. Let G be a plane connected graph, Vodd(G) be the set of its odd
degree vertices then the inequality

k =
|Vodd(G)|

2
≤ N ≤ |Vodd(G)| = 2k

holds for cardinality N of Eulerian OE-cover of graph G. The upper and the lower
bounds are reachable.

Proof. According to Listing-Luke theorem, the lower bound cannot be less than
k. This bound is reached for bridgeless graphs with at least one odd degree vertex
adjacent to the outer face (see algorithm OECover). There is an algorithm in [19]
constructing the ordered sequence of OE-chains and covering bridgeless graphs by
not more than k + 1 chains. Routes realizing this cover contain additional edges,
those between the end of a current chain and the beginninhg of the next one.

The reachability of the upper bound is illustrated by an example in figure
4. As a matter of fact, any of odd degree vertices v∗1 , v

∗
2 , . . . , v

∗
2k may be only the

beginning of a covering OE-chain because the route ending at any of these vertices
cannot be an OE-route.

Thus, the cardinality of Eulerian OE-cover (i.e. minimal cardinality cover) for
this example is less than 2k.

Let us consider the process of constructing the OE-cover, where each of these
vertices is a beginning of a chain, to prove that 2k is the exact upper bound for
Eulerian OE-cover cardinality.

Algorithm Parallel OE-Cover works parallel. Let us organize 2k processes
starting from vertices v∗1 , v

∗
2 , . . . , v

∗
2k. We begin constructing OE-chains by proce-

dure ParallelFormChain() from vertices v∗1 , v
∗
2 , . . . , v

∗
2k. We use global variable

cur rank to synchronize these processes. Procedure waits for continuing of a chain
constructing if rank of a current edge is less than cur rank.
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Figure 4: The example of graph all the vertices of odd degree of which are to be the beginnings
of covering it OE-chains

Procedure ParallelFormChain
Extern: cur rank be a synchronizer by edges ranks; In: w be the first vertex

of a chain; Out: v be the last vertex of a current chain.
v ← w; e← Stack(v);
do
e1 = arg maxe∈Q(v)rank(e);
e2 = arg maxe∈Q(v):f1(e)=f2(e)rank(e);

// Find the maximal rank edge that is not bridge if possible
If(rank(e1) = rank(e2)) e← e2;
Else e← e1;
EndIf
Wait(rank(e) = cur rank);
If(e ∈ E(G))
E(G)← E(G) \ {e}; // Delete edge e and unite faces separated by e
If(v = v1(e))

REPLACE(e); //Replacement of indices of functions for edge e from k
to 3k, k = 1, 2.

EndIf
Trailw ← Trailw ∪ {e}; v ← v1(e);
EndIf

While ((v 6∈ Vodd) ∧ (Q(v) 6= ∅));
return v;
EndProcedure

Let us add one edge to each chain at each stage.
Each of running processes returns either the vertex of odd degree or the vertex

incident to outer face. One needs to order the chains obtained after finishing
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Table 1: Algorithms for OE-routes constructing

Route type Comp. complexity
Eulerian OE-cycle (alg. Recursive OE) [20] O(|V |2)
Eulerian OE-cycle (alg. OE-Cycle) [19], [21] O(|E| · log2 |E|)
OE-Postman Route (alg. CPP OE) [17] O(|E| · |V |)
OE-Router [1] O(|E| · log2 |E|)
Optimal OE-Router [1] O(|V |2)
MultiComponent (OE-Cover for Disconnected graph [18]) O(|E| · log2 |E|)
DoubleBridging (OE-Cover for Disconnected graph [18]) O(|E| · log2 |E|)

processes by decreasing the rank of starting vertex v∗1 , v
∗
2 , . . . , v

∗
2k. This can be

summarized as algorithm Parallel OE-Cover.
Algorithm Parallel OE-Cover
In: G = (V,E) be a plane graph; Vodd ⊆ V be a set of graph G odd degree

vertices;
Out: Trail be OE-cover as an ordered array of edges;
Initiate();
Order();
SortOdd(); // Sorting of odd degree vertices list by decreasing of their rank
For each w ∈ Vodd do parallel
cur rank ← max

v∈Vodd

rank(Q(v)); // Synchronising of processes

ParallelFormChain(w, v); //Constructing of OE-chain
EndFor
Trail← Trail(v1) • Trail(v2) • . . . • Trail(v2k);
End
Thus, not more than 2k chains are constructed.

So, the cardinality of cover is affected by existing of bridges in graph. If we
have a bridgeless graph, then the lower bound is reached if at least one odd degree
vertex is adjacent to outer face. If there is no such vertices, then the cardinality
of cover is one higher than the value of the lower bound.

Table 1 contains the list of algorithms used for constructing of OE-routes for
different types of graphs.

It is easy to see that all these algorithms run in polynomial time. Nevertheless,
they do not consider any constraints concerning starting vertices of any chain. So,
the cover satisfying the considered restrictions and optimality criteria may not be
unique. There are two ways of choosing the feasible one:

• to choose any of these covers;

• to introduce some additional criteria and choose the feasible cover satisfying
them.
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3. THE NECESSARY CONDITIONS OF CUTTING REALIZATION

The problem of feasibility of cutting with plasma cutting technology for solving
the cutting-packing problem arises due to different restrictions. We consider the
following restrictions: all elements of the inner contours must be cut before the
outer contour is completely covered (OE-chains); and avoid crossings of the cutting
trajectory, touches are allowed. The problem of minimization of pierce points
number and the problem of their placement while constructing the cutter path
also arises.

The minimal number of pierce points for a cutting map represented by a plane
connected graph is greater than |Vodd|/2 (see theorem 12). In this section we
consider only graphs coverable by |Vodd|/2 chains, i.e. bridgeless graphs with at
least one vertex incident to outer face.

Let us formalize the problem of pierce points placement.
Let faces Fin(G) ⊂ F (G) allow placement of pierce point. Then let us designate

odd vertices incident to Fin(G) as Vin(G) ⊂ V (G). So, the partition Vin and Vout

is defined on the set of vertices. We designate Vin as the set of pierce points, and
Vout as the set of leaving points.

If a route in graph is OE-route and starting vertex v1 ∈ Vin(G) then this route
may be a base for constructing the cutting program for plasma cutting machine.
The end of such chain is in Vin ∪ Vout. This type of routes we call PPOE-routes
[25, 26]. Constructing PPOE-cover for graph G solves the routing problem for a
cutter with restrictions on pierce points placement.

Definition 13. Let chain C = v1e1v2e2 . . . vk be called PPOE-chain if it is an
OE-chain and starting vertex v1 ∈ Vin(G).

Definition 14. Let PPOE-cover of graph G be the OE-cover of graph G con-
sisting of PPOE-chains.

Definition 15. Minimal cardinality ordered sequence of edge-disjoint PPOE-chains
in plane graph G is called Eulerian PPOE-cover.

The problem of defining the possibility of cutting by plasma instrument may
be stated as a problem of checking the existence of Eulerian PPOE-cover for a
given graph. According to the mentioned earlier restrictions we may formulate the
following necessary condition of PPOE-cover existence [26].

Proposition 16. Let G be a plane graph with 2k odd degree vertices. If there
exists Eulerian PPOE-cover, then |Vin(G)| ≥ k.

Paths realizing PPOE-cover can be represented by a special way ordered set
of PPOE-chains with additional idle paths (edges) between the end of the current
chain and beginning of the next one. Such transitions form a matching on a
bipartite oriented graph D = (Vin ∪ vout− > Vin, E), where Vin is a set of odd
degree vertices allowed to be the beginnings of trails (pierce points); Vout is a set
of odd degree vertices allowed to be only the ends of constructed chains (leaving
points).
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Proposition 17. It is necessary for the existing PPOE-cover of a mixed graph
G ∪D to have a cycle wherein all additional arcs belong

{(v, u) : v ∈ Vout ∪ Vin, u ∈ Vin}.

Proposition 18. It is necessary for the existence of a PPOE-cover of a plane
connected graph G that cardinality of minimal {Vin, Vout}-cut be not greater than
|Vout|.

The proofs of these propositions are considered in [26], hence, we shall omit
them.

3.1. Minimizing the Number of Pierce Points

The technology of plasma cutting claims presence of some space to place a
pierce point. The image of cutting plan is a plane graph G with specified list L of
faces allowing piercing. The outer face f0 ∈ L.

Let us consider the following sequence of steps to minimize the number of pierce
points for the given cutting plan.

Proposition 19. If the number of odd degree vertices |Vodd(L)| incident to each
f ∈ L is even, then it is possible to add edges without losing graph G planarity.

Proof. When each f ∈ L is a connected set, then there exist Jordan curves con-
necting any pair of points of f , i.e. it is possible to put in correspondence any
matching on the set of adjacent to f odd vertices without losing the planarity of
the initial graph G.

Proposition 19 means that it is possible to minimize the number of pierce points
by connecting the odd degree vertices in L without vanishing the planarity of G.
After that we get modified planar Eulerian graph G̃ for which OE-cycles exist.
Hence the OE-cover for G may be obtained from OE-cycle of G̃ by replacing the
additional edges between the odd degree vertices.

If there exist faces F ∗ ∈ L so that for any f ∈ F ∗ |Vodd(f)| = 2k + 1, k =
0, 1, 2, . . ., then after applying proposition 19 to each f ∈ F ∗ we obtain a planar
graph G∗ whose each face does not have more than one vertex of odd degree.

Hence, the following proposition holds.

Proposition 20. Let G∗ be a plane graph whose each face f ∈ L does not have
more than one vertex v ∈ Vodd of odd degree. Then minimal number of OE-chains
of cover constructed for G∗ is equal to |Vodd(G∗)|/2.

The proof of this proposition is obvious, and the minimal number of chains
for G∗ is equal to the lower bound mentioned in theorem 12. OE-chains may be
constructed by any algorithm from table 1.
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4. CONCLUSIONS and SUGGESTIONS

Nowadays lots of researches on sheet metal cutting are devoted to construct-
ing the cutting routes. There are some known technologies of cutting leading to
usage of different routing algorithms. In our paper we discussed the technology
allowing combination of cuts, which is poorly discussed in other works. We put
the technological constraints that part cut off a sheet does not require further
cuts and require putting pierce points only in predefined places of the sheet. Such
a problem is not discussed earlier. We showed that the problem of constructing
the technologically realizable routes with minimal number of pierce points may be
solved in polynomial time. Moreover, the number of pierce points may be mini-
mized by adding the edges connecting odd vertices incident to one face. So, the
obtained results are new for sheet metal cutting.
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