
Yugoslav Journal of Operations Research
31 (2021), Number 1, 23–44
DOI: https://doi.org/10.2298/YJOR191115019M

THE RaPID-Ω SYSTEM:
ROOM AND PROCTOR INTELLIGENT
DECIDER FOR LARGE SCALE TESTS

PROGRAMMING

Fernando A. MORALES
Escuela de Matemáticas. Universidad Nacional de Colombia, Sede Medeĺın.

Carrera 65 #59A–110, Medelĺın, Colombia
famoralesj@unal.edu.co

Received: November 2019 / Accepted: June 2020

Abstract: We present the documentation and mathematical modeling of the open-box
system RaPIDEΩ. The software is designed for the choice of classrooms and the assign-
ment of proctoring duties in massive tests, which is a common situation in educational
institutions offering large coordinated lower division courses. The mathematical model
is a binary integer programming problem: a combination of the 0-1 knapsack problem
and the job-assignment problem. The system makes decisions according to the following
criteria in order of priority: minimization of labor-hours, maximization of equity in the
distribution of duties and maximization of the proctoring quality.

Keywords: Open-box Software, Python Program Documentation, Binary Integer Pro-

gramming.

MSC: 90C10, 90B80, 68N15 .

1. INTRODUCTION

In this work we present the documentation and mathematical modeling of
the open-box system RaPIDEΩ, designed to optimize the rooms choice and the
proctor scheduling for the logistics of massive tests. This type of software is
needed in educational institutions having large coordinated courses (specially for
the lower division ones) with simultaneous common tests. The proposed software
was constructed based on the needs of a specific case, Escuela de Matemáticas
(School of Mathematics) at Universidad Nacional de Colombia, Sede Medelĺın



24 Fernando A. Morales / The RaPIDEΩ system

Table 1: Historical Enrollment Table

Semester DC IC VC VAG LA ODE NM Total

2010–1 1631 782 381 1089 983 668 142 5676

2010–2 1299 1150 427 1003 1007 562 261 5709

2011–1 1271 1136 512 1078 900 663 269 5829

2011–2 951 850 513 652 812 1170 289 5237

2012–1 1619 1096 559 1110 1116 752 366 6618

2012–2 1486 1190 601 1076 1144 825 356 6678

2013–1 1476 1044 604 1231 1037 902 319 6613

2013–2 1446 1212 549 1187 1103 786 326 6609

2014–1 1460 1184 676 1192 1000 890 295 6697

2014–2 1399 1126 564 1198 1012 695 234 6228

2015–1 1097 925 565 1076 793 601 201 5258

2015–2 1797 1214 605 1314 1099 808 274 7111

2016–1 1675 1323 582 1549 1017 950 263 7359

2016–2 1569 1296 594 1355 1009 1019 284 7126

2017–1 1513 1315 515 1088 798 736 134 6099

Mean 1445.9 1122.9 549.8 1146.5 988.7 801.8 267.5 6323.1

(National University of Colombia at Medelĺın). Hence, the simple model examples
we present are based on our study case.

In contrast with black-box commercial software, this open-box tool is aimed
to be easily used and/or modified to the needs of other programming scenarios
(most likely other educational institutions with different but similar testing pro-
cedures). The School of Mathematics is part of the College of Science within the
National University of Colombia at Medelĺın, it teaches two types of courses: spe-
cialization (advanced undergraduate and graduate courses in mathematics) and
service courses (lower division) for the whole University. The latter are: Differ-
ential Calculus (DC), Integral Calculus (IC), Vector Calculus (VC), Differential
Equations (ODE), Vector & Analytic Geometry (VAG), Linear Algebra (LA), Nu-
merical Methods (NM), Discrete Mathematics (DM), Applied Mathematics (AM)
and Basic Mathematics (BM, college algebra). The total demand of these courses
amounts to an average of 7200 enrollment registrations per semester. The last
three courses, DM, AM, BM, do not test their students in a coordinated fash-
ion but independently, i.e., each lecturer designs his/her own evaluation method.
Consequently, they will not be subject to this analysis. Given that most of the
students attending the National University of Colombia at Medelĺın pursue degrees
in Engineering, the courses DC, IC, VC, ODE, VAG, LA and MN are massive and
pose significant logistic challenges for booking their respective evaluations; see Ta-
ble 1 below. On a typical semester, these courses are divided in sections (between



Fernando A. Morales / The RaPIDEΩ system 25

8 and 22, depending on the enrollment) of sizes ranging from 80 to 140 (because
of classroom seat capacities). The evaluation consists of three exams, which the
students take simultaneously; the personnel in charge of proctoring duties consists
of approximately 45 lecturers among tenured and adjunct faculty, as well as 70
teaching assistants among graduate and undergraduate students. Moreover, the
Teaching Assistants and Adjunct Faculty are not full-time employees ergo, they
introduce significant time constraints in the task assignment due to their schedule.
Typically, each of the coordinated courses takes three tests during the semester,
therefore three rounds of tests need to be scheduled each semester. Currently, each
round selection of rooms and proctoring duties assignment are decided with the
RaPIDEΩ system.

The RaPIDEΩ system approaches the problem in three steps. First, the module
Room Decision.py minimizes the number of needed proctors in each examina-
tion activity in order to remove unnecessary labor-hours. Second, the Person-
nel Decision.py module maximizes the equity in the proctoring hours among the
personnel. Third, the Crew Organization.py module optimizes the proctoring
quality according to the experience record of each proctor. Furthermore, the deci-
sions are made with that order or priority. The system is implemented in Python
3.4, it uses libraries such as pandas (Python Data Analysis Library) and SciPy.
RaPIDEΩ runs from command line, and it can be freely downloaded from

https://sites.google.com/a/unal.edu.co/fernando-a-morales-j/home/

research/software

The rest of the paper is organized as follows: in Section 2 the input datasets are
exposed, together with their meaning and format; in Section 3 the output files are
presented, two of these files are final while two are intermediate. Section 5 exposes
the modeling and algorithms for the first module of the system concerned about
optimal room choice and number of students in each room. Section 6 presents
the modeling algorithms of the second module regarding the choice of proctors
among available personnel. Section 7 presents the algorithm to decide the optimal
position to proctor a test, starting from a previously scheduled crew. While any
user needs to understand sections 2 and 3, sections 5, 6, and 7 are of interest only
for a developer.

2. THE INPUT DATA SETS

In the present section, we describe the input data files for the RaPIDEΩ system,
explain the contents and structure of each dataset, as well as its motivation. In
our study case, a round of tests for the seven courses is typically scheduled in the
span of two weeks. The input files are: Available Rooms.xls, Room Data.xls, Per-
sonnel Time.xls, Proctor Log.xls and Professors.xls. The first two are concerned
with physical spaces, while the last three accounting for human resources.



26 Fernando A. Morales / The RaPIDEΩ system

2.1. The Available Rooms.xls file

The first input data is the spreadsheet Available Rooms.xls, which contains
the structure presented in the example of Table 2 below. For the School of Math-
ematics, the first step in programming an examination is to request the necessary
seats for each activity to the University’s Office of Building Management. The
information sent is summarized in the last three rows of Table 2. Conversely, the
Office of Building Management replies a list of rooms available at the time and
date requested and capable of holding the necessary enrollment, see Table 2 for
the example. It should be noticed that there is a slack for all the cases, i.e., the
total capacity of the available rooms always exceeds the number of students: DC
1354, IC 1093, VC 626, VAG 1006, LA 626, ODE 897, MN 402. Consequently,
the choice of available rooms can be done so to minimize the number of necessary
proctors.

Remark 1 (Format Available Rooms.xls). Some format guidelines must be
observed in the Available Rooms.xls file for the correct functioning of RaPIDEΩ.

(i) The time must include the abbreviation day, a blank space, two digits for each
hour and a hyphen in between: dd TT-TT, e.g., Mo 08-10 instead of Mo
8-10. Of course, the time slots can be modified according to the scheduling
needs (e.g. Monday from 9:00 to 12:00), as long as the format dd TT-TT, is
consistently preserved through the datasets (e.g. the file Personnel Time.xls
in Section 2.3).

(ii) The names of the courses (acronyms or not) in the columns can be modi-
fied as long as the labels are consistent with those in the file Professors.xls.
Naturally, the columns of the file can be increased or decreased according to
necessity.

(iii) The data in the column “Room” need not be sorted.

(iv) The capacity of each room need not be written on the courses columns, it
suffices to write “1”, to indicate that the room is available for the activity.
The system will actually read the value of the room capacity from the file
Room Data.xls (see Section 2.2); however, it may be desirable to write the
capacity in this file, in order to check on the input spreadsheet itself, if the
number of available seats is greater than or equal to the number of students.

2.2. The Room Data.xls file

The Room Data.xls sheet centralizes the information about all the classrooms
on campus, not only those needed for the examination activities, see Table 3 for a
minimal example.

The table contains the number of seats or capacity of each room, and a column
of observations where some annotations can be made such as: how the room is to
be opened, or if it has accommodations for students with disabilities. This file is
the most stable of all, as it changes only when the nature of the rooms changes,
therefore it is less vulnerable to human error than the file Available Rooms.xls;
this is why RaPIDEΩ reads the capacities from this file.



Fernando A. Morales / The RaPIDEΩ system 27

Table 2: Example of Available Rooms

Room DC IC VC VAG LA ODE NM

03-210 30

04-108 29

04-109 60

04-110 58

04-111

04-206 65

05-101 79

11-102 56

11-124 22 22

11-125 41

11-202 150

11-203 39 39 43

11-208 50 50 50

11-209 30 30 30

11-225 60 60 60

14-109 51 49

14-232 50 50

16-223 63 63 63 63 63

16-224 60 72 60 72 60 58

21-303 34 34

21-307 52 52 52

21-314 79 79 79 70 79

21-320 64 64 64 64 64 58

21-328 30

21-331 29

24-307 170

25-301 90 79

41-102 106

41-103 106 106 106 106 102

43-110 54 53

43-111 53

46-114 56

46-208 47 47 47

46-209 50 50 50 50

46-210 52 52 52

46-211 52 52 52

46-212 49 49

46-301 44 44 44

46-303 43 43

46-304 41 41 41

46-307 100 100 100 100

46-311 41

Students 1300 1050 608 951 600 822 150

Date 30-III 01-IV 06-IV 01-IV 06-IV 02-IV 05-IV

Time Sa 12-14 Mo 08-10 Sa 14-16 Mo 10-12 Sa 12-14 Mo 10-12 Mo 08-10

2.3. The Personnel Time.xls file

The third input data for the system is the spreadsheet Personnel Time.xls, it
has the structure presented in the minimal example of Table 4 below. As explained



28 Fernando A. Morales / The RaPIDEΩ system

Table 3: Example of Room Data

Room Capacity Observations

03-210 32 Doorkeeper

04-108 28 Key

04-109 70 Access Code

04-207 70 Wheelchair Ramp

05-101 80 Doorkeeper

11-102 56 Card

in the introduction, the team of proctors is not made of full-time employees, there-
fore, there are time constraints when scheduling a test. This is particularly acute
in the case of the Teaching Assistants whose labor duties amount to 10 hours
per week and their academic duties may be time-conflicting with the examination
activities.

Table 4: Example of Time Personnel

Name Cell email ID Experience Level Mo 10-12 Mo 12-14 Sa 08-10

TA 1 C 1 1@m.co ID 1 1 Undergraduate Day Off 1

TA 2 C 2 2@m.co ID 2 2 Undergraduate Busy 1 1

TA 3 C 3 3@m.co ID 3 1 Undergraduate 1 Class 1

TA 4 C 4 4@m.co ID 4 1 Undergraduate 1 1 1

TA 5 C 5 5@m.co ID 5 2 Undergraduate 1 NA 1

TA 6 C 6 6@m.co ID 6 2 Postgraduate 1 0 1

The table contains fields for identification (“Name” and “ID”), contact (“Cell”,
“email”), and rating (“Experience” and “Level”). Finally, the availability fields are
represented by multiple time slots. In this minimal example only three time-slots
were included: Mo 08-10, Mo 10-12, Sa 08-10. In practice, all possible time-slots
should be contained in the table, namely: Mo 08-10, Mo 10-12, ..., Mo 16-18, Td
08-10, ..., Fr 16-18, Sa 08-10, ..., Sa 16-18.

Remark 2 (Format Personnel Time.xls). The following instructions must be
observed when building the Personnel Time.xls sheet.

(i) The time slots dd TT-TT, must be consistent with those of the file Avail-
able Rooms.xls (see Remark 1 (iii) Section 2.1) for the system to work prop-
erly. They can be modified according to the scheduling needs (e.g. Monday
from 9:00 to 12:00), as long as the consistency between datasets and the
format dd XX-YY are preserved.

(ii) The time slots columns dd TT-TT must indicate whether or not an indi-
vidual is available. To indicate availability use “1”.

(iii) Only availability indicated by the number “1” is important for later calcula-
tions. In particular, if any other information is set (e.g., “Available”, “Free”,



Fernando A. Morales / The RaPIDEΩ system 29

“Busy”, etc.), the system will understand that the individual is unavailable
at that time slot.

(iv) There is no need to indicate unavailability. As shown in the example, the
reason why a TA is not available, can be declared or not. Unavailability can
also be marked with a “0” as in the example above. However, this annotations
will not impact on the system.

(v) The column “Level” has to be filled with the words “Undergraduate” or “Post-
graduate” for the system to understand the academic level of each TA. Fur-
thermore, this information will play a key role in the greedy algorithms of the
module Crew Organization.xls, see Section 7 and Algorithm 4.

2.4. The Proctor Log.xls file

The Proctor Log.xls is a file containing the record of proctoring duties that
the TAs have served in an observation time-window, namely, a term, a semester
or a year (depending on the institutional policy). Its structure is presented in
the minimal example of Table 5 below and it is fairly similar to that of Person-
nel Time.xls; it agrees on the columns holding each TA’s information. Each of the
remaining columns represents an examination activity that took place in the ob-
servation time-window, up to the programming date. For each examination event,
the number “1” indicates that the individual served on it. The column “Total”
indicates the total number of shifts the TA has taken so far.

Remark 3. Some observations about this file are the following

(i) When the system is initiated for the first time this file has to contain all
the columns holding the information of each TA (“Name”, “Cell”, “email”,
“ID”, “Experience”, “Level”) and the column “Total” with value “0” in all
its rows.

(ii) Once the system is executed, for the next round of tests, an updated file:
Updated Proctor Log.xls will be generated automatically, see Section 3.2
and Table 9 for this file.

Table 5: Example of Proctor Log

Name Cell email ID Experience Level ODE, 04-II Total

TA 1 C 1 1@m.co ID 1 1 Undergraduate 0

TA 2 C 2 2@m.co ID 2 2 Undergraduate 1 1

TA 3 C 3 3@m.co ID 3 1 Undergraduate 1 1

TA 4 C 4 4@m.co ID 4 1 Undergraduate 1 1

TA 5 C 5 5@m.co ID 5 2 Undergraduate 1 1

TA 6 C 6 6@m.co ID 6 2 Postgraduate 0



30 Fernando A. Morales / The RaPIDEΩ system

2.5. The Professors.xls file

The input file Professors.xls is a spreadsheet with the structure of the mini-
mal example presented in Table 6 below. Unlike the TAs, the lecturers are full-time
employees, therefore they pose no time constraints when scheduled for proctoring
duties. The column “Coordinator” indicates whether the Lecturer is the coordi-
nator of the course and will be the general supervisor of the examination activity,
therefore he/she will not be scheduled for proctoring testing rooms. Columns
“Subject”, “Subject 2” indicate which subject is to be lectured in the academic
period.

Remark 4. Some observations are

(i) Indicating that a faculty member is a course coordinator must be done with
the word “yes”. If any other character or word is set (e.g., “Yes”, “1”,
“coordinator”), the system will not understand the corresponding individual
as the coordinator and will include him/her in the proctoring duties as it dose
with any other lecturer.

(ii) By default, the system will assign an instructor to proctor only the examina-
tion activities of the subject he/she is lecturing. More specifically, in Table 6
Lec 3 will be assigned to proctor only examinations of DC.

(iii) Some instructors may have two or more service courses assigned, however,
the system takes into account only the first subject for proctoring duties, e.g.,
Lec 4 will be assigned to proctor only examinations of ODE and not those of
AL. Therefore, the remaining subjects may be omitted.

(iv) If it is the User Institution’s policy to make lecturers participate in the proc-
toring of every subject they teach, it suffices to create one more row for the
second subject. For instance, Lec 6 teaches two subjects, therefore two rows
should be created for he/she, one having “VAG” in the column “Subject”, the
other having “DC” in the same column.

(v) If the User Institution has the policy of having only the TAs proctoring the
tests, the column “Coordinator” should be filled with the word “yes”. This
will suffice to exclude the instructors from the job assignment (as it does with
the actual coordinator), but is important to stress that the Professors.xls file
must exist, with the columns described above (even if it is empty), for
RaPIDEΩ to work correctly.

3. THE OUTPUT FILES

In the present section we describe the output files that RaPIDEΩ produces and
explain its contents. From the user’s point of view, only two files are important:
Proposed Programming.xls, and Updated Proctor Log.xls, which will be
explained first. However, a developer should understand two other files produced
as an intermediate step towards the final solution, from one system’s module to
the next, which are: Scheduled Rooms.xls and Sheduled Crew.xls



Fernando A. Morales / The RaPIDEΩ system 31

Table 6: Example of Professors file

Name Coordinator Subject Subject 2 Cell email

Lec 1 yes VC C 100 Lec1@m.co

Lec 2 NM C 200 Lec2@m.co

Lec 3 DC C 300 Lec3@m.co

Lec 4 ODE AL C 400 Lec4@m.co

Lec 5 MD C 500 Lec5@m.co

Lec 6 VAG DC C 600 Lec6@m.co

3.1. The Proposed Programming.xls file

The Proposed Programming.xls file is an excel book, and it is the ultimate
goal of the system. Here, there is a sheet for each course in the round. In our
study case: DC, IC, VC, VAG, LA, ODE, and NM. Each sheet has the structure
of Table 7. The fields are Room (code of the room), Envelope (or pack of tests),
Observations, Capacity, Students, Slack, Test, Date, Proctors (number of assigned
proctors), Name (name of the assigned proctors), Cell, and email.

Remark 5. Two observations are in order

(i) The number of assigned proctors to a room depends on the number of stu-
dents. The default value is one proctor per 54 students, which can be changed
by the user at the time of executing RaPIDEΩ, see Section 5.1, Definition 7
to change this value.

(ii) If two (or more) proctors are assigned to one room, two (or more) rows will
be equal except for the name of the proctor (e.g., the first and second row
in Table 7). As a consequence of these repetitions, the sum of the column
“Students” in this file will not yield the number of students taking the test,
as it happens in the example at hand.

3.2. The New Proctor Log.xls file

Once the system is executed for a next round of tests, an updated file
New Proctor Log.xls will be generated automatically. This will have the pre-
vious service record, and it will paste it on the left: one column per examination
activity. In each column a “1” will be written if the individual was selected to
serve in the corresponding activity, and also, the “Total” column will be updated.

Consider the minimal example presented in Table 9. Here, it is understood that
the proctor log file is that of Table 5 (only one examination ODE on February the
4th took place before) and the system is programming only one examination in the
next round, which is AVG on March the 4th. The updated log of Table 9 writes
the proctoring duties for all the employees and an updated “Total” of service.

Remark 6. The following must be observed



32 Fernando A. Morales / The RaPIDEΩ system
T

a
b

le
7
:

E
x
a
m

p
le

o
f

P
ro

p
o
se

d
P

ro
g
ra

m
m

in
g

C
V

,
6
0
8

S
tu

d
en

ts
R
o
o
m

E
n
v
e
lo
p
e

O
b
se
rv
a
ti
o
n
s

C
a
p
a
c
it
y

S
tu

d
e
n
ts

S
la
ck

T
e
st

D
a
te

P
ro

c
to

rs
N
a
m
e

C
e
ll

e
m
a
il

4
1
-1
0
3

1
D
o
o
rk

e
e
p
e
r

1
0
6

1
0
6

0
V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

7
C

7
7
@
m
.c
o

4
1
-1
0
3

1
D
o
o
rk

e
e
p
e
r

1
0
6

1
0
6

0
V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

4
1

C
4
1

4
1
@
m
.c
o

4
6
-3
0
7

2
C
a
rd

8
0

8
0

0
V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

2
0

C
2
0

2
0
@
m
.c
o

4
6
-3
0
7

2
C
a
rd

8
0

8
0

0
V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

4
8

C
4
8

4
8
@
m
.c
o

4
6
-2
0
9

3
C
a
rd

5
0

5
0

0
V
C

S
a
1
4
-1
6
0
6
-I
V

1
T
A

6
5

C
6
5

6
5
@
m
.c
o

1
6
-2
2
4

4
C
a
rd

7
2

5
7

1
5

V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

2
8

C
2
8

2
8
@
m
.c
o

1
6
-2
2
4

4
C
a
rd

7
2

5
7

1
5

V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

6
3

C
6
3

6
3
@
m
.c
o

2
1
-3
2
0

5
C
a
rd

7
9

7
9

0
V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

2
3

C
2
3

2
3
@
m
.c
o

2
1
-3
2
0

5
C
a
rd

7
9

7
9

0
V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

5
5

C
5
5

5
5
@
m
.c
o

2
1
-3
1
4

6
C
a
rd

7
9

7
9

0
V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

2
4

C
2
4

2
4
@
m
.c
o

2
1
-3
1
4

6
C
a
rd

7
9

7
9

0
V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

5
9

C
5
9

5
9
@
m
.c
o

4
6
-2
1
0

7
C
a
rd

5
2

5
2

0
V
C

S
a
1
4
-1
6
0
6
-I
V

1
L
e
c
1
7

C
1
7
0
0

L
e
c
1
7
@
m
.c
o

2
1
-3
0
7

8
C
a
rd

5
2

5
2

0
V
C

S
a
1
4
-1
6
0
6
-I
V

1
L
e
c
2
5

C
2
5
0
0

L
e
c
2
5
@
m
.c
o

1
6
-2
2
3

9
C
a
rd

6
3

5
3

1
0

V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

4
C

4
4
@
m
.c
o

1
6
-2
2
3

9
C
a
rd

6
3

5
3

1
0

V
C

S
a
1
4
-1
6
0
6
-I
V

2
T
A

6
7

C
6
7

6
7
@
m
.c
o

S
u
p
e
rv

is
o
r
1

n
a

n
a

n
a

n
a

n
a

V
C

S
a
1
4
-1
6
0
6
-I
V

1
T
A

4
6

C
4
6

4
6
@
m
.c
o

T
a
b

le
8
:

E
x
a
m

p
le

o
f

S
ch

ed
u

le
d

R
o
o
m

s
C

V
,

6
0
8

S
tu

d
en

ts

R
o
o
m

E
n
v
el

o
p

e
P

ro
ct

o
rs

O
b

se
rv

a
ti

o
n

s
C

a
p

a
ci

ty
S

tu
d

en
ts

S
la

ck
T

es
t

D
a
te

4
6
-2

1
0

1
1

C
a
rd

5
2

5
2

0
V

C
S

a
1
4
-1

6
0
6
-I

V

2
1
-3

1
4

2
2

C
a
rd

7
9

7
9

0
V

C
S

a
1
4
-1

6
0
6
-I

V

1
6
-2

2
3

3
2

C
a
rd

6
3

5
3

1
0

V
C

S
a

1
4
-1

6
0
6
-I

V

4
6
-2

0
9

4
1

C
a
rd

5
0

5
0

0
V

C
S

a
1
4
-1

6
0
6
-I

V

4
6
-3

0
7

5
2

C
a
rd

8
0

8
0

0
V

C
S

a
1
4
-1

6
0
6
-I

V

2
1
-3

0
7

6
1

C
a
rd

5
2

5
2

0
V

C
S

a
1
4
-1

6
0
6
-I

V

1
6
-2

2
4

7
2

C
a
rd

7
2

5
7

1
5

V
C

S
a

1
4
-1

6
0
6
-I

V

2
1
-3

2
0

8
2

C
a
rd

7
9

7
9

0
V

C
S

a
1
4
-1

6
0
6
-I

V

4
1
-1

0
3

9
2

D
o
o
rk

ee
p

er
1
0
6

1
0
6

0
V

C
S

a
1
4
-1

6
0
6
-I

V

S
u

p
er

v
is

o
r

1
n

a
1

n
a

n
a

n
a

n
a

V
C

S
a

1
4
-1

6
0
6
-I

V



Fernando A. Morales / The RaPIDEΩ system 33

Table 9: Example of Updated Proctor Log

Name Cell email ID Experience Level ODE, 04-II AVG, 04-III Total

TA 1 C 1 1@m.co ID 1 1 Undergraduate 1 1

TA 2 C 2 2@m.co ID 2 2 Undergraduate 1 1

TA 3 C 3 3@m.co ID 3 1 Undergraduate 1 1 2

TA 4 C 4 4@m.co ID 4 1 Undergraduate 1 1

TA 5 C 5 5@m.co ID 5 2 Undergraduate 1 1 2

TA 6 C 6 6@m.co ID 6 2 Postgraduate 0

(i) Typically, the updated version of the proctors’ log should increase its columns
in more than one. In our case study, the School of Mathematics from Uni-
versidad Nacional de Colombia, Sede Medelĺın, the update increases seven
columns each round because it is the number of massive courses that RaPIDEΩ
manages for the User Institution.

(ii) The more courses programmed in one round, the more chances for optimiza-
tion instances. The examination rounds need not be equal as some courses
may take two midterms, while others take three.

(iii) The file New Proctor Log.xls is created independently from Proctor Log.xls,
instead of simply overwriting it, for security reasons. It will also be useful
for later manual corrections, for instance, some employees selected to proctor
may have a license (medical or personal). Due to the random nature of these
exceptions, it will be wiser to handle them manually, by a human supervisor,
than trying to incorporate them in the system.

(iv) Once the round of examinations is over, for the next round of tests, the
Proctor Log.xls file must be replaced by the New Proctor Log.xls file.

3.3. The Scheduled Rooms.xls file

The first module of the system Room Decision.py processes the file Avail-
able Rooms.xls (see Table 2) and chooses rooms in order to minimize the number
of necessary proctors (see Section 5 for the exposition of its algorithm). Its results
are summarized in the file Scheduled Rooms.xls, which is an excel book having
one sheet for each programmed test in the round. Each sheet has the structure of
Table 8. As can be observed, it is very similar to the Proposed Programming.xls
file but without the assigned proctors. This is because the Scheduled Rooms.xls
file is an intermediate step, used only after the rooms have been decided. Hence,
it is an internal file, moreover, it is part of the input data for the module Person-
nel Decision.py, which selects a team of proctors (see Section 6 for the presen-
tation of its algorithm).

3.4. The Scheduled Crew.xls file

The second module of the system Personnel Decision.py processes the input
files Personnel Time.xls, Proctor Log.xls, Professors.xls together with the internal
file Scheduled Rooms.xls to make job assignment decisions based on fairness. More
specifically, the system tries to keep as close as possible, the number of shifts that



34 Fernando A. Morales / The RaPIDEΩ system

each TA has in his/her service record. Its decisions are summarized in the file
Scheduled Crew.xls, a minimal (and incomplete) example can be observed in
Table 10. At this stage, each examination has a crew of proctors which can be
gathered/identified by the label Test, indicating which test is going to be proctored
by each individual in the file. This file, together with Scheduled Rooms.xls are the
input data for the third module, Crew Organization.py used to decide how to
organize the previously selected team according to proctoring quality control (see
Section 7 for the explanation of the algorithm).

Table 10: Example of Scheduled Crew file

Cell Experience Level Name Test email

C 12 3 Undergraduate TA 12 LA 12@m.co

C 11 1 Undergraduate TA 11 ODE 11@m.co

C 10 2 Undergraduate TA 10 DC 10@m.co

C 10 2 Undergraduate TA 10 IC 10@m.co

C 800 10 PhD Lec 8 LA Lec8@m.co

C 700 10 PhD Lec 7 DC Lec7@m.co

4. EXECUTION AND PROBLEMS DESCRIPTION

4.1. Execution

In order to run the program, notice that the downloaded folder will contain all
the necessary files for a full example, which are:

(i) The Python scripts: Room Decision.py, Personnel Decision.py, Crew Organizacion.py,
Attendance Lists.py, and RaPID-Omega.py.

(ii) The input files: Available Rooms.xls, Room Data.xls, Personnel Time.xls,
Proctor Log.xls, and Professors.xls.

The program runs from command line on a computer having installed Python
3.4.4 or later using the instruction:

python3.4 RaPID-Omega.py -t 54 (54 states the student-proctor rate).

Once the program is executed, the following files are generated: Scheduled Rooms.xls,
Scheduled Crew.xls, Proctor Log.xls, New Proctor Log.xls, and Proposed Programming.xls

4.2. Problems Description

The system RaPIDEΩ depends critically on the input data basis, therefore,
these files are the main source of potential problems, which we describe below.



Fernando A. Morales / The RaPIDEΩ system 35

(i) Consistency between data basis. A common source of errors is the
consistency of the labels used across the several data sets. For instance,
the time windows used for the tests do not agree in format with those of
the personnel time availability, or the name of an employee in the data
base Personnel Time.xls does not agree with his/her name in the file Reg-
istro Vigilancias.xls. See the section 2 for more details and examples.

(ii) Repeated data. It is possible that files Personnel Time.xls and/or Reg-
istro Vigilancias.xls present two or more repeated names, due to human error
or mere coincidence (two employees with the same name). This will cause
errors in the execution of the program. First, make sure that there are no
mistakes in the names written in both data basis. If by coincidence two or
more employees have the same name, differentiate them artificially, e.g.,
John I, John II, etc.

5. THE MODULE ROOM Decision.py

The first module of RaPIDEΩ consists in choosing, for each test, a set of rooms
that minimizes the number of needed proctors. This process is done independently
for each test in the round because, in most of the cases, the examinations are
done in different time windows and therefore, the rooms are not exchangeable
items; it consists in two steps. First, the choice of rooms, this is modeled with
a 0-1 knapsack problem and solved with dynamic programming algorithm, which
is implemented in algorithm 1. Second, the optimal use of the slack between
students and available seats (which usually is nonzero), which is solved with a
greedy algorithm, implemented in algorithm 2.

5.1. CHOICE OF ROOMS

In this subsection we explain how the rooms are chosen. Before starting, two
values need to be introduced

Definition 7. Let
(
ci : 1 ≤ i ≤ N

)
be the list of capacities (quantity of seats) of

the available rooms for a given test, define

r ∈ N the student-proctor rate,

wi
def
=
⌈ci
r

⌉
the weight/cost of each room.

(1)

Here, it is understood that the label i = 1, 2, . . . , N stands for each available room

and that the ceiling function x 7→ dxe def
= min{n ∈ Z : n ≥ x}, assigns to any real

number x ∈ R the minimum integer greater than or equal to x. The student-proctor
rate, r, is the number of students that an individual must proctor, the system has
54 as default value.

Therefore, the problem of choosing rooms is modeled by the following binary
integer problem



36 Fernando A. Morales / The RaPIDEΩ system

Problem 8. Let
(
ci : 1 ≤ i ≤ N

)
be the list of capacities of the available rooms

for a given test and let D (the demand) be the number of students taking the test.
Let (wi : 1 ≤ i ≤ N) be the list of weights for each room as introduced in Definition
7 then, the problem of minimizing proctors is given by

min

N∑
i=1

wixi. (2a)

Subject to

N∑
i=1

cixi ≥ D, xi ∈ {0, 1}, for all i = 1, 2, . . . , N. (2b)

Here, for each i = 1, . . . , N , the binary variable xi indicates whether the room i is
chosen (xi = 1) or not (xi = 0).

It is a well-known fact that the solution of Problem 8 above satisfies xi ≡ 1 − ξi
for all i = 1, . . . , N , where (ξi)

N
i=1 is the solution to the following 0-1 knapsack

problem

Problem 9.

max

N∑
i=1

wiξi. (3a)

Subject to

N∑
i=1

ciξi ≤
N∑
i=1

ci −D, ξi ∈ {0, 1}, for all i = 1, . . . , N. (3b)

There are several ways for solving the 0-1 knapsack problem 9. In the RaPIDEΩ
system the problem is solved using the technique of dynamic programming (see
Section 11.3 in [1] for details). The implementation is given by algorithm 1

5.2. The Slack between available seats and students

For most instances of Problem 8, the optimal solution (xi)
N
i=1 will not satisfy

actively the constraint (2b), i.e., there will be a slack between the number of

available seats (
∑N
i=1 cixi) and the students taking the test (D). The distribution

of the slack among the chosen rooms gives rise to a new optimization process.
Define the following parameters

Definition 10. Let
(
ci : 1 ≤ i ≤ N

)
be the list of capacities of the available

rooms for a given test, let D be the number of students taking the test and r be the
student-proctor rate. Let (xi)

N
i=1 be an optimal solution of Problem 8.

(i) We say that the total slack is given by S
def
=

N∑
i=1

cixi −D.



Fernando A. Morales / The RaPIDEΩ system 37

Algorithm 1 Room Decision Algorithm, decides the choice of rooms and the slack
distribution once an optimal solution to Problem 8 is found.

1: procedure Room Decision(Available Rooms.xls file, Student-Proctor Rate:
r.
User Decision: Student-Proctor rate r )

2: create the Excel book Scheduled Rooms.xls
3: for column of Available Rooms.xls do . Each column is a test, e.g.,

Table 2
4: create the sheet corresponding to the test.
5: retrieve from Available Rooms.xls the information: Rooms’ List,

Capacities: (ci)
N
i=1 and Demand: D corresponding to the test.

6: call dynamic programming solver (Input: {(ci)Ni=1,
∑N
i=1 ci −D},

Output (ξi)
N
i=1 )

7: compute xi
def
= ξi for i = 1, . . . , N

8: call Algorithm 2 (Input {(ci)Ni=1, (x
N
i=1), D}, Output: (Ei)

N
i=1 quantity

of students in each chosen room)
9: save (xi)

N
i=1, (Ei)

N
i=1, (wi)

N
i=1 in the sheet corresponding to the test to-

gether with the remaining information displayed in Table 8.
10: end for
11: save book Scheduled Rooms.xls
12: end procedure

(ii) For each room, define the list of slack priority coefficients by

si ≡ ci mod r, with 0 ≤ si < r, (4)

for all i = 1, . . . , N . Where it is understood that ci = qir+si with 0 ≤ si < r
being the remainder output in the Euclid’s Division Algorithm (see Section
3.3 in [4] for details).

With the definitions above, the greedy algorithm 2 below is implemented.

Remark 11. Essentially, algorithm 2 tries to optimize the (previously attained
solution) slack in order to reduce the number of proctors. For instance, suppose
there are only two rooms available with of 55 seats each, 108 students and the
student-proctor rate is r = 54. Then, the problem 8 will choose both rooms, i.e.,
x1 = x2 = 1. Next, the greedy algorithm will program 54 students in each room
in order to need 2 proctors, instead of programming 53, 55 which would demand 3
proctors.

6. THE MODULE PERSONNEL Decision.py

Once the Scheduled Rooms.xls file is created, the next step is to choose a proc-
toring crew for each test, trying to maximize the equity of assigned shifts among



38 Fernando A. Morales / The RaPIDEΩ system

Algorithm 2 Optimal Slack Distribution Algorithm, decides the slack distribution
once an optimal solution (xi)

N
i=1 to Problem 8 is found.

1: procedure Slack Distribution(Capacities: (ci)
N
i=1, Demand: D, Student-

Proctor Rate: r )
2: compute list of specific slack priority coefficients (si)

N
i=1 . Introduced in

Definition 10.
3: sort the list (si)

N
i=1 in ascending order

4: denote by σ ∈ S[N ] the associated ordering permutation, i.e.,

sσ(i) ≤ sσ(i+1), for all i = 1, . . . , N − 1. (5)

5: Slack
def
=
∑N
i=1 ci −D . Initializing the available slack

6: ei
def
= ci for all i = 1, . . . , N . Initializing the located students in each

room (overcounted)
7: for i = 1, . . . , N do
8: if (0 < Slack) and (Slack ≤ sσ(i)) then
9: eσ(i) = eσ(i) − Slack

10: else if (Slack > sσ(i)) then
11: eσ(i) = eσ(i) − sσ(i)
12: Slack = Slack − (sσ(i) + 1)
13: end if
14: compute wi

def
=
⌈
ei
r

⌉
. . Updated number of needed proctors

15: end for
16: return (ei)

N
i=1, (wi)

N
i=1

17: end procedure



Fernando A. Morales / The RaPIDEΩ system 39

TAs, once the lecturers have been directly assigned to proctor in their correspond-
ing subject. Given that all the TAs are exchangeable (unlike the lecturers), the
problem of choosing a proctoring crew will be done simultaneously for all the tests
in the round, in contrast to the test-wise design of the module Room Decision.py.
The section is divided in two parts, the presentation of the mathematical model,
and the presentation of the algorithm.

6.1. The mathematical model

In this section we derive a mathematical model for the problem of selecting
personnel for proctoring duties (or shifts). It will be seen that the model is the
Job Assignment problem with constraints. Before we introduce it, some definitions
are given

Definition 12. Let T be the number of tests in the round and let P be the total
number of part-time employed TAs.

(i) For each test t, let N = N(t) be the number of scheduled rooms for the test

and let (w
(t)
i )

N(t)
i=1 be the list of needed proctors in each booked room. Then,

the total number of proctors needed in the test is given by

W (t) def
=

N(t)∑
i=1

w
(t)
i . (6)

(ii) For each t = 1, . . . , T and p = 1, . . . , P , let y
(t)
p ∈ {0, 1} be the decision

variable defined by

y(t)p
def
=

{
1, if proctor p is assigned to test t ,

0, otherwise.
(7)

Also define the availability coefficient a
(t)
p ∈ {0, 1} by

a(t)p
def
=

{
1, if proctor p is available at the time of test t,

0, otherwise .
(8)

(iii) For each p (identifying a TA), denote by Lp the number of served shifts
in the Proctor Log.xls file (i.e., the TA’s service record before running the
algorithm).

(iv) The global service average α, after the current round of tests, is computed in
the natural way, i.e.,

α
def
=

1

P

( P∑
p=1

Lp +

T∑
t=1

W (t)
)
. (9)



40 Fernando A. Morales / The RaPIDEΩ system

Remark 13. Observe that due to the expression (9) the quantity α is known. On

the other hand, observe that
∑T
t=1 y

(t)
p quantifies the total number of shifts that

each TA has in a round of tests. The alternative definition α = 1
P

∑P
p=1(Lp +∑T

t=1 y
(t)
p ), would be mathematically equivalent to (9), but it would (unnecessarily)

include α as a variable.

With the definitions above, it is direct to see that we want to solve the following
problem

Problem 14.

min
P

max
p=1

∣∣∣ T∑
t=1

y(t)p + Lp − α
∣∣∣. (10a)

Subject to

P∑
p=1

a(t)p y(t)p = W (t), for all t = 1, . . . , T. (10b)

y(t)p ∈ {0, 1}, for all t = 1, . . . T and p = 1, . . . , P. (10c)

Clearly, the problem 14 is not a linear programming problem. In order to transform
it, we introduce a new continuous variable z (not necessarily integer), verifying

the constraints
∣∣∑T

t=1 y
(t)
p + Lp − α

∣∣ ≤ z for all p = 1 . . . , P . The absolute sense
can be decoupled in two inequality constraints and given that this is an integer
programming problem, the following refinement is introduced

T∑
t=1

y(t)p + Lp − dαe ≤
T∑
t=1

y(t)p + Lp − α ≤ z,

−z ≤
T∑
t=1

y(t)p + Lp − α ≤
T∑
t=1

y(t)p + Lp − bαc.

(11)

Also recall that for the job assignment problem, the binary integer choice constraint
(10c) can be replaced by the natural linear relaxation constraint (12d) below, and
the optimal solution of the continuous linear relaxation problem is the optimal
solution of the integer problem (see Chapter 4 in [2]). With the introduction of
the variable z above and the natural linear relaxation, the problem 14 can be
reformulated as the following linear optimization problem.

Problem 15. With the variables and quantities introduced in Definition 12, the
problem of assigning TAs for proctoring duties as fairly as possible, considering
their time constraints, is modeled by the problem

min z. (12a)



Fernando A. Morales / The RaPIDEΩ system 41

Algorithm 3 Personnel Decision Algorithm, decides the proctoring crew for all
the tests in the round.

1: procedure Personnnel Decision(Scheduled Rooms.xls file, Person-
nel Time.xls, Proctor Log.xls, Profesors.xls.)

2: load the information corresponding to the input files.
3: include the lecturers in the file Scheduled Crew.xls, assigned to their cor-

responding courses.
4: compute the number of necessary proctors for each test. . Coefficients

(W (t), t = 1, . . . , T ), Equation, (6).
5: account for the time constraint coefficients for each TA. . Coefficientes

(a
(t)
p , t = 1, . . . , T, p = 1, . . . , P ), Equation (8).

6: include the proctors necessity constraints . Equation (12c).
7: compute the service average value . Coefficient α, Equation (9).
8: include the proctors service-equity constraints . Equation (12b).
9: solve the Problem 15 ← call a linear program solver . The system uses

scipy.optimize.linprog
10: create and save the Updated Proctor Log.xls file.
11: create and save the Scheduled Crew.xls file.
12: end procedure

Subject to

T∑
t=1

y(t)p − z ≤ −Lp + dαe,

T∑
t=1

y(t)p − z ≤ Lp − bαc, ∀p = 1, . . . , P.

(12b)

P∑
p=1

a(t)p y(t)p = W (t), for all t = 1, . . . , T. (12c)

0 ≤ y(t)p ≤ 1, for all t = 1, . . . , T and p = 1, . . . , P. (12d)

6.2. The Personnel Decision.py module

With the exposition above, the algorithm of the module Personnel Decision.py
is summarized in the pseudocode 3.

7. THE MODULE CREW Organization.py

Once the Scheduled Crew.xls file is created, the final step is to distribute the
TAs in strategic positions in order to maximize the proctoring quality. More



42 Fernando A. Morales / The RaPIDEΩ system

specifically, it is clear that rooms with only one proctor assigned should get more
experienced proctors, while a mixed experienced-unexperienced couple should be
assigned to rooms needing two proctors. In the same fashion, the supervisor should
be an experienced undergraduate TA, as it is a position with higher responsibility.
At this point the proctors are no longer exchangeable between tests, therefore the
process is done independently as in the module Room Decision.py. Although it is
possible to construct a mathematical integer programming model for this stage, it
is more practical to use a greedy algorithm for making these decisions (see [3] for a
comprehensive exposition on greedy algorithms). The greedy algorithm 4 is based
on lexicographic sorting of the scheduled crew’s data. More specifically, a pairing
(match) has to be done: the proctoring positions and the proctors themselves.
Hence, the proctors will be sorted according to their level in the first place (3
Undergraduate, 2 Graduate, 1 Lecturer) and to their experience in the second
place (see Table 4). The proctoring positions need further explanation. Observe
that any test will need a number of supervisors (according to the enrollment size)
and a number of proctors in each room. The process of selecting supervisors and
the process of selecting proctoring positions are different. So, two separate steps
will be done for completing the tasks.

With the observations above, the Crew Organization.py module works with
the algorithm 4 below.

Table 11: Example of Scheduled Rooms Remark 16

Room Proctors Students

16-223 2 63
46-209 1 50
46-307 2 80

Supervisor 1

Table 12: Example of Sorted Rooms Remark 16

Room Proctors Position Students

46-209 1 1 50
46-307 2 1 80
16-223 2 1 63
46-307 2 2 80
16-223 2 2 63

Supervisor 1

Remark 16. Some clarifications are necessary for a deeper understanding of the
design and purpose of the algorithm 4.

(i) To understand the line 9 in Algorithm 4 consider the example of Table 11.
One supervisor is needed, the room 46-209 needs one proctor while the rooms



Fernando A. Morales / The RaPIDEΩ system 43

Algorithm 4 Crew Organization Algorithm, decides proctoring positions.

1: procedure Crew Organization(Scheduled Rooms.xls, Scheduled Crew.xls
)

2: load the sheet Scheduled Crew.xls as Data Frame
3: load the Excel book Scheduled Rooms.xls as Data Frame
4: create column “Num Level” in Scheduled Rooms.xls (3 Undergraduate, 2

Graduate, 1 PhD)
5: create the Excel book Proposed Programming.xls
6: for test idx in Scheduled Rooms.xls do . Each sheet in the book is a

test.
7: create sheet test idx in the book Proposed Programming.xls
8: select the rooms scheduled for test idx, i.e., Scheduled Rooms[test =

test idx].
9: create the Local Test Frame, with columns: Room, Proctors, Position,

Students . The column “Position” indicates if it is the 1st, 2nd, 3rd...
proctor in the room.

10: define ns
def
= the number of needed supervisors.

11: create Local Proctors Frame ← Scheduled Crew[Test = test idx] .
The proctors assigned to the test.

12: sort lexicographically the Local Proctors Frame with the priority:
[“Num Level”, “Experience”] in the order [Descending, Descending].

13: select Undergraduate Local Proctors Frame ← Lo-
cal Proctors Frame[Level = Undergraduate] . Choose the undergraduate
proctors from the local scheduled proctors frame.

14: assign the first ns proctors from Undergraduate Local Proctors Frame
as supervisors.

15: save the supervisors in the sheet test idx
16: remove the chosen supervisors from Local Proctors Frame.
17: remove the supervisors’ rows from Local Test Frame.
18: sort lexicographically the Local Test Frame with the priority: [“Proc-

tors”, “Position”, “Students”] in the orders [Ascending, Ascending, Descend-
ing].

19: paste Local Test Frame with Local Test Frame and define the out-
come as Local Programming.

20: save Local Programming in the sheet test idx of the book Pro-
posed Programming.xls.

21: end for
22: save book Proposed Programming.xls
23: end procedure

16-223 and 46-307 need two. Hence, a data frame including positions, has
to be created; see Table 12.

(ii) The command of line 18 in Algorithm 4 has the following motivation. Con-



44 Fernando A. Morales / The RaPIDEΩ system

sider the example of Table 11. Then, line 16 in Algorithm 4 would deliver
table 12 below. It is clear that once the scheduled proctors are sorted as
indicated in line 10 of algorithm 4, the most experienced proctors will be dis-
tributed, as evenly as possible, through the rooms; taking the rows with label
“1” in the column “Position”. Next, the less experienced proctors will be
assigned to the rows having “2” in the column “Position”, and so forth.

Acknowledgements: The Author wishes to thank Universidad Nacional de
Colombia, Sede Medelĺın for supporting the production of this work through the
project Hermes 45713.

REFERENCES

[1] Bertsimas, D., and Tritsiklis, J., N., Introduction to Linear Optimization, Athena Scientific
and Dynamic Ideas, LLC, Belmont, MA, 1997.

[2] Conforti, M., Cornuéjlos, G., and Zambelli, G., Integer Programming, Graduate Texts in
Mathematics, Springer, Switzerland, 2014.

[3] Dasgupta, S., Papadimitriou, C., and Vazirani, U., Algorithms, Education, McGraw-Hill,
New York, NY, first edition, 2006.

[4] Johnsonbaugh, R., Discrete Mathematics, Prentice Hall, Upper Saddle River, NJ, 5th
edition, 2001.


