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Abstract: One of the most important properties of graphs that represents real complex
systems is community structure, or clustering, i.e., organizing vertices in cohesive groups
with high concentration of edges within individual groups and low concentration of edges
between vertices in different groups. In this paper, we analyze Exponential Quality
function for network clustering. We consider different classes of artificial networks from
literature and analyze whether the maximization of Exponential Quality function tends
to merge or split clusters in optimal partition even if they are unambiguously defined.
Our theoretical results show that Exponential Quality function detects the expected and
reasonable clusters in all classes of instances and the Modularity function does not.
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1. INTRODUCTION

A complex system is the system composed of numerous elements with nonlinear
interactions. Examples of some complex systems are different infrastructures such
as energy network, transportation or communication systems, social and economic
organizations, ecosystems, living cells, human brains, and even the entire universe.
If neglecting the specificity of the components, the structure of a complex system
can be represented by a network (graph) such that system elements are mapped
to vertices in the network, and interactions between elements are represented as
edges between vertices. The structure of such networks is neither regular and
nor completely random but is hierarchical arranged like community structure,
high clustering coefficient, or has some other characteristic features. One of the
features is a high concentration of edges within individual groups of vertices and,



66 D.Džamić / Some properties of E-quality function for network clustering

at the same time, low concentration of edges between vertices in different groups.
Such groups of vertices are called clusters (modules, communities) and very often
have common features and roles in a complex system. The problem of finding
such groups in complex networks is called community detection, or clustering on
networks. For example, clusters on the World Wide Web represent pages with
similar themes, while in protein networks, clusters correspond to proteins with
similar functions in a cell. The development of methods for solving this problem
and their applications are of great importance for understanding the dynamics and
evolution of complex systems. In addition, they can provide better visualization
and necessary information about individual vertices and their roles in a network.
For example, some vertices in a cluster may play a role in connecting the cluster
to the rest of the network, and others in controlling and stabilizing the cluster.

It is important to emphasize that there is no strict definition of the cluster
but there are multiple approaches to formalize it. The most common approach for
clustering on complex networks is to define so called quality function, a function
that measures the quality of partitioning a network, and to construct methods for
finding optimal partition with respect to the defined function. In this approach,
the problem of clustering is reduced to the problem of combinatorial optimization
and a wide range of existing optimization methods are available. The most pop-
ular quality measure for network clustering is the modularity defined in 2004 by
Newman and Girvan [11]. The modularity of cluster is difference between fraction
of edges within the cluster and fraction of expected number of edges within the
cluster in a network with vertices of the same degree and randomly positioned
edges. Network clustering by modularity maximization within an arbitrary net-
work is NP-hard [3]. There are many heuristic methods proposed to solve it, such
as Greedy Randomized Adaptive Search Procedure [10], Memetic Algorithm [1],
Ascent-Descent Variable Neighborhood Decomposition Search [5] and others [2, 8].
Fortunato et al. [7] found, through several examples on artificial networks, that
optimizing modularity in large networks can fail to resolve small clusters even in
cases where clusters are unambiguously defined. In the literature, this problem
is broadly addressed as the resolution limit problem, and it initiated research for
a new quality function that focuses on a local definition of claster rather than
definitions relying on a global null model [4, 9, 6].

In this paper, we focus on theoretical analysis of Exponential Quality function
(E-quality) for network clustering, proposed in [6]. We considered different classes
of artificial networks introduced in [7] and analyzed whether E-quality function
tends to merge or split clusters that are unambiguously defined. Our theoretical
results confirmed experimental results presented in [6], and showed that E-quality
function detects expected and reasonable clusters, which is not the case with the
Modularity function.
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2. ANALYSIS OF E-QUALITY FUNCTION

2.1. Notations

In this subsection we briefly present the necessary notation introduced in [6].
Let G = (V,E) be a simple graph defined by a set V of n vertices (nodes) and a
set E of m edges that connect pairs of vertices. Let C be a subset of a vertex set V
of a graph G. Then a subgraph GC = (C,EC) is the vertex-induced subgraph of
G on C if EC is a subset of E such that edge (vi, vj) is in EC , if and only if vi and
vj are in C. The number of vertices from C and the number of edges from EC are
also called the number of vertices, and the number of edges inside the community
C, and we denote them with nC and mC , respectively. The density of a graph G,
is DG = 2m

n(n−1) and represents the ratio of its number of edges and the maximum

possible number of edges. Similarly, the density of a cluster C is DC = 2mC

nC(nC−1)
and represents the density of vertex-induced subgraph GC .

Let S and T be disjoint (nonempty) subsets of V for a graph G = (V,E).
Then, cut(S, T ) denote the set of edges (vi, vj) such that an endpoint vi ∈ S,
and an endpoint vj ∈ T . Cut size of a vertex set C of a graph G = (V,E), also
called the number of external edges for the community C, is the number of edges
from cut(C, V \C), and we denote it with lC . Partition P of graph G represents

disjoin subsets of vertices C1, C2, . . . , Ck, called clusters, such that
k⋃

i=1

Ci = V , and

Ci ∩ Cj = ∅, ∀i, j, i 6= j. Set of all possible partitions of graph G we denote with
PG. For a given partition P of a network the modularity quality function MQ

is defined as MQ(P) =
∑

C∈P

[
mC

m −
(
KC

2m

)2]
, where mC is the number of edges

inside the community C, and KC is the total degree of vertices in the community
C.

2.2. Exponential Quality function

Using the above notation, E-quality of a partition can be presented as follows:

EQ(P) =
∑
C∈P

enC (DC −DG) − e

2lC
nC



=
∑
C∈P

enC

(
2mC

nC(nC − 1)
− 2m

n · (n− 1)

)
− e

2lC
nC

 .

The first term in the sum refers to cluster benefit, based on its density and number
of vertices. The second term refers to cluster separation or cost, based on its
number of external edges and number of vertices. Network clustering problem
can be defined as the optimization problem of E-quality function over the possible
partitions of a graph:

max
P∈PG

EQ(P).
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Below we show that maximizing E-quality function in a different class of graphs
will not produce unwanted splits or merges of clearly defined clusters in the optimal
partition. First, we prove the following lemma.

Lemma 1. Let x ≥ 3 and 0 < y ≤ 1
2 . Then the following inequality holds:

ex(1−y) − e
4
x >

1

2

(
ex(1−2y) − e

2
x

)
.

Proof. Let f(x, y) be a function with domain Df = [3,+∞)×
(
0, 1

2

]
given by

f(x, y) = ex(1−y) − 1

2
ex(1−2y) − e

4
x +

1

2
e

2
x .

The partial derivatives of f(x, y) with respect to x is

f ′x(x, y) = (1− y) ex(1−y) −
(

1

2
− y

)
ex(1−2y) +

4

x2
e

4
x − 1

x2
e

2
x ,

and respect to y is
f ′y(x, y) = −xex(1−2y)(exy − 1).

Since

(1− y) ex(1−y) >

(
1

2
− y

)
ex(1−y) ≥

(
1

2
− y

)
ex(1−2y), for all (x, y) ∈ Df ,

and
4

x2
e

4
x >

1

x2
e

4
x >

1

x2
e

2
x , for all (x, y) ∈ Df ,

we have that f ′x(x, y) > 0, which implies that for fixed y, f is strictly increasing
on x ∈ [3,+∞). So f(x, y) ≥ f(3, y) for all (x, y) ∈ Df . On the other hand, it is
clear that f ′y(x, y) < 0, which implies that for fixed x, f is strictly decreasing on

y ∈
(
0, 1

2

]
. So f(3, y) ≥ f

(
3, 1

2

)
for all y ∈

(
0, 1

2

]
Thereby,

f(x, y) ≥ f

(
3,

1

2

)
=

1

2

(
e

2
3 − 2e

4
3 + 2e

3
2 − 1

)
≈ 1.16 > 0, ∀(x, y) ∈ Df

Since f(x, y) > 0 on domain Df , we have that

ex(1−y) − e
4
x >

1

2

(
ex(1−2y) − e

2
x

)
, for x ≥ 3 and 0 < y ≤ 1

2
.

Theorem 2. Maximizing E-quality function does not divide a complete graph with
n vertices (n ≥ 4) into k clusters

(
2 ≤ k ≤

⌊
n
2

⌋)
.

Proof. Let G = (V,E) be a complete graph with n (n ≥ 4) vertices and m = n(n−1)
2

edges. Let Pn
1 be a partition formed by a single cluster C1

1 containing all n nodes
of the graph. Then

EQ(Pn
1 ) = e

n

(
2
n(n−1)

2
n(n−1)

−
2
n(n−1)

2
n(n−1)

)
− e

2·0
n = 1− 1 = 0.
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Let Pn1,n2

2 be a partition that divides the graph into two clusters C2
1 and C2

2 with
n1 and n2 vertices, respectively. Then, the number of edges between clusters C2

1

and C2
2 is n1 · n2, and the quality of partition Pn1,n2

2 is

EQ(Pn1,n2

2 ) = e
n1

(
2
n1(n1−1)

2
n1(n1−1)

−
2
n(n−1)

2
n(n−1)

)
− e

2n1n2
n1 + e

n2

(
2
n2(n2−1)

2
n2(n2−1)

−
2
n(n−1)

2
n(n−1)

)
− e

2n1n2
n2

= 1− e2n1 + 1− e2n2

= 2− (e2n1 + e2n2).

(1)

Example of two partitions in complete graph with 9 vertices is given in Figure 1.

(a) Partition P9
1 (b) Partition P3,6

2

Figure 1: An example of complete graph, n = 9

Since min{e2n1 + e2n2 |n1 + n2 = 4 , n1 ≥ 2, n2 ≥ 2} = 2e4 at (n1, n2) = (2, 2) we
have that

EQ(Pn1,n2

2 ) = 2− (e2n1 + e2n2) < 2− 2e4 < EQ(Pn
1 )

which implies that maximizing E-quality function does not divide G into two
clusters.
As each cluster (induced subgraph) of a complete graph is also complete, each
division of a complete graph G into k clusters is obtained by successive divisions
into two clusters. Therefore, it is clear that through iterations, the quality of the
partitions will decrease. Thus,

EQ(Pn1,...,nk

k ) < EQ(Pn
1 ), for all 2 ≤ k ≤

⌊n
2

⌋
,

where Pn1,...,nk

k is a partition that divides the graph into k clusters Ck
1 , . . . , C

k
k ,

with n1, . . . nk vertices respectively, ni ≥ 2, (i = 1, . . . k) and
∑k

i=1 ni = n. Hence,
maximization of E-quality function will not divide complete graph into k clus-
ters.
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Theorem 3. Maximizing E-quality function does not merge two cliques in a clique
structure ring graph, with l cliques (l ≥ 3), each contains s vertices (s ≥ 3), and
two consecutive cliques are connected by a single edge.

Proof. Let G = (V,E) be a ring network with l cliques (l ≥ 3), each with s vertices
(s ≥ 3). The total number of vertices is n = sl. As each two consecutive cliques
are connected by a single edge, the total number of edges is 1

2sl(s − 1) + l. Let
P1 be a partition that divides the graph into l clusters, each corresponding to
a single clique. Without loss of generality, suppose l is an even number and let
P2 be partition that divides the graph into l/2 clusters, each corresponding to
two consecutive cliques. Example of P1 and P2 partitions in clique structure ring
graph with 12 cliques is given in Figure 2. We prove that quality of partition P1

is greater than quality of partition P2 in graph G, regarding EQ function.

(a) Partition P1 (b) Partition P2

Figure 2: An example of clique structure ring graph, l = 12, s = 6.

First we consider density of graph G, and density of clusters in partitions P1 and

P2. The density of graph G is DG = s2−s+2
s2l−s . We prove that

0 < DG ≤
1

3
.

Let l ≥ 3 be fixed and consider the density of graph G as function d : [3,+∞) −→
(0, 1]. Consider derivative of this function d′(s) = s2(l−1)−4ls+2

s2(sl−1)2 . As l − 1 > 0, it

is clear that d′(s) < 0 for s ∈ (s1, s2) and d′(s) > 0 for s ∈ (−∞, s1) ∪ (s2,+∞),
where s1 and s2 are solutions of quadratic equation (l−1)s2−4ls+2 = 0. Moreover,
detailed analysis of this quadratic function shows that if l ≥ 3 then s1 ∈ (0, 3−2

√
2]

and s2 ∈ (4, 3 + 2
√

2]. So function d(s) is a monotonically decreasing function on
(3, s2), and therefore we have

d(s) ≤ d(3) =
8

9l − 3
≤ 1

l
, for all l ≥ 3.
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On the other hand, function d(s) is a monotonically increasing on (s2,+∞), and
therefore we have

d(s) < lim
s→∞

d(s) = lim
s→∞

s2 − s + 2

s2l − s
=

1

l

Thereby,

0 < d(s) ≤ 1

l
, for all l ≥ 3,

from which it follows that

0 < DG ≤
1

3
.

Since all clusters C1
i (i = 1, . . . , l) in partition P1 are complete subgraphs, we have

that
DC1

i
= 1, for all i = 1, . . . , l.

On the other hand, the density for all clusters C2
j (j = 1, . . . , l/2) in partition P2

is equal to DC2
j

= s2−s+1
2s2−s , and it is easy to prove that

0 < DC2
j
<

1

2
, for all j = 1, . . . , l/2.

Using the above notation, E-quality of a partition can be presented as follows:

EQ(P1) =

l∑
i=1

[
e
s
(
D

C1
i
−DG

)
− e

4
s

]
= l
(
es(1−DG) − e

4
s

)
.

EQ(P2) =

l/2∑
j=1

[
e
2s

(
D

C2
j
−DG

)
− e

2
s

]
≤ l

2

(
e2s(

1
2−DG) − e

2
s

)
Applying Lemma 1 for x = s and y = DG, we have(

es(1−DG) − e
4
s

)
>

1

2

(
e2s(

1
2−DG) − e

2
s

)
.

Hence,

EQ(P1) = l
(
es(1−DG) − e

4
s

)
≥ l

2

(
e2s(

1
2−DG) − e

2
s

)
≥ EQ(P2).

We prove that maximization of E-quality function does not merge two cliques in
a clique structure ring graph.

Above discussion can be easily generalized in order to show that quality of
partition P1 is greater than quality of partition Pk, regarding E-quality function,
where Pk is the partition that divides the graph into l/k clusters, each correspond-
ing to k consecutive cliques.



72 D.Džamić / Some properties of E-quality function for network clustering

Theorem 4. Maximizing E-quality function could discover clusters of different
sizes in a graph with two pairs of identical cliques, with q vertices (q ≥ 4) and s
vertices (3 ≤ s < q), where cliques in the pair are connected by single edge and
both s-cliques are connected with same q-clique.

Proof. Let G = (V,E) be a graph with two pairs of identical cliques with q vertices
(q ≥ 4) and s vertices (3 ≤ s < q). Total number of vertices is n = 2q + 2s. As
cliques in the pair are connected by a single edge and both s-cliques are connected
with the q-clique, total number of edges is m = q(q − 1) + s(s − 1) + 4. Let P1

be a partition that divides the graph into four clusters, each corresponds to a
single clique. Let P2 be a partition that divides the graph into three clusters, two
corresponds to q-cliques and one to union of s-cliques. The example of P1 and
P2 partitions in a graph with two pairs of identical cliques with 5 and 20 vertices
is given in Figure 3. We prove that E-quality of partition P1 with four clusters,
each corresponds to a single clique, is greater than the quality of partition P2 with
three clusters, two corresponds to q-cliques and one to the union of s-cliques.

(a) Partition P1 (b) Partition P2

Figure 3: An example of graph with two pairs of identical cliques, q = 20, s = 5.

First, we consider density of graph G and density of clusters in partitions P1 and

P2. The density of graph G is DG = q2−q+s2−s+4
2q2+4qs−q+2s2−s . It is clear that DG > 0 and
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let us suppose that DG < 1
2 . We have

q2 − q + s2 − s + 4

2q2 + 4qs− q + 2s2 − s
<

1

2
⇔

qs + q
4 + s

4 − 2

(q + s− 1
2 )(q + s)

> 0

which is true for all q ≥ 4 and 3 ≤ s < q.
Hence,

0 < DG ≤
1

2
.

Since all clusters in partition P1 and two clusters in partition P2 are complete
subgraphs, we have that DC1

i
= 1, for i = 1, 2, 3, 4 and DC2

j
= 1, for j = 1, 2.

Only density of the third cluster in partition P2 is DC2
3

= s2−s+1
2s2−s , and it is easy

to prove that 0 < DC2
3
< 1

2 .
E-quality of partitions P1 and P2 can be presented as follows:

EQ(P1) = 2eq(1−DG) − e
2
q − e

6
q + 2es(1−DG) − 2e

4
s ,

EQ(P2) = 2eq(1−DG) − e
2
q − e

6
q + e

2s
(
D

C2
3
−DG

)
− e

2
s .

Let us consider the difference EQ(P1)− EQ(P2). As 0 < DC2
3
< 1

2 , we have that

EQ(P1)− EQ(P2) ≥ 2

(
es(1−DG) − e

4
s − 1

2

(
e2s(1−DG) − e

2
s

))
.

Applying Lemma 1 for x = s and y = DG, we have that

EQ(P1) > EQ(P2).

Hence, maximization of E-quality function could discover clusters of different sizes
in graph G.

3. CONCLUSION

In this paper, we analyzed Exponential Quality function for network clustering.
We considered different classes of artificial networks from literature and analyzed
whether the maximization of E-quality function tends to merge or split clusters in
optimal partition even if they are unambiguously defined. Our theoretical results
verified experimental results presented in [6], and showed that E-quality function
detects the expected and reasonable clusters but the Modularity function does not.
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