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Abstract: In this paper we introduce new sequence spaces with the help of domain
of matrix D(r, 0, s, 0, t), and study some of their topological properties. Further, we
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and sufficient conditions for characterization of the matrix mappings.
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1. INTRODUCTION

Throughout the paper we denote w, �∞, c, c0, and �p be the space of all, bounded,
convergent, null and p-absolutely summable sequences, respectively.

Let X and Y be two sequence spaces and B = (bnk) an infinite matrix of real
or complex numbers bnk, where n, k ∈ N = {1, 2, . . .}. Then, we say that B defines
a matrix mapping from X into Y , denoted by B : X → Y , if for every sequence
x = (xn) ∈ X , the sequence Bx = {(Bx)n} is in Y , where

(Bx)n =

∞∑
k=1

bnk xk (1)
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provided the right hand side converges for every n ∈ N and x ∈ X.

If μ is a normed sequence space, we can write Dμ(B) for x ∈ w, for which the
sum in Eqn. 1 converges in the norm of μ. We write (λ : μ) = {B : λ ⊆ Dμ(B)}
for the space of those matrices B transform the all sequences in λ into μ in this
sense.

The sequence space λB = {x = (xk) ∈ w : Bx ∈ λ} is called the domain of an
infinite matrix B in a sequence space λ. One can easily verify that the sequence
spaces λB and λ are linearly isomorphic when B is a triangle. The continuous
dual space of the space λB is defined by λ∗

B = {f : f = goB, g ∈ λ∗}.

The idea for constructing a new sequence space by means of the matrix domain
of a particular limitation method has recently been employed by Altay and Basar
[1, 2], Malkowsky and Savas [11], Basar et al. [3], Kirisci and Basar [8], Ng and
Lee [12], Sönmez [14] and many more. In summability theory, different classes of
matrices have been investigated. Characterization of matrix classes is found in
Rath and Tripathy [13], Tripathy and Sen [19] and many others.Recently, Khan
et al. [6, 7] have studied the concept of I-convergence of the sequence where I is
an ideal.

Let r, s, t be non-zero real numbers, and define as in [16] matrixD = D(r, 0, s, 0, t) =
{dnk(r, s, t)} as follows

dnk (r, s, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
r, (n = k)

s, (n = k + 2)

t, (n = k + 4)

0, otherwise.

2. SOME NEW SEQUENCE SPACES AND THEIR
TOPOLOGICAL PROPERTIES

Now, we introduce the new sequence spaces, derived by the matrix D as follows

(�∞)D = {x = (xk) ∈ w : Dx ∈ �∞} = {x = (xk) :
sup

k ∈ N
|rxk + sxk−2 + txk−4| < ∞},

(c0)D = {x = (xk) ∈ w : Dx ∈ c0} = {x = (xk) ∈ w : lim
k→∞

|rxk + sxk−2 + txk−4| = 0},
(c)D = {x = (xk) ∈ w : Dx ∈ c}

= {x = (xk) ∈ w : ∃ l ∈ C, lim
k→∞

|rxk + sxk−2 + txk−4 − l| = 0},

(�p)D = {x = (xk) ∈ w : Dx ∈ �p} = {x = (xk) ∈ w :
∑

|rxk + sxk−2 + txk−4|p < ∞}.

We quate the following results, useful for our study from Stieglitz and Tietz [15]
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sup

n ∈ N

∑
k

|ank|q < ∞, (2)

sup

k, n ∈ N
|ank| < ∞, (3)

lim
n→∞ ank = αk, (k ∈ N), (4)

lim
n→∞

∑
k

|ank| =
∑
k

|αk|, (5)

lim
n→∞

∑
k

ank = α. (6)

Lemma 1. The necessary and sufficient conditions for A ∈ (λ : μ), where λ ∈
{�∞, c, c0, �p, �1} and μ ∈ {�∞, c} can be read from Table 1:

(i) (2) with q = 1
(ii) (2)
(iii) (3)
(iv) (4) and (5)
(v) (2) with q = 1, (4) and (6)
(vi) (2) with q = 1 and (4)
(vii) (2) and (4)
(viii) (3) and (4)

Table 1: The characterization of the class (λ : μ), with λ ∈ {�∞, c, c0, �p, �1} and μ ∈ {�∞, c}.

From−→
To↓ �∞ c c0 �p �1
�∞ (i) (i) (i) (ii) (iii)
c (iv) (v) (vi) (vii) (viii)

Lemma 2. We give the following results from Tripathy and Paul [15, 16]

(i) Let λ ∈ {�∞, c, c0, �p}, s be a complex number such that
√
s) = −s, and define

the set S =

{
α ∈ C :

∣∣∣∣ 2(r−α)

−s+
√

s2−4t(r−α)

∣∣∣∣ ≤ 1

}
. Then σ(D(r, 0, s, 0, t), λ) = S.

(ii)
√
s2 = s and S be defined as above, we obtain, σ(D(r, 0, s, 0, t), λ) = S.

(iii)Let S1 =

{
α ∈ C :

∣∣∣∣ 2(r−α)

−s+
√

s2−4t(r−α)

∣∣∣∣ < 1

}
, then σp(D(r, 0, s, 0, t)∗, λ∗) = S1.
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(iv) Let S1 be defined as in above and S2 =

{
α ∈ C :

∣∣∣∣ 2(r−α)

−s+
√

s2−4t(r−α)

∣∣∣∣ = 1

}
,

then (a) σr (D (r, 0, s, 0, t), λ) = S1 and (b) σc (D (r, 0, s, 0, t), λ) = S2.

Theorem 3. Let λ ∈ {�∞, c, c0, �p} and D = D(r, 0, s, 0, t) then

(i)λ = λD if |r| > | − s+
√
s2 − 4tr|
2

.

(ii) λ ⊂ λD is strictly if |r| ≤ | − s+
√
s2 − 4tr|
2

.

Proof. Let, λ ∈ {�∞, c, c0, �p} and D = D(r, 0, s, 0, t). Since the matrix D satisfies
the conditions

sup
n∈N

∑
k |dnk| = |r|+ |s|+ |t|, lim

n→∞ dnk = 0, lim
n→∞

∑
k dnk = r + s+ t,

and sup
k∈N

∑
n |dnk| = |r|+ |s|+ |t| and using Lemma 1, D ∈ (λ : λ).

For any sequence x,Dx ∈ λ; hence x ∈ λD. This shows that λ ⊂ λD.

Let, |r| > | − s+
√
s2 − 4tr|
2

.

Since the inverse matrix D−1 = A = (ank) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 0 · · ·
a2 a1 0 0 0 · · ·
a3 a2 a1 0 0 · · ·
a4 a3 a2 a1 0 · · ·
a5 a4 a3 a2 a1 · · ·
...

...
...

...
... · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

of the matrix D also satisfies the conditions

sup
k∈N

∑
n |ank| < ∞, lim

n→∞ ank = 0, limn→∞
∑

k ank exits,

and sup
n∈N

∑
k |ank| < ∞, D−1 ∈ (λ : λ) [see 15, 16], where

a2n+1 =
1√

s2 − 4tr

⎧⎨
⎩
[
−s+

√
s2 − 4tr

2r

]n+1

−
[
−s−√

s2 − 4tr

2r

]n+1
⎫⎬
⎭ , for n ∈ Z+

a2n = 0, for n ∈ N.

Therefore, if x ∈ λD, then y = Dx ∈ λ and x = D−1y ∈ λ. Then, λD ⊂ λ. Hence,
λ = λD.
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Let, |r| < | − s+
√
s2 − 4tr|
2

. Consider the sequence X = (xn), where

x2n+1 =
1√

s2 − 4tr

⎧⎨
⎩
[
−s+

√
s2 − 4tr

2r

]n+1

−
[
−s−√

s2 − 4tr

2r

]n+1
⎫⎬
⎭ for n ∈ Z+

x2n = 0, for n ∈ N

and Y =
(n
r

)
. Then, Dx = e(0) = (1, 0, 0, · · · ) ∈ λ.

Thus, we have X ∈ λD. But, if r �= 0, and s2 �= 4tr, from [15, Theorem 5] we have
|u1| > |u2|, since |u1| > 1, we obtain

x2n+1 =
1√

s2 − 4tr
(un+1

1 − un+1
2 ), for n ∈

=
1√

s2 − 4tr
{1− (

u2

u1
)n+1}un+1

1

where u1 = −s+
√
s2−4tr
2r and u2 = −s−√

s2−4tr
2r . Thus, the sequence is unbounded,

and X ∈ λD � λ. If r �= 0 and s2 = 4tr, then u1 = u2 =
−s

2r
. Hence, we have

x2n+1 =
2(n+ 1)

−s

(−s

2r

)n+1

for n ∈ Z+ and x2n = 0 for n ∈ N. Since, |−s

2r
| > 1,

the sequence X is unbounded and then X ∈ λD � λ.

Next, suppose that |r| = |−s+
√
s2−4tr|
2

(a) Let λ = c0, �p, then, X ∈ λD � λ.

(b) Let λ = c, �∞, then the following hold. If r + s+ t = 0, then

DY = {1, 2, 3 + s

r
,
2(r − t)

r
,
2(r − t)

r
,
2(r − t)

r
, · · · }

and hence DY ∈ λ, thus Y ∈ λD � λ. Therefore, we conclude that λ ⊂ λD

is strict.

The idea of dual sequence space was introduced by Köthe and Toeplitz [9]. Then,
Maddox [10] generalized this notion to X− valued sequence classes where X is a
Banach space. Further, Chandra and Tripathy [4] studied on generalized Köthe-
Toeplitz duals of some sequence spaces.
The set S(λ, μ) defined by

S(λ, μ) = {z = (zk) ∈ w : x z ∈ μ, ∀x = (xk) ∈ λ} (7)

is called the multiplier space of the spaces λ and μ. One can easily observe for
a sequence space γ with λ ⊃ γ ⊃ μ that the inclusions S(λ, μ) ⊂ S(γ, μ) and
S(λ, μ) ⊂ S(λ, γ) hold. With the notation (7), the β and γ duals of a sequence
space λ, which are respectively denoted by λβ and λγ , are defined by λβ = S(λ, cs)
and λγ = S(λ, bs).
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Lemma 4. (Kamthan and Gupta[5, p.52, Exercise 2.5 (i)]) Let λ, μ be the se-
quence spaces and ζ ∈ {β, γ}. If λ ⊂ μ, then μζ ⊂ λζ .

Lemma 5. ([1, Theorem 3.1]) Let C = (cnk) be defined via sequence a = (ak) ∈ w
and the inverse matrix V = (vnk) of the triangle matrix U = (unk) by

cnk =

{∑n
j=k ajvjk (0 ≤ k ≤ n)

0 (k > n)

for all k, n ∈ N. Then

{λU}γ = {a = (ak) ∈ w : C ∈ (λ : �∞)}
and {λU}β = {a = (ak) ∈ w : C ∈ (λ : c)}.

Combining Lemma 4 and Lemma 5, we have

Corollary 6. Define the sets L1(r, s, t), L2(r, s, t), L3(r, s, t), L4(r, s, t) and L5(r, s, t)
by

L1(r, s, t) = {b = (bk) ∈ w :
sup

n ∈ N

n∑
k=0

|
n∑

j=k

ajkbj |q < ∞},

L2(r, s, t) = {b = (bk) ∈ w : lim
n→∞

n∑
j=k

ajkbj exist},

L3(r, s, t) = {b = (bk) ∈ w : lim
n→∞

n∑
k=0

|
n∑

j=k

ajkbj | =
∞∑
k=0

| lim
n→∞

n∑
j=k

ajkbj |},

L4(r, s, t) = {b = (bk) ∈ w : lim
n→∞

n∑
k=0

k∑
j=0

ajkbk exist},

L5(r, s, t) = {b = (bk) ∈ w :
sup

n, k ∈ N
|

n∑
j=k

ajkbj | < ∞},

L6(r, s, t) = {b = (bk) ∈ w : lim
n→∞

n∑
k=0

|
n∑

j=k

ajkbj | = 0}.

Then,

(i) {(�∞)D}γ = {(c)D}γ = {(c0)D}γ = L1(r, s, t) with q = 1,

(ii){(�p)D}γ = L1(r, s, t),

(iii) {(�1)D}γ = L5(r, s, t),
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(iv) {(�∞)D}β = L2(r, s, t) ∩ L3(r, s, t),

(v) {(c0)D}β = L1(r, s, t) ∩ L2(r, s, t), with q = 1,

(vi){(�p)D}β = L1(r, s, t) ∩ L2(r, s, t),

(vii) {(�1)D}β = L2(r, s, t) ∩ L5(r, s, t),

(viii) {(c)D}β = L1(r, s, t) ∩ L2(r, s, t) ∩ L4(r, s, t) with q = 1.

3. MATRIX MAPPING

In this section, we list the characterizations of some classes of infinite matrices
related to the classes of sequences introduced in this article. The results can be
established using standard techniques.

Lemma 7. ([5, Theorem 4.1]) Let λ be an FK-space, U be a triangle, V be its
inverse and μ be arbitrary subset of w. Then, we have F = (fnk) ∈ (λU : μ) if

and only if C(n) = (c
(n)
mk) ∈ (λ : c) for all n ∈ N and C = (cmk) ∈ (λ : μ), where

c
(n)
mk =

{∑m
j=k fnjvjk, (0 ≤ k ≤ m)

0 k > m

for all k,m, n ∈ N

and cnk =

∞∑
j=k

fnjvjk.

We list the following conditions:

sup
m∈N

m∑
k=0

|
m∑

j=k

ajkfnj |q < ∞, (8)

lim
m→∞

1

r

m∑
j=k

ajkfnj = cnk, (9)

lim
m→∞

m∑
k=0

|1
r

m∑
j=k

ajkfnj | =
∑
k

cnk for eachn ∈ N, (10)

lim
m→∞

m∑
k=0

k∑
j=0

ajkfnk = αn for all n ∈ N, (11)

sup

m, k ∈ N
|1
r

m∑
j=k

ajkfnj | < ∞, (12)

sup

n ∈ N

∑
k

|cnk|q < ∞, (13)
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lim
n→∞ cnk = βk, (14)

lim
n→∞

∑
k

|cnk| =
∑
k

|βk|, (15)

lim
n→∞

∑
k

cnk = β, (16)

sup

n, k ∈ N
|cnk| < ∞, (17)

sup

k ∈ N

∑
n

|cnk| < ∞, (18)

lim
n→∞

∑
k

cnk = 0, (19)

sup

N,K ∈ ℘
|
∑
n∈N

∑
k∈K

cnk| < ∞, (20)

sup

N ∈ ℘

∑
k

|
∑
n∈N

cnk|q < ∞, (21)

where ℘ denotes the collection of all finite subsets of N.

Table 2: The characterization of the class (λD, μ) with λ ∈ {�∞, c0, �p, �1} and μ ∈ {�∞, c, c0, �1}
.

From→
To↓ (�∞)D (c)D (c0)D (�p)D (�1)D
�∞ A1. A2. A3. A4. A5.
c A6. A7. A8. A9. A10.
c0 A11. A12. A13. A14. A15.
�1 A16. A17. A18. A19. A20.

We have the following Corollary from Lemma 7:

Corollary 8. The necessary and sufficient conditions for A ∈ (λ : μ) when λ ∈
{(�∞)D, (c0)D, (c)D, (�p)D} and μ ∈ {�∞, c0, c, �1} can be read from the Table 2,
where
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A1. (9), (10) and (13) with q = 1.
A2. (9), (11) and (8), (13) with q = 1.
A3. (9) and (8), (13) with q = 1.
A4. (8), (9) and (13).
A5. (9), (12) and (17).
A6. (9), (10), (14) and (15).
A7. (9), (11), (14), (16) and (8), (13) with q = 1
A8. (9), (14) and (8), (13) with q = 1.
A9. (8), (9), (13) and (14).
A10. (9), (12), (14) and (17).
A11. (9), (10) and (19).
A12. (9), (11), (14) with βk = 0 and (16) with β = 0 and (8), (13) with q = 1.
A13. (9), (14) with βk = 0 and (8), (13) with q = 1.
A14. (8), (9), (13) and (14) with βk = 0.
A15. (9), (12), (14) with βk = 0 and (17).
A16. (9), (10) and (20).
A17. (8) with q = 1, (9), (11) and (20).
A18. (8) with q = 1, (9) and (20).
A19. (8), (9) and (21).
A20. (9), (12) and (18).

4. CONCLUSION

Lot of research work has been conducted on almost each convergent sequence
space, but a few on their structure, algebraic and topological.To overcome this
gap,we investigated the problem of the almost convergence domain of difference
of matrix D(r, 0, s, 0, t) and obtained β and γ duals of the new sequence spaces.
Moreover, we developed criterion for characterization of the matrix mappings in
the almost convergence domain.
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[14] SÖnmez, A., “Some new sequence spaces derived by the domain of the triple band matrix”,

Computers & Mathematics with Applications, 62 (2011) 641–650.
[15] Stieglitz, M., and Tietz, H., “Matrix transformationen von folgenräumen eine ergeb-
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