
Yugoslav Journal of Operations Research
31 (2021), Number 2, 249–264
DOI: https://doi.org/10.2298/YJOR200117005K

MEASURING SOFTWARE RELIABILITY
UNDER THE INFLUENCE OF AN INFECTED

PATCH

Jasmine KAUR
Department of Operational Research, University of Delhi, Delhi, 110007, India.

jasminekaur.du.aor@gmail.com

Adarsh ANAND
Department of Operational Research, University of Delhi, Delhi, 110007, India.

adarsh.anand86@gmail.com

Ompal SINGH
Department of Operational Research, University of Delhi, Delhi, 110007, India.

drompalsingh1@gmail.com

Vijay KUMAR
Department of Mathematics, Amity Institute of Applied Sciences, Amity

University Uttar Pradesh,Noida, India.
corresponding author:vijay parashar@yahoo.com

Received: January 2020 / Accepted: June 2020

Abstract: Patching service provides software firms an option to deal with the leftover
bugs and is thereby helping them to keep a track of their product. More and more
software firms are making use of this concept of prolonged testing. But this framework
of releasing unprepared software in market involves a huge risk. The hastiness of vendors
in releasing software patch at times can be dangerous as there are chances that firms
release an infected patch. The infected patch (es) might lead to a hike in bug occurrence
and error count and might make the software more vulnerable. The current work presents
an understanding of such situation through mathematical modeling framework; wherein,
the distinct behavior of testers (during in-house testing and field testing) and users is
described. The proposed model has been validated on two software failure data sets of
Tandem Computers and Brazilian Electronic Switching System, TROPICO R-1500.

Keywords: Infected Patch, Patching, Software Reliability.



250 J. Kaur, et al. / Measuring Software Reliability

MSC: 90B85, 90C26.

1. INTRODUCTION

An increase in the complexity of a program increases the probability of occur-
rence of a fault or an error. A simple internet search will give us numerous exam-
ples of a small or big bug causing great distress. For instance, BAE Automated
Systems’ software was supposed to handle baggage at the Denver International
Airport. On its October 1993 launch date, it lost or misdirected so much amount
of luggage, or delivered so much of it into the conveyor that the opening of the
airport had to be delayed by 16 months. The cost overrun for the city was �1.1
million per day [10]. On 12 May, 2017 a massive ransomware attack left enumer-
able individuals and organizations across 150 countries locked out of their data.
Their data was encrypted, and unless ransom was paid in form of crypto currency
Bitcoin, the data was lost. On the first day out of 4 day attack phase, WannaCry
affected 20,000 computers. It was caused due to vulnerability named Eternal Blue
in Microsoft’s operating system. Microsoft had discovered the vulnerability in
March, 2017 and released a patch for it. The reason for the widespread havoc
caused by the ransomware was that the systems had not been promptly patched
[32].

Such examples make us realize the importance of precision. As the stakes
get higher, one realizes the absolute necessity of having bugfree software. Bugfree
software is a developer’s prototypical creation. But with the amount of complexity
that a software has these days and the number of code lines running into thousands;
it is quite understandable to have faults at any point of time. This ideology makes
the developers work even harder to remove the dormant bugs in the software as
a lot of things like life, money and privacy comes at stake. For software to be
considered a success, it must be capable to handle the job it was created for.
Researchers have come up with many useful parameters to evaluate the worth of a
software such as its functionality, usability, reliability, efficiency, maintainability,
and portability [22]; among them, software reliability stands a class apart [2] [33].

Software Reliability is defined as the probability that the software system will
perform its function without failure for a given period of time under specified
operational environment [22] [23]. Software Reliability allows the user to know
beforehand how the product is likely to perform. Numerous Software Reliability
Growth Models (SRGMs) have been proposed to actually capture and portray the
reliability growth of any software [22]. Software testers measure the reliability of
software by quantifying the number of faults with the time spent on testing. Thus,
it is important to know how long the testing process needs to be performed and
when should the software be released for usage. The initial SRGMs such as the
Jelinski-Morando Model [17], Musa Model [28], G-O Model [16], Yamada Model
[36], Bittanti Model [13], Ohba Model [29], K-G Model [21] etc. captured the basic
behavior of faults. Many concepts such as fault categorization, fault complexity,
testing effort function, testing efficiency, testing environment, testing coverage,



J. Kaur, et al. / Measuring Software Reliability 251

change point, warranty, testing resource allocation, optimal control theoretic ap-
proach of optimal allocation of resources, etc. have been explored in detail in the
software reliability literature [7] [8] [22] [25] [26] [27].

In the competitive world of software and technology, firms are forced to either
keep up with the pace of the market or run out of business. This pressure results
in firms releasing their product before it is fully prepared. In such cases, there
is always a possibility that some bugs are still lying dormant in the software at
its release time. To handle this precarious situation, a relatively new concept of
patching has emerged, which is quite helpful in estimating software reliability and
in providing after-sales support. Nowadays, all major software firms frequently
release patches to handle issues arising in the operational phase. For instance,
since October 2003 Microsoft has designated the second Tuesday of each month to
release security patches for its products and coined it as “Patch Tuesday”. Patches
for any zero-day vulnerabilities like in the case of ransomware WannaCry may be
also released in between and are termed as out-of-band patch [30].

In today’s neck-to-neck competitive environment, every firm wants to bring
out its offering as early as possible. In these circumstances, patching can help
the software firms in releasing a pre-mature product which can undergo continual
testing once the product is in operational phase. Patch is generally a small set of
corrective code released during the operational phase of software to fix the bugs
or to update them [1]. The earliest version of a patch was in the form of paper
tape/punched cards. Later on, one could download such files from the vendor’s
site but now, automated software updates are available. Administrators also use
patch management systems that handle the patch application process. Like, in
the work by Arora et al. [9]; which has used utility theory to analyze the trade-
off time to release a faulty product or to invest in post-release support. Their
proposal gave a comparative study of the behavior of a social vendor, a software
monopolist, and a tangible goods monopolist towards patching. In another work
by Beattie et al. [12]; authors have suggested that when patches are available, the
crucial question that arises is “When to patch?”. It is a rational choice made by
the administrator by finding a trade-off between the associated risk and time; for
which they formulated a mathematical cost model.

The faults in software are discovered mainly by two groups of people: testers
and users. Before the software release, the testers are the sole fault finders and this
testing is known as in-house testing. When the testing team continues testing, the
product even after its release, it is referred to as field testing. Field testing involves
the role of both the testers as well as the product users. Once the software has
reached the users, the users report a fault as and when they find it. In this way,
both the testers and the user work simultaneously to identify faults and eventually
the software is debugged by testers. To debug these newly discovered faults, the
developers release a corrective code in the form of a patch. Das et al. [14] and
Deepika et al. [15] have explored the joint role of tester and user in a patching
based environment. Several practitioners have worked on this line of research viz,
Jiang et al. [18] gave a release time scheduling policy where software is released a
bit early and testing continues after the release; after the product is released, the



252 J. Kaur, et al. / Measuring Software Reliability

users also contribute in the testing process by reporting back faults to the vendor,
which eventually leads to cost reduction. Anand et al. [3] have also studied the
vulnerability patch modeling when the software vulnerabilities are reported by
the vendors or reporters. Anand et al. [6] have also studied the role of tester
and user in finding both faults and vulnerabilities, and hence proposed a patch
release policy for the same. Anand et al. [1] proposed an economic cost analysis
of software based on patching. They proposed a scheduling policy for a software
product and showed the importance of patching in lowering the system outages and
making the system more cost effective. Kumar et al. [24] discussed the reliability,
which is a major attribute of the quality of a software, to address the issues of
testing cost, release time of software, and a desirable reliability level. Kumar et al.
[24] developed a reliability growth model implementing software patching to make
the software system reliable and cost effective. Tickoo et al. [34] have proposed
a testing effort based cost model to determine the optimal release time and patch
time of a software. Kansal et al. [20] have proposed a generalized framework for
finding the optimal release and patch time of a software under warranty. Anand
et al. [5] have also worked on modeling the software patch/update release and
software upgrade release phenomena simultaneously. Further, a novel concept of
patching with consideration of error generation has been explored by Anand et al.
[4].

When a users apply the patch on their systems, the problem is supposed to
go away. But what if this hastily released patch has not been effectively tested?
What if the patch is not able to fix the problem? What if the patch instead of
removing problems can create some bugs? What if the problems that were ly-
ing dormant since the testing phase started causing unexpected behaviour in the
system? There have been many real life situations that have exemplified such
scenarios; like in order to keep themselves safe from the ransomware WannaCry,
5 hospitals in Queensland installed security patches. But the security patch was
infected and instead, it incremented the problem at hand by denying access to
the patient’s medical records. It also caused system slowness in the affected hos-
pitals, i.e., Brisbane’s Princess Alexandra, Lady Cilento Children’s hospital, the
Cairns, Mackay, and Townsville hospitals [11]. According to the finding of a survey
conducted by GFI software in 2011, 50% of the surveyed IT firms have faced, at
least, one critical IT failure due to application of badly created security patches.
Further, 43% of the legal sector and 40% of the healthcare sector suffer due to
recurring problems caused by installation of bad security patches [37].

The idea of this paper is to consider the above questions and create a rele-
vant modeling framework. Working on the lines of Anand et al. [4], it has been
assumed that sometimes a patch can be destructive, i.e., rather than providing
benefits it results into some failure. To keep up with the pace of the market, the
developers release patches. Sometimes infectious or broken patches are released,
which not only affects the process but also increases the number of faults due to
error generation. Providing early patches might lead to the application of a faulty
patch that eventually can lead to reduction in systems performance. In this paper,
three different models have been proposed, which consider the different functional



J. Kaur, et al. / Measuring Software Reliability 253

forms of joint efforts of testers and users based on the fact that fixing bugs by
issuing patches may sometimes result into increased fault count or it may happen
that some bugs may not be perfectly debugged. Table 1 shows how our analysis is
significant over the research done earlier in the field of software patch modeling.

Table 1: Comparison between Present and Prior Research

Concept
Present
Research

Anand
et al. [1]

Jiang and
Sarkar [18]

Kansal
et al. [20]

Research
on Concept
of Patch*

Joint role of tester
and user in

fault debugging
Yes Yes Yes Yes No

Release time and Testing
Stop Time As two
Separate Scenario

Yes Yes Yes Yes No

Impact of an infected patch Yes No No No No

Importance of patch
testing before releasing

for any fixation
Yes No No No No

Different Detection/Removal
rate of testers before

and after software release
Yes Yes Yes Yes No

*Research like: Arora et al. [9] and Beattie et al. [12].

The structure of the paper is as follows: Section 2 comprises of modeling
framework with different set of notations; Section 3 covers the Model Validation
and Data Analysis, followed by the Conclusion in section 4.

2. MODEL BUILDING

Consider the situation where the software is released in the market and the
users are using it. When users face an issue with their products, they report
the same to the producer. The software firms consider the issue and take an
appropriate action. To handle the presence of bugs, software patches are then
released by the vendors. The possibility that some of these patches being infected
and eventually impacting the software reliability has been modeled here. We
assume that the fault removal process is modeled as Non-Homogeneous Poisson
Process (NHPP). Further, it is assumed that before the release of the software, the
testing team is the sole fault finder. But once the software is in operational phase,
both the tester and the user are detecting faults in the software with differing
efficiencies. The model also considers the varying testing environment before and
after the release of the software. Generally, before the software release, the testing
team works very hard to make their product the best possible. But once the
product has been released, the efficiency of the team tends to go down. The
changing behavior of the tester, i.e., their seriousness to deal with the software,
ultimately affects the software reliability. Thus, when we consider the impact of
the field testing on software reliability growth, it is essential that we keep this
changing testing environment into consideration.

Notations

The following notations have been used throughout this paper:



254 J. Kaur, et al. / Measuring Software Reliability

m(t) : Cumulative number of faults detected/corrected in the software.

a : Total number of faults in the software.

b1 : Rate of fault removal per remaining fault before software release.

b2 : Rate of fault removal per remaining fault after software release.

β1 : Learning parameter before the software release.

β2 : Learning parameter after the software release.

α : Bug generation due to infected patch.

p : Probability of perfect debugging of the software.

τ : Software release time.

⊗ : Steiltjes Convolution.

F (t) : Cumulative Distribution function(CDF) for fault debugging by the tester.

G(t) : Cumulative Distribution Function (CDF) for fault reporting by the user.

g(t) : Probability Distribution Function (PDF) for fault reporting by the user.

For the mathematical formulation, Software testing lifecycle [0, T ] has been
divided into following two phases: 0 ≤ t < τ , when the software is with the
developer and in τ < t ≤ T , when the software is in operational phase and is being
utilized by users. The timeline can be understood with the help of Figure 1.

Figure 1: Software Testing Life Cycle

Phase 1:
For time period 0 ≤ t < τ , in-house testing of the software takes place. Test

cases are developed, executed and the testers try their best to debug the software
based on these test cases. Extensive effort is being made to have the least number
of faults possible at the release time of the software. Here, it has been assumed
that fault removal process has an S-shaped distribution growth pattern as given
by Kapur & Garg [21] which can be modeled as follows:

m(t) = a.F (t) = a

(
1− e−b1t

1 + β1e−b1t

)
(1)



J. Kaur, et al. / Measuring Software Reliability 255

Phase 2:
Phase 2 is the operational phase of the software. At time t = τ , the software is

released to the public. Thus, for time τ < t ≤ T , the users will also be contributing
in finding faults in the software. It can be done in the form of feedback of the users
taken by the vendors. The users also voluntarily report back issues and product
aspirations to vendors. Thereby, both the testers and users shall contribute in the
debugging process. To incorporate the combined effort of testers and users in bug
finding, the following functional form of 2 distributions is being used from Steiltjes
Convolution in Convolution theory:

(F⊗G)t =

∫ t

0

F (t− x).g(x)dx (2)

where F (x) is the fault debugging rate of the tester throughout the software
lifecycle, and G(x) is the fault reporting rate of the user after the software re-
lease. As a part of maintenance activities, updates and patches are released in
this phase to keep the software in pristine condition. While the updates deal with
multiple issues simultaneously, patches are meant to handle singular issues as soon
as possible. Multiple patches are released throughout the maintenance phase to
quick-fix the issues. There is a possibility that among these numerous patches, a
patch might be infected, i.e., it has not been effectively tested and might further
increment the bug content of the software. With the help of unified modelling
approach, this phenomenon can be mathematically expressed as follows [22]:

m(T − τ) =
a′

(1− α)
[1− (1− F ⊗G(T − τ))p(1−α)] (3)

where a′ = a.[1− F (τ)]
Using equation (1) and (3) the total number of faults debugged throughout the
testing process can be modeled as follows:

m(T ) = m(τ) +m(T − τ)

= a.F (τ) +
a

(1− α)
[1− F (τ)].[1− (1− F ⊗G(T − τ))p(1−α)]

(4)

where F (τ) = 1−e−b1.τ

1+β1.e−b1.τ , i.e., the logistic distribution function for the fault

debugging by the tester.
One important aspect to understand is that the users are not trained to find

bugs. They report back the issue that they are facing. So their efficiency level
cannot be the same as the testers. Similarly, all users cannot be equally efficient
in detecting or reporting the issues. The users’ bugs finding efficiency will depend
on many factors like the amount of time they spend on operating the software,
how well versed they are with the software’s working, comfort while using the
software, etc. So keeping these characteristics in mind, we have proposed three



256 J. Kaur, et al. / Measuring Software Reliability

different scenarios with different fault reporting rate for the user. Hence, user’s
fault reporting process can be taken to follow a constant, exponential, or logis-
tic distribution whereas the tester’s debugging rate is assumed to follow logistic
distribution.

Model 1: Here it has been assumed that tester’s debugging rate follows logistic
distribution and user’s fault reporting process is constant over the planning horizon
Thus, the tester follows a learning pattern and his fault debugging abilities improve
with time while the user’s reports faults at the same rate. It can be represented
as,
F (T − τ) ∼ LogisticDistribution and G(t− τ) ∼ Constant.

Thus, using equation (2) the joint rate of user and tester can be given as:

(F ⊗G)(T − τ) =
1− e−b2(t−τ)

1 + β2e−b2(T−τ)
(5)

Using equation (5) in equation (4), the overall fault removal phenomenon can
be modeled as follows:

m(T ) = a

(
1− e−b1τ

1 + β1e−b1τ

)
+

a′

1− α

[
1−
(
1− 1−e−b2(T−τ)

1+β2e−b2(T−τ)

)p(1−α)]
(6)

where a′ = a.[1− F (τ)]

Model 2: The second model considers the tester’s debugging rate to be follow-
ing a logistic distribution and user’s fault reporting rate to be following exponen-
tial distribution, i.e., the user’s reporting rate increases exponentially with time.
Thus, F (T−τ) ∼ LogisticDistribution andG(T−τ) ∼ ExponentialDistribution.

=⇒ F (T − τ) = 1−e−b2(T−τ)

1+β2e−b2(T−τ) and G(T − τ) = 1− e−b2(T−τ)

Thus, using equation (2) we have

(F⊗G)(T−τ) =

(
1−e−b2(T−τ)+(1+β2)e

−b2(T−τ).log

(
(1 + β2)e

−b2(T−τ)

1 + β2e−b2(T−τ)

))
(7)

Using equation (7) in equation (4) we have the fault removal process for test-
ing process inculcating patching as an attribute, which may sometimes lead to
incorporation of infected patches.

m(T ) = a

(
1− e−b1τ

1 + β1e−b1τ

)
+

a′

1− α

[
1−
(
1−
(
1− e−b2(T−τ)

+(1 + β2)e
−b2(T−τ).log

(
(1 + β2)e

−b2(T−τ)

1 + β2e−b2(T−τ)

)))p(1−α)]
(8)



J. Kaur, et al. / Measuring Software Reliability 257

where a′ = a.[1− F (τ)]

Model 3: The third model assumes that tester’s fault detection rate is fol-
lowing logistic distribution i.e. F (T − τ) ∼ LogisticDistribution and keep-
ing the same distribution for users fault reporting phenomenon i.e.G(T − τ) ∼
LogisticDistribution .We have taken a learning pattern for the user’s reporting
rate to demonstrate the role of those users who use the product very frequently
and take active interest in the fault report process.

=⇒ F (T − τ) = 1−e−b2(T−τ)

1+β2.e−b2(T−τ) and G(T − τ) = 1−e−b2(T−τ)

1+β2.e−b2(T−τ)

Using equation (2) we have:

(F ⊗G)(T − τ) =

(
1− e−b2(T−τ)

1− β2
2 .e

−b2(T−τ)

)
+

(
e−b2(T−τ)(1 + β2)

2

(1− β2
2e

−b2(T−τ))2

)
.

[
b2(T − τ) + 2log

(
(1 + β2)e

−b2(T−τ)

1 + β2e−b2(T−τ)

)]
(9)

Further, using equation (9) in equation (4), the mean value function for overall
fault removal process can be given as follows:

m(T ) = a.

(
1− e−b1τ

1 + β1e−b1τ

)
+

a′

1− α

[
1−
(
1−
((

1− e−b2(T−τ)

1− β2
2 .e

−b2(T−τ)

)

+

(
e−b2(T−τ)(1 + β2)

2

(1− β2
2e

−b2(T−τ))2

)
.

[
b2(T − τ) + 2log

(
(1 + β2)e

−b2(T−τ)

1 + β2e−b2(T−τ)

)]))p(1−α)]
(10)

where a′ = a.[1− F (τ)].

3. DATA ANALYSIS AND MODEL VALIDATION

The above models have been analyzed and validated on two fault count dataset.
The first dataset (DS−I) consists of the fault count data of Tandem computers and
contains 100 faults discovered over a period of 20 weeks [35]. The second dataset
(DS − II) is the fault count data of a Brazilian Electronic Switching System,
TROPICO R-1500, and contains 461 faults discovered over 81 time points (1 time
point corresponds to 10 days) [19]. Parameter estimation has been done using the
Statistical Analysis Software (SAS) [31]. The estimated parameter values for the
two datasets are shown in Table 2. Table 3 shows the performance of the 3 models
on different validation criteria like Sum of Squared Errors (SSE), Mean Square
Error (MSE), Root Mean Square Error (R-MSE), R-Square (R2) and Adjusted
R-Square (AdjR2).

The deviation between original fault data and the observed fault data for the
three proposed models onDS−I has been shown in Figures 2, 3, and 4 respectively.

Figures 5, 6, and 7 show the graphical representation of the deviation between
original fault count and the observed fault data for three models on DS − II.

Figures 2-7 depict that the models are able to predict the data to a very good
extent.



258 J. Kaur, et al. / Measuring Software Reliability

Table 2: Parameter Estimation for proposed models on DS-I and DS-II
Datasets Models\Parameters a b1 b2 β1 β2 α p

DS-I Model 1 103.421 0.173 0.54 1.023 2.12 0.122 0.39

DS-I Model 2 102.906 0.231 0.87 2.02 4.01 0.032 0.52

DS-I Model 3 102.36 0.292 0.94 4.03 2.49 0.001 0.731

DS-II Model 1 551.338 0.050 0.653 1.894 9.115 0.012 0.035

DS-II Model 2 519.426 0.056 0.671 2.121 5.015 0.018 0.048

DS-II Model 3 513.506 0.060 0.914 2.343 6.409 0.011 0.038

Table 3: Comparison Criteria for proposed models on DS − I and DS − II
Datasets Models\Parameters SSE MSE R-MSE R2 AdjR2

DS-I Model 1 162.1 9.006 3.001 0.990 0.989

DS-I Model 2 296.8 16.487 4.060 0.982 0.981

DS-I Model 3 358.7 19.929 4.464 0.978 0.977

DS-II Model 1 5664.1 73.560 8.577 0.996 0.996

DS-II Model 2 6277.9 81.531 9.030 0.996 0.995

DS-II Model 3 7161.4 93.005 9.644 0.995 0.995

Figure 2: Goodness of fit curve for Model 1 on DS-I



J. Kaur, et al. / Measuring Software Reliability 259

Figure 3: Goodness of fit curve for Model 2 on DS-I

Figure 4: Goodness of fit curve for Model 3 on DS-I



260 J. Kaur, et al. / Measuring Software Reliability

Figure 5: Goodness of fit curve for Model 1 on DS-II

Figure 6: Goodness of fit curve for Model 2 on DS-II



J. Kaur, et al. / Measuring Software Reliability 261

Figure 7: Goodness of fit curve for Model 3 on DS-II



262 J. Kaur, et al. / Measuring Software Reliability

4. CONCLUSIONS

This paper considers the effect of an infected patch on the software reliability
growth. If the patches are not effectively tested, i.e., the faults are not completely
removed at patch release time, then such infected patches can increase the fault
content in the software. Before a software is released, testers are to detect bugs
and remove them, but after their release, both testers and users are to find faults
which are then corrected by the patches, issued by the developers. The users
can have different levels of fault reporting rate depending upon their software use
intensity and fault finding efficiency. To model the above concept, we proposed a
generic model based on the concept of firms providing patching service wherein it
is assumed that sometimes these corrective measures result in implementation of
infected patch. Further, based on differing user efficiency, three models have been
formulated and analyzed on two sets of software failure data. The results show
that the predicted values obtained using the proposed models were very close to
the actual values. Thus, the phenomenon of infected patching and the differing
behaviour of testers and users in such a situation can be explained effectively
through our models.

Acknowledgement: The research work presented in this paper is supported
by grant to the second and the third author from Department of Science and
Technology, India through DST PURSE PHASE II scheme.

REFERENCES

[1] Anand, A., Agarwal, M., Tamura, Y., and Yamada, S., “ Economic impact of software
patching and optimal release scheduling”, Quality and Reliability Engineering International,
33 (1) (2017) 149–157.

[2] Anand, A., and Bansal, G., “Interpretive structural modelling for attributes of software
quality”, Journal of Advances in Management Research, 14 (3) (2017) 256-269.

[3] Anand, A., Bhatt, N., and Aggrawal, D., “Modeling Software Patch Management Based
on Vulnerabilities Discovered”, International Journal of Reliability, Quality and Safety
Engineering, 27(2) (2019) 2040003.

[4] Anand, A., Das, S. and Singh, O., “Modeling software failures and reliability growth
based on pre & post release testing”, 5th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions)(ICRITO), Delhi, India,
(2016) 139–144.

[5] Anand, A., Das, S., Aggrawal, D., and Kapur, P. K., “Reliability analysis for upgraded
software with updates”, Quality, IT and business operations, Springer Natur, Singapore,
(2018) 323–333.

[6] Anand, A., Gupta, P., Klochkov, Y., and Yadavalli, V. S. S., “Modeling Software Fault
Removal and Vulnerability Detection and Related Patch Release Policy”, System Reliability
Management: Solutions and Technologies, CRC Pess, Boca Raton, Florida, (2018) 19-34.

[7] Anand, A., and Ram, M., ”System Reliability Management: Solutions and Technologies”,
CRC Press, Boca Raton, Florida, (2018).

[8] Anand, A., and Ram, M., ”Recent Advancements in Software Reliability Assurance”, CRC
Press, Boca Raton, Florida, (2019).



J. Kaur, et al. / Measuring Software Reliability 263

[9] Arora, A., Caulkins, J. P. and Telang, R., “Research note—Sell first, fix later: Impact of
patching on software quality”, Management Science, 52 (3) (2006) 465-471.

[10] Babcock, C., “What’s The Greatest Software Ever Written?”, https://www.

informationweek.com/whats-the-greatest-software-ever-written/d/d-id/1046033,
(2006).

[11] Bateman, D., “Cairns Hospital suffers software ‘catastrophe’ with
possible loss of patient data”, https://www.cairnspost.com.au/news/

cairns-hospital-suffers-software-catastrophe-with-possible-loss-of-patient-data/

news-story/c828de3f4a0f73132ec3d19284cbae88, (2017).
[12] Beattie, S., Arnold, S., Cowan, C., Wagle, P., Wright, C., and Shostack, A., “Timing the

Application of Security Patches for Optimal Uptime”, LISA, 2 (2002) 233-242.
[13] Bittanti, S., Bolzern, P., Pedrotti, E., Pozzi, M., and Scattolini, R., “A flexible modelling

approach for software reliability growth”, Software Reliability Modelling and Identification,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, (1988) 101-140.

[14] Das, S., Anand, A., Singh, O., and Singh, J., “Influence of Patching on Optimal Planning
for Software Release and Testing Time”, Communications in Dependability and Quality
Management- An International Journal, 18 (4) (2015) 81-92.

[15] Deepika, Anand, A., Singh, N., and Dutt, P., “Software reliability modeling based on
in-house and field testing”, Communications in Dependability and Quality Management-
An International Journal, 19 (1) (2016) 74-84.

[16] Goel, A. L., and Okumoto, K., “Time-dependent error-detection rate model for software
reliability and other performance measures”, IEEE transactions on Reliability, 28 (3) (1979)
206-211.

[17] Jelinski, Z., and Moranda, P., “Software reliability research”, Statistical computer perfor-
mance evaluation, Academic Press, New York,United States (1972), 465-484.

[18] Jiang, Z., and Sarkar, S., “Optimal software release time with patching considered”, Proc.
13th Annual Workshop Information technologies and Systems, Seattle, Washington, (2003)
61-66.

[19] Kanoun, K., de Bastos Martini, M. R., and de Souza, J. M., “A method for software
reliability analysis and prediction application to the TROPICO-R switching system”, IEEE
Transactions on Software Engineering, 17 (4) (1991) 334-344.

[20] Kansal, Y., Singh, G., Kumar, U., and Kapur, P. K., “Optimal release and patching time
of software with warranty”, International Journal of System Assurance Engineering and
Management, 7 (4) (2016) 462-468.

[21] Kapur, P. K., and Garg, R. B., “A software reliability growth model for an error-removal
phenomenon”, Software Engineering Journal, 7 (4) (1992) 291-294.

[22] Kapur, P. K., Pham, H., Gupta, A., and Jha, P. C., “Software reliability assessment with
OR applications”, London: Springer, (2011).

[23] Kapur, P. K., Pham, H., Chanda, U., and Kumar, V., “Optimal allocation of testing effort
during testing and debugging phases: a control theoretic approach”, International Journal
of Systems Science, 44 (9) (2013) 1639-1650.

[24] Kumar, V., Singh, V. B., Dhamija, A., and Srivastav, S., “Cost-reliability-optimal release
time of software with patching considered”, International Journal of Reliability, Quality
and Safety Engineering, 25 (4) (2018) 1850018.

[25] Kumar, V., Khatri, S. K., Dua, H., Sharma, M., and Mathur, P., “ An assessment of testing
cost with effort-dependent fdp and fcp under learning effect: a genetic algorithm approach”,
International Journal of Reliability, Quality and Safety Engineering, 21 (6) (2014) 1450027.

[26] Kumar,V., Kapur, P. K., Taneja, N., and Sahni, R., “ On allocation of resources during
testing phase incorporating flexible software reliability growth model with testing effort
under dynamic environment”, International Journal of Operational Research, 30 (4) (2017)
523-539.

[27] Kumar, V., and Sahni, R., “ An effort allocation model considering different budgetary
constraint on fault detection process and fault correction process”, Decision Science Letters,
5 (1) (2016) 143-156.

[28] Musa, J. D., “A theory of software reliability and its application”, IEEE transactions on
software engineering, 13 (1975) 312-327.



264 J. Kaur, et al. / Measuring Software Reliability

[29] Ohba, M., “Inflection S-shaped software reliability growth model”, Stochastic models in
reliability theory, (1984) 144-162.

[30] Rouse, M., “Patch Tuesday”, https://searchsecurity.techtarget.com/definition/

PatchTuesday, (2017).
[31] “SAS/ETS 9.1 User’s Guide”, SAS Institute, (2004) 37–45.
[32] Schneier, B., “The Next Ransomware Attack Will Be Worse than WannaCry”, https:

//www.schneier.com/essays/archives/2017/05/the_next_ransomware_.html, (2017).
[33] Singh, O., Anand, A., Aggrawal, D., and Agarwal, M., “Utility based assessment of

attributes for software quality”, Proceedings of 5th International DQM conference on life
cycle engineering and management(ICDQM-2014), Cacak, Serbia, (2014) 95-110.

[34] Tickoo, A., Kapur, P. K., Shrivastava, A. K., and Khatri, S. K., “Testing effort based
modeling to determine optimal release and patching time of software”, International Journal
of System Assurance Engineering and Management, 7 (4) (2016) 427-434.

[35] Wood, A., “Predicting software reliability”, Computer, 29 (11) (1996) 69-77.
[36] Yamada, S., Ohba, M., and Osaki, S., “S-shaped reliability growth modeling for software

error detection”, IEEE Transactions on reliability, 32 (5) (1983) 475-484.
[37] GFI Software, “50% of Businesses Have Suffered IT Failures Due to Bad

Software Updates”, https://www.gfi.com/company/press/press-releases/2011/06/

50-of-businesses-have-suffered-it-failures-due-to-bad-software-updates, (2011).


