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Abstract: We study a new variant of the bin packing problem with a color constraint.
Given a finite set of items, each item has a set of colors. Each bin has a color capacity, the
total number of colors for a bin is the unification of colors for its items and cannot exceed
the bin capacity. We need to pack all items into the minimal number of bins. For this
NP-hard problem, we present approximability results and design a hybrid matheuristic
based on the column generation technique. A hybrid VNS heuristic is applied to the
pricing problem. The column generation method provides a lower bound and a core
subset of the most promising bin patterns. Fast heuristics and exact solution for this
core produce upper bounds. Computational experiments for test instances with number
of items up to 500 illustrate the efficiency of the approach.
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1. INTRODUCTION

In the classical bin packing problem, a set of weighted items must be packed
into the minimal number of identical bins such that the sum of weights of items

Preliminary version of the paper was presented at the 4th International Conference on Vari-
able Neighborhood Search [20].
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in each bin does not exceed capacity of the bin. In this paper we study a new
variant of the bin packing problem. Each item does not have the weight but has
a set of colors. The bin capacity limits the total number of colors for its items.
The goal is to pack all items into the minimal number of identical bins such that
the total number of colors of items in each bin does not exceed the bin capacity.
It is NP-hard problem in the strong sense and can be reformulated as a biclique
vertex covering problem for bipartite graphs [14].

The bin packing problem with color constraints (BPC) presents a recent line of
research in combinatorial optimization. One of its applications is beverage package
printing [22]. In [25] the bin packing problem with classes of items (colors) is used
to model video-on-demand applications. A biclique covering (biclustering), which
is a straight reformulation of BPC, is used to model protein-protein interaction
[11].

There are some versions of the problem with online and offline settings [6, 23].
In the colored bin packing [10], each bin has a maximum color capacity, i.e., a
limit on the number of items of a particular color. This version originates from
the production planning of a steel plant. In a more generalized version of the
color bin packing problem [18, 21], the constraints among items are described by
a conflict graph. In the black and white bin packing problem with alternation
constraints [5], two items with the same color can not be packed adjacently to
each other.

In this paper we consider a new version of the colored bin packing problem,
which is a special case of the co-printing problem [22]. We assume that each item
has zero weight and a set of colors. We apply the column generation method for
the model with exponential number of variables. It produces a lower bound. The
VNS matheuristic with large neighborhoods is designed for solving the pricing
problem and accelerating the method. The column generation method provides
a core subset of the most promising bin patterns. This core is used to get upper
bounds. Similar idea was suggested by P. Avella et al. [4] for solving large scale
p-median problem by Lagrangian relaxations. We apply three heuristics and an
exact method (GUROBI) to this core. It is interesting to note that the exact
method is very efficient in this case and surpasses the heuristics. We need a lot
of running time for column generation method and a small amound of time for
getting upper bound by exact method. In our computational experiments, we
observe that the exact method provides good results even for a subcore when we
terminate the column generation at an intermediate step. We illustrate this useful
idea on computational experiments for the large scale instances with number of
items up to 500. We study the efficiency of our hybrid approach on randomly
generated test instances. For that case, this hybrid method has found optimal
solutions.

The paper is organized as follows. In Section 2 we introduce notations and
present the mathematical model. In Section 3 we present approximability results.
We show that the well-known set covering problem can be reduced to BPC prob-
lem. Thus, it is hard for approximation in polynomial time. In Section 4 we discuss
the column generation method and describe the pricing problem. In Section 5 we



Y. Kochetov, et al. / A Hybrid VNS Matheuristic 287

define three types of large neighborhoods and present a pseudocode of the hybrid
VNS matheuristic for the pricing problem. In Section 6 we design heuristics for
the BPC problem. Finally, in Section 7 we discuss experimental results for ran-
domly generated test instances and instances with regular structure. Summary
and conclusions are in Section 8.

2. MATHEMATICAL MODEL

Let us introduce the following notations:
I = {1, . . . , n} is the set of items;
J = {1, . . . ,m} is the set of colors;
Ki ⊂ J is the set of colors for item i;
b is the upper bound for number of different colors in each bin;
p = (p1, . . . , pi, . . . , pn) is a bin pattern, or bin for shot, where pi ∈ {0, 1} denotes
whether item i is in the bin or not. We consider only the feasible patterns that
satisfy the bin capacity constraint: | ∪ (Ki : pi = 1)| ≤ b.

Now we can write the BPC problem as follows:

min
{∑

p∈P

yp :
∑
p∈P

piyp ≥ 1, i ∈ I, yp ∈ {0, 1}
}
. (1)

In this linear integer programming formulation, we have a lot of variables and
a few constraints. The large scale formulations allow us to exclude symmetries,
which are usually presented in the bin packing compact representations. More-
over, large scale formulations as a rule have small integrality gap and the linear
programming relaxation can be solved exactly by column generation technique,
which is described in Section 4.

If we assume that all colors are different for any pair of items, then we get the
classical bin packing problem. Thus, the BPC problem is NP-hard in the strong
sense. We have polynomial time heuristics with constant performance guarantee
for this problem. Unfortunately, the BPC problem is harder for approximation in
polynomial time. As we will see in Section 3, the minimum hitting set problem
can be reduced to the BPC problem and this reduction preserves approximability.
Hence, the BPC problem is not approximable within (1− ε) ln b for arbitrary pos-
itive ε unless P = NP . In particular, the BPC problem does not have polynomial
time algorithm with constant performance guarantee for arbitrary large constant.

Another interesting formulation of the BPC problem can be done in terms
of bipartite clique covering. Let G(V1, V2, E) be the bipartite graph with sets of
vertices V1, V2 and set of edges E ⊂ V1 × V2. A biclique Kst in G is a complete
bipartite subgraph with s vertices from V1 and t vertices from V2. We wish to
cover graph G by a minimal number of bicliques for large t, t ≥ D for a given
threshold D. It is easy to see that the BPC problem is equivalent to this biclique
covering problem. We put V1 = I, V2 = J and an edge (ij) belongs to E if and
only if j �∈ Ki. Each feasible bin in the BPC problem is a biclique in the covering
problem for D = |J | − b and vice versa.
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3. APPROXIMABILITY RESULTS

Let us consider an important special case of the BPC problem when b = m−1.
We will see that the case is equivalent to the well-known Minimum Hitting Set
problem (MHS). Remember that in the MHS problem we have a finite set S and a
collection C of its subsets Si, i = 1, . . . , t, where t = |C|. We need to find a hitting
set with minimal cardinality, i.e., a minimal subset S′ ⊆ S such that S′ contains
at least one element from each subset in C.

Theorem 1. The MHS problem is equivalent to the BPC problem with b = m−1.

Proof. Assume that we have an instance for the MHS problem. We create an
instance for the BPC problem by the following rule:

J = S, I = C, Ki = S \ Si, i ∈ C, b = |S| − 1.

Now we consider a hitting set S′ and a corresponding cover of the collection C by
subcollections Cj , j ∈ S′. We assume that subset Si belongs to Cj if Si contains
element j. According to our rule, each subset Si corresponds to an item i for the
BPC instance and Ki = S \ Si. Hence, the union of colors for all items from Cj

does not contain color j. As a result, we can put all these items in a bin. Thus, we
have a solution for the BPC problem with the same value of the objective function.

Assume that we have an instance for the BPC problem. We create an instance
for the MHS problem by a similar rule:

S = J, C = I, Si = J \Ki, i ∈ I.

In a feasible solution for the BPC problem, each bin has as most b = m− 1 colors.
It means that at least one color is not contained in it and we can collect all such
colors as a hitting set. As a result, we have got a solution for the MHS problem
with the same or better value of the objective function.

Note that the above reductions are linear and preserve approximability, and in
fact realize so called L-reductions [2]. In other words, all approximation algorithms
for the MHS problem will carry over to the BPC problem with b = m−1. Moreover,
nonapproximability results will carry over to the general case of BPC problem as
well.

Corollary 2. For the BPC problem with b = m−1, the greedy algorithm produces
an H(b)–approximate solution, where H(b) =

∑b
i=1 1/i.

Proof. The MHS problem is equivalent to the Minimum Set Cover problem [3].
Hence, the greedy algorithm of Chvatal [7] has the desired property.

Corollary 3. The BPC problem is not approximable within (1 − ε) ln b for any
ε > 0 unless P = NP .

Proof. This negative result is followed from similar property for the Minimum Set
Cover problem [12].
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4. COLUMN GENERATION PROCEDURE

According to the well-known column generation approach we restrict ourselves
to a small subset P ′ ⊂ P , initially generated by some heuristic. Then at each
iteration, a pricing problem is solved, and new columns with negative reduced
cost are generated. We add all such columns to the restricted master problem.
Now we consider the dual linear programming problem in relation to the master
problem:

max
{∑

i∈I

wi :
∑
i∈I

piwi ≤ 1, p ∈ P ′, wi ≥ 0
}
,

where the dual variable wi can be considered as a price for item i. To enlarge the
subset P ′ or terminate the method, we should solve the following pricing problem
with optimal values w∗

i of the dual variables.
Let us introduce additional variables:

xi = 1 if item i is placed in a bin and xi = 0 otherwise,
zj = 1 if a bin contains item with color j and zj = 0 otherwise.

Then, the pricing problem can be stated as follows:

min(1−
∑
i∈I

w∗
i xi)

s.t.
∑
j∈J

zj ≤ b;

xi ≤ zj , j ∈ Ki, i ∈ I;

xi, zj ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function minimizes the reduced cost. The first constraint controls
the total number of colors for a bin. The second constraint shows the relations
between items and colors. It is easy to see that a knapsack problem can be reduced
to the pricing problem, and as a result, the pricing problem is NP-hard. We have
to solve a lot of the pricing problems with different prices. Thus, we design a VNS
matheuristic to accelerate the method. A block diagram for the column generation
procedure is presented in Figure 1.

To reduce the number of iterations of the column generation method, we in-
troduce deep dual-optimal inequalities [15] to the restricted master problem. It
is a set of restrictions, which, if added to dual problem, does not cut off at least
one optimal solution. The following proposition establishes a foundation for our
inequalities:

Proposition 4. Let I0, I
′ be two disjoint sets of items such that ∪i∈I0Ki ⊇ Ki′

for all i′ ∈ I ′. Then there exist a dual optimal solution w∗ for the restricted master
problem such that

∑
i∈I0

w∗
i ≥∑i′∈I′ w∗

i′ .
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Figure 1: Block diagram of column generation algorithm

Proof. It is easy to verify that the problem (1) has the (s, t) exchange property
[15] for si = 1 if i ∈ I0, ti = 1 if i ∈ I ′ and 0 otherwise. Indeed, in that case,
the set of items I0 can be replaced with all items from I ′ without breaking the
capacity constraint. Therefore, using Proposition 2 from [15], we conclude that∑

i∈I0
w∗

i ≥∑i′∈I′ w∗
i′ is the dual-optimal inequality.

At each iteration, we identify a set of items I0 for which the following inequality∑
i∈I0

w∗
i <

∑
i∈{i|Ki⊆∪i′∈I0

Ki′}\I0
w∗

i (2)

holds and add it to the master problem. We will demonstrate the efficiency of
those inequalities in Section 7.

5. HYBRID VNS MATHEURISTIC

Variable Neighborhood Search is a well-known metaheuristic for combinatorial
and global optimization based upon systematic change of neighborhood within
local search [17]. Its development has been successful in many real-world applica-
tions, including Stackelberg games ([1], [9]).

Below we apply this approach to the pricing problem. For a feasible solution
(x0

i , z
0
j ), we put K0 = ∪{Ki | x0

i = 1} and define three types of neighborhoods.

k-ItemAdd neighborhood. We collect all items with at most k additional

colors to K0 and select one of them, say i′. Then we create a subset K ′ =
K0 ∪ Ki′ and a subset of items I ′ = {i ∈ I | Ki ⊆ K ′}. The neighboring
solution is defined as the optimal solution to the pricing problem with the
following restriction: xi = 0, i /∈ I ′. The size of the neighborhood is O(n).
Note that optimal solution in this definition is equivalent to the best solution
in large neighborhood defined by this restriction.

k-ColorDel neighborhood. We select a subset of colors K ′ ⊆ K0, |K ′| ≤ k.
The neighboring solution is defined as the optimal solution to the pricing
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problem with the following restriction: zj = 1, j ∈ K0 \K ′. The size of the
neighborhood is exponential.

� k-ColorSwap neighborhood. We remove k colors from the setK0 and include
other k colors resulting in a set K ′. The neighboring solution is defined as
all items with colors in K ′. The size of the neighborhood is exponential, but
each neighboring solution can be evaluated in polynomial time.

To get neighboring solutions for the k-ItemAdd and k-ColorDel neighborhoods,
we need to solve the pricing problems. For small k they have small dimension and
can be solved easily by Gurobi software [16]. Resolution of pricing problem in full
dimension is time consuming.

Note that, after performing any jump in k-ItemAdd neighborhood, we found
the best solution among all solutions, where the set of colors is a subset of K ′ =
K0 ∪ Ki′ . Hence, we can exclude all these solutions from consideration. So, we
collect the subsets K ′ during the search by the k-ItemAdd neighborhood and
include the cuts∑

j∈K′
zj ≤ b− 1 (3)

into the pricing problem to remove them. For the k-ColorDel neighborhood the
similar property holds, and we use the cuts∑

j∈J\(K0\K′)

zj ≤ k − 1. (4)

The cuts are accumulated in the TabuList with fixed length. The pseudocode of
the hybrid VNS and Tabu Search matheuristic is presented below.
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Hybrid VNS matheuristic

1. Select the set of neighborhood structures for k = 1, . . . , kmax, s = 1, . . . , smax;
find an initial solution (x, z); put TabuList := Ø; choose a stopping condition
Tmax;

2. Set T := 1

3. Repeat the following sequence until the stopping condition T = Tmax is met:

(1) Set k := 1; s := 1;

(2) If T is even:

(a) Repeat the following steps until k = kmax:

(a.1) Select a solution (x′, z′) at random by the k-ItemAdd neigh-
borhood

(a.2) Update Tabu List: add restriction of type (3), induced by
selected solution

(a.3) If solution (x′, z′) is better than incumbent solution (x, z)
then move (x, z) := (x′, z′); T := 1.

(3) If T is odd:

(a) Repeat the following steps until s = smax:

(a.1) Select a solution (x′, z′) at random by the s-ColorDel neigh-
borhood

(a.2) Update Tabu List: add restriction of type (4), induced by
selected solution

(a.3) If solution (x′, z′) is better than incumbent solution (x, z)
then move (x, z) := (x′, z′); T := 1.

(4) T := T + 1;

(5) If we have no improvement for Tmax

2 iterations then move by the k-
ColorSwap neighborhood at random direction;

4. Return the best found solution (x, z).

The block diagram for this algorithm is presented in Figure 2.
It is usually harder to get a solution from k-ColorDel neighborhood, so the

parameter smax which controls its size is usually smaller than corresponding pa-
rameter kmax for k-ItemAdd neighborhood.

To reduce computation time, we can reduce the size of the problem. The
items with large color sets Ki are the most inconvenient for the heuristic. So,
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Figure 2: Block diagram of the hybrid matheuristic

we select all large items, |Ki| ≥ b − r, and solve the pricing problem for each of
them with additional constraint xi = 1. Since those items have a lot of colors,
resulting problem is, in fact, pretty small. Then we apply the hybrid matheuristic
for the remaining items. As we noted before, we include all founded solutions
with negative reduced cost into the restricted master problem. In such a way, we
decrease the number of iterations but increase the total number of columns. If the
matheuristic cannot find a solution with negative reduced cost, then we solve the
pricing problem to optimality by commercial solver Gurobi.

6. HEURISTICS FOR THE BPC

We apply four heuristics to find optimal or near optimal solutions:

The FFD heuristic. It is an adaptation of the well known FFD algorithm for
the classical bin packing problem. The items are sorted by the nonincreasing
of the cardinality of their color sets. Then we put each item in the first bin
it fits in. If it does not fit in any bin, we open a new bin.

The FillBin heuristic. This heuristic has been inspired by the FillBin heuris-
tic from [24]. We put wi = |Ki|2 and use these artificial prices in the pricing
problem. The hybrid VNS matheuristic is applied to fill the first bin. The
packed items are removed and this matheuristic is applied again to fill the
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second bin. After that, we fill the third bin, fourth bin, and so on until we
pack all items.

� The LP heuristic. We use the following idea [22] at the last iterations of
the column generation procedure. We take the round down LP solution to
the restricted master problem as a partial solution and apply the FillBin
heuristic to the remaining items. The best found solution is returned as the
result of the LP heuristic.

� The IP heuristic After the column generation procedure terminates, we seek
for optimal integer solution of the restricted master problem using Gurobi
optimizer. A similar approach has been introduced in core heuristic in [4].
Instead of reducing full problem to its core, column generation allows us to
pull the core without considering full problem.

LP heuristic is time consuming but produces strong solutions. The IP heuristic
is faster than LP heuristic, and in our experiments it nearly always produces
solutions that match lower bound. Moreover, we can apply LP and IP heuristics if
the column generation is terminated in an intermediate iteration. Sure, in such a
case we have not a lower bound for the global optimum, but IP heuristic produce
solutions, equal by their cost to current rounded-up restricted master problem
solution.

The FFD and FillBin heuristics are fast but produce weak solutions. We
use these heuristics at the initialization step of the VNS and column generation
procedure.

7. COMPUTATIONAL EXPERIMENTS

We conduct our computational experiments for the randomly generated test
instances in 10 sets of parameters n, m and b. For each set, we generate 10
instances. Thus, the total amount of tests is equal to 100. The color set Ki for
each item is generated by the following procedure. We uniformly choose an integer
l from 1 to b and uniformly choose a 0-1 vector with exactly l ones.

We use kmax = 16, smax = 8, Tmax = 10, r = 0.2b as values of parameters in
our experiments. The TabuList has the constant length equals 10.

Table 1 presents the results of our experiments for different variants of heuristic.
Column It is averaged amount of column generation iterations among 10 instances,
column C is average amount of generated columns, and column T is average time
(in seconds). Columns v1 show the performance of heuristic with all features that
have been described earlier; v2 show a heuristic without stabilization inequalities
(2); v3 show a heuristic in which the hybrid VNS matheuristic for pricing problem
is performed without prior big items consideration. Every variant uses an IP
heuristic at the final stage for the whole problem. For all instances, lower bounds
coincide with upper bounds and we have got the optimal solutions. The Gurobi
solver spends a lot of running time at the last iteration to prove that there is no
column with negative reduced cost.
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v1 v2 v3
n m b It C T It C T It C T

150 55 30 87 261 2256 110 313 2601 89 270 2893
175 55 30 122 294 2691 143 339 3055 124 302 2914
200 55 30 98 316 2772 132 342 3258 105 312 3151
225 55 30 119 322 3024 148 361 3406 120 331 3383
250 55 30 141 347 4017 170 405 4249 141 341 4373

150 90 40 101 277 2318 128 320 2913 105 282 2766
175 90 40 125 305 2652 151 334 3122 124 317 3078
200 90 40 136 329 2910 154 357 3289 136 335 3166
225 90 40 156 362 3573 183 398 4170 157 367 3884
250 90 40 202 481 5837 257 530 6714 210 486 6526

Table 1: Computational results

We note that the performance of the method strongly depends on the integrality
gap and the bin capacity. For instances without the gap, our approach shows good
performance in running time. It seems that the uniformly generated instances are
quite easy for the method. Many of them have not the integrality gap in the large
scale formulation. If the integrality gap is positive, we need a lot of efforts to solve
the linear programming relaxation. Nevertheless, we can apply the IP heuristic
in such a case as well even for large bin capacity and before the termination of
column generation.

Note that the previous studies on the BPC [22] deal with small bin capacity
only, b ≤ 10. An addaptation of the FFD heuristic, the FillBin heuristic and the
LP heuristic has been studied. In [24] an original FillBin heuristic have been used
for classical bin packing problem. The classical FFD algorithm for bin packing
problem has been widely studied [8].

Table 2 compares performance of four heuristics for BPC, described in Section
6. We use the same instances as for Table 1. Columns Acc show the average
percentage deviation from the column generation lower bound, and columns T
show the average running time for each heuristic (in seconds). Note that for IP
and LP heuristics the column generation procedure must be performed, thus, we
exclude that time from the results.

n m b FFD FillBin LP IP
Acc T Acc T Acc T Acc T

150 90 40 45.1% 0.22 31.25% 124 1.25% 62 0% 2.31
175 90 40 47.32% 0.29 30.82% 157 2.93% 81 0% 2.85
200 90 40 47.63% 0.31 35.14% 195 4.24% 101 0% 2.72
225 90 40 50.88% 0.34 36.75% 219 5.31% 118 0% 3.2
250 90 40 49.94% 0.36 38.53% 262 5.85% 141 0% 3.58

Table 2: Comparison of the heuristics
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A feasible solution for BPC can be obtained at each iteration of the column
generation procedure. We use this approach to find a heuristic solution for large
scale instances. Accuracy of those solutions can be estimated with intermediate
lower bound [13]: given an optimal cost Z∗

RMP for the restricted master problem,
an optimal solution w for the dual-master problem, an optimal solution x∗ for the
pricing problem, the following inequality hold:

Z∗
RMP

w�x∗ ≤ Z∗
MP (5)

where Z∗
MP is an optimal cost for the full master problem.

We terminate our heuristic when the hybrid matheuristic for the pricing prob-
lem can’t find a solution with negative reduced cost. Then we obtain the solution
for BPC by applying the IP heuristic. After that, we solve the pricing problem
with Gurobi to get the lower bound (5). We observe that this intermediate lower
bound is pretty rough: if we run column generation to the end, a solution improves
just a little, while lower bound improves significantly. However, it is hard to get
the optimal solution of the pricing problem.

n m b It C TCG TIP AccLB AccCG

150 90 40 28 232 416 2.12 8.03% 0%
175 90 40 41 257 621 2.61 8.1% 0.25%
200 90 40 65 281 1683 2.58 9.25% 1.33%
225 90 40 86 314 2258 3.13 11.38% 1.2%
250 90 40 93 384 3104 3.6 12.6% 1.56%

300 90 40 97 426 4841 4.21 15.33% -
350 90 40 95 485 6103 4.88 20.6% -
400 90 40 98 515 7057 5.37 21.14% -
450 90 40 101 648 8508 6.16 23.78% -
500 90 40 103 810 10736 7.71 35.53% -

Table 3: Large instance computational results

Table 3 presents the results for that truncated heuristic. Columns n, m, b, It,
C have the same meaning as for Table 1, column AccLB shows the average per-
centage deviation of heuristic solutions from the intermediate lower bound, column
AccCG shows the average percentage deviation from the optimum. Columns TCG

and TIP show the running time of column generation procedure and IP heuristic
respectively. Again, the column generation procedure is the most time consuming.
Optimal integer solution for the restricted master problem can be founded easily.

8. CONCLUSIONS

In this paper we studied a new variant of the bin packing problem with a color
constraint for bin capacity. We have shown that this problem is hard to approx-
imate in polynomial time. We designed a column generation based matheuristic.
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The hybrid VNS approach is used for the pricing problem to accelerate the method.
For further research, it would be interesting to find difficult test instances where
the proposed method produces solutions with high deviation from the optimum.
For the classical bin packing problem, we have very interesting open question about
the quality of the lower bound produced by the column generation approach. As
a rule, the gap between optimal solution and this lower bound is 0 or 1. We still
have no instance with the gap greater than 1. Is it possible to find such difficult
instances for this new bin packing problem? It is an open question for future
research.

We plan to investigate the performance of the method for the regular instances,
where each item has the same number of colors and each color is included into the
same number of items. Similar ideas are used for creating difficult test instances for
the facility location problem [19]. Randomly generated test instances, where each
facility has the same number of potential clients and each client can be serviced
by the same number of facilities, are the most difficult from the computational
point of view. Nevertheless, another regular class of test instances based on the
finite projective planes are polynomially solvable. Another line of research is to
construct an exact method for the BPC problem.
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