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1. INTRODUCTION

Through this paper, N and R stand for the sets of natural and real numbers,
respectively. Also, ω denotes the liner space of all real sequences. The sequence
spaces c0, c, and �∞ denote the spaces of all null, convergent, and bounded se-
quence, respectively, with the usual sup–norm defined by ‖x‖∞ = supk |xk|, for
each k ∈ N. Now, let λ and μ be two sequence spaces and A = (ank) be an
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infinite matrix of real numbers ank, where n, k ∈ N. Then A determines a matrix
transformation from λ into μ denoted by A : λ −→ μ such that for every sequence
x = (xk) ∈ λ, the sequence Ax = {An(x)}, the A–transform of x is in μ. Where
the sequence {An(x)} is defined as:

An(x) =

∞∑
k=0

ankxk, for each n ∈ N. (1)

The pair (λ, μ) stand for the class of all matrices A such that A maps from λ
into μ. Hence, A ∈ (λ, μ) if and only if the series on the right hand side of (1)
converges for each n ∈ N and every x ∈ λ, and we have Ax ∈ μ for all x ∈ λ, where
An = (ank)k∈N express the sequence in the n–th row of A. The matrix domain of
an infinite matrix A in a sequence space λ is a sequence space given by

λA := {x = (xk) ∈ ω : Ax ∈ λ}. (2)

Recall that in [1], let (tk) denote a non–negative sequence of real numbers and
Tn =

∑n
k=0 tk, for all n ∈ N with t0 > 0. Then, the Nörlund mean with respect

to the sequence t = (tk) is defined by the matrix N t = (atnk) as follows:

atnk =

{
tn−k

Tn
, if 0 ≤ k ≤ n,

0, if k > n,
(3)

for all n, k ∈ N. In [1], (Theorem 16, p. 64), the Nörlund matrix N t is regular if
and only if tn/Tn → 0 as n → ∞, and it reduces to the Cesàro matrix of order
one if t = e = (1, 1, 1, . . . ). In case tn = Ar−1

n (for all n ∈ N), the method N t is
reduced to the Cesàro method Cr of order r > −1, where

Ar
n =

{
(r+1)(r+2)...(r+n)

n! , n = 1, 2, 3, . . . ,

1, n = 0.
(4)

The inverse matrix U t = (ut
nk) of Nörlund matrix and some of its details can be

found in [2, 3, 4].

Wang [5] used the Nörlund matrix to define the sequence space �∞(N t) as the
set of all sequences whose N t–transform are in the space �∞ as follows:

�∞(N t) :=

{
x = (xk) ∈ ω : sup

n∈N

∣∣∣∣∣ 1

Tn

n∑
k=0

tn−kxk

∣∣∣∣∣ < ∞
}
.

Lately, Tug and Basar [6] introduced the sequence spaces c0(N
t) and c(N t) as the

domain of Nörlund mean N t in the spaces c0 and c, respectively, defined by

c0(N
t) :=

{
x = (xk) ∈ ω : lim

n→∞
1

Tn

n∑
k=0

tn−kxk = 0

}
,
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and

c(N t) :=

{
x = (xk) ∈ ω : ∃L ∈ C such that lim

n→∞
1

Tn

n∑
k=0

tn−kxk = L

}
,

Additionally, they prove that these new spaces are isomorphic to the spaces c0
and c, respectively. Furthermore, Tug and Basar [6] defined the sequence N t

n(x)
to denote the N t–transform of the sequence (xk) ∈ ω, where the sequence N t

n(x)
is given by

N t
n(x) :=

1

Tn

n∑
k=0

tn−kxk for all n ∈ N. (5)

Recall in [7] that an ideal I is a non–empty family of subsets of N satisfying
additive and heriditary properties, that is (i) ∅ ∈ I, (ii) for each A,B ∈ I, we have
A∪B ∈ I, (iii) for each A ∈ I with B ⊆ A ,we have B ∈ I. An ideal I of N is said
to be admissible in N if and only if I 
= N and I ⊃ {{n} : n ∈ N}. A non–trivial
ideal I is said to be maximal if there cannot exist any non-trivial ideal J containing
I as a subset. A filter F in N is a non–empty collection of subsets of N satisfying
(i) ∅ /∈ F , (ii) for each A,B ∈ F , we have A ∩ B ∈ F , (iii) for each A ∈ F and
B ⊃ A we have B ∈ F . A filter F(I) which is associated to each ideal I is given
by F(I) = {K ⊆ X : Kc ∈ I}, where Kc = X\K. In 1999, Kostyrko et. al [7]
generalized the notion of statistical convergence to ideal convergence. Afterwards,
the notion of ideal convergence was considered from the sequence space point of
view and associated with the summability theory by many authors like Salát et.
al. [8], Tripathy and Hazarika [9], Kolk [10], Savas [11], Khan et al. [12, 13]. For
more details refer to [14, 15, 16, 17, 18].

Throughout this paper, cI0, c
I , and �I∞ serve as the I–null, I–convergent, and

I–bounded sequence spaces, respectively. In this paper, by conjoining the defini-
tions of the Nörlund mean N t and ideal convergence, we introduce the Nörlund
sequence spaces cI0(N

t), cI(N t), and �I∞(N t) as the sets of all sequences whose N t

–transform are in the spaces cI0, c
I , and �I∞, respectively. In addition , we study

some inclusion relations concerning these spaces. Also, we study some topological
and algebraic properties on these spaces.

Now, we recall some definitions and lemmas needed in the sequel.

Definition 1. [7] A sequence (xk) ∈ ω is said to be I–convergent to a number
L ∈ R if, for every ε > 0, the set {k ∈ N : |xk − L| ≥ ε} ∈ I. And we write
I– limxk = L. In case L = 0 then (xk) ∈ ω is said to be I–null.

Definition 2. [8] A sequence (x) = (xk) ∈ ω is said to be I–Cauchy if, for every
ε > 0, there exists a number m = m(ε) such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.
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Definition 3. [19] A sequence (xk) ∈ ω is said to be I–bounded if there exists
K > 0, such that, the set {k ∈ N : |xk| ≥ K} ∈ I.

Definition 4. [19] Let x = (xk) and z = (zk) be two sequences. We say that xk =
zk for almost all k relative to I (in short a.a.k.r.I) if the set {k ∈ N : x 
= z} ∈ I.

Definition 5. [8] A sequence space E is said to be solid or normal, if (αkxk) ∈ E
whenever (xk) ∈ E and for any sequence of scalars (αk) ∈ ω with |αk| < 1, for
every k ∈ N.

Lemma 6. [8] Every solid space is monotone.

Lemma 7. [8] If I ⊂ 2N is a maximal ideal, then for each A ⊂ N, we have either
A ∈ I or N\A
Definition 8. [8] Let K = {ki ∈ N : k1 < k2 < . . . } ⊆ N and E be a sequence
space. A K–step space of E is a sequence space

λE
K = {(xki) ∈ ω : (xk) ∈ E}.

A canonical pre–image of a sequence (xki
) ∈ λE

K is a sequence (yk) ∈ ω defined as
follows:

yk =

{
xk, if k ∈ K

0, otherwise.

A canonical pre–image of a step space λE
K is a set of canonical pre–images of

all elements in λE
K ., i.e., y is in canonical pre–image of λE

K iff y is canonical
pre–image of some element x ∈ λE

K .

Definition 9. [8] A sequence space E is said to be monotone if its contains the
canonical pre–images of its step space. (i.e., if for all infinite K ⊆ N and (xk) ∈ E
the sequence (αkxk), where αk = 1 for k ∈ K and αk = 0 otherwise, belongs to
E).

Definition 10. [8] A sequence space E is said to be convergence free if (xk) ∈ E,
whenever (yk) ∈ E and (yk) = 0 imply that (xk) = 0 for all k ∈ N .

Definition 11. A map h defined on a domain D ⊂ X i.e., h : D ⊂ X −→ R is
said to satisfy Lipschitz condition if |h(x) − h(y)| ≤ K|x − y|, where K is known
as the Lipschitz constant.

Remark 12. [8] A convergence field of I–convergence is a set

F(I) = {x = (xk) ∈ �∞ : there exists I– limx ∈ R}
Definition 13. [7] The convergence field F(I) is a closed linear subspace of �∞
with respect to the supremum norm, F(I) = �∞ ∩ cI .

Lemma 14. [20] Let K ∈ F(I) and M ⊆ N. If M /∈ I, then M ∩K /∈ I.

Definition 15. [8] The function h : D ⊂ X −→ R defined by h(x) = I– limx, for
all x ∈ F(I) is a Lipschitz function.
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2. NÖRLUND I–CONVERGENT SEQUENCE SPACES

In this section, we proposed the sequence spaces cI0(N
t), cI(N t), and �I∞(N t)

as the sets of all sequences whose N t–transforms are in the spaces cI0, c
I , and �I∞

respectively. Moreware, we study some inclusion relation topological and algebraic
properties on these spaces. Throughout the article, we suppose that the sequences
x = (xk) ∈ ω and N t

n(x) are connected with the relation (5) and I is an admissible
ideal of subset of N. Define,

cI0(N
t) :=

{
x = (xk) ∈ ω : {n ∈ N : |N t

n(x)| ≥ ε} ∈ I
}
, (6)

and

cI(N t) :=
{
x = (xk) ∈ ω : {n ∈ N : |N t

n(x)− L| ≥ ε for some L ∈ R} ∈ I
}
, (7)

�I∞(N t) :=
{
x = (xk) ∈ ω : ∃K > 0 s.t

{
n ∈ N :

∣∣N t
n(x)

∣∣ ≥ K
} ∈ I

}
. (8)

We write

mI
0(N

t) := cI0(N
t) ∩ �∞(N t), (9)

and

mI(N t) := cI(N t) ∩ �∞(N t). (10)

With the notation of (2), the spaces cI0(N
t), cI(N t), �I∞(N t), mI(N t), andmI

0(N
t)

can be redefined as follows:

cI0(N
t) = (cI0)Nt , cI(N t) = (cI)Nt , �I∞(N t) = (�I∞)Nt ,

mI(N t) = (mI)Nt and mI
0(N

t) = (mI
0)Nt .

Definition 16. Let I be an admissible ideal of subset of N. If for each ε > 0 there
exists a number m = m(ε) ∈ N such that {n ∈ N : |N t

n(x)−N t
m(x)| ≥ ε} ∈ I, then

a sequence (x) = (xk) ∈ ω is called Nörlund I–Cauchy.

Example 17. Define If = {A ⊆ N : A is finite}. If is an admissible ideal in N
and cIf (N t) = c(N t).

Example 18. Consider a non–trivial ideal Id = {A ⊆ N : d(A) = 0}, where d(A)
denotes the natural density of the set A. In this case, cId(N t) = S(N t), where
S(N t) is the space of all Nörlund statistically convergent sequence defined as:

S(N t) :=
{
x = (xk) ∈ ω : d

({n ∈ N : |N t
n(x)− L| ≥ ε}) = 0, for some L ∈ R

}
.

(11)



488 Vakeel A. Khan, et al. / A study of Nörlund Ideal Convergent Sequence Spaces

Theorem 19. The sequence spaces cI(N t), cI0(N
t), �I∞(N t), mI

0(N
t), and mI(N t)

are real vector spaces.

Proof. Let x = (xk), y = (yk) be two arbitrary elements of the space cI(N t)
and α, β are scalars. Now, since x, y ∈ cI(N t), then for given ε > 0, there exist
L1, L2 ∈ R, such that{

n ∈ N :
∣∣N t

n(x)− L1

∣∣ ≥ ε

2

}
∈ I,

and {
n ∈ N :

∣∣N t
n(y)− L2

∣∣ ≥ ε

2

}
∈ I.

Now, let

A1 =

{
n ∈ N :

∣∣N t
n(x)− L1

∣∣ < ε

2|α|
}

∈ F(I),

A2 =

{
n ∈ N :

∣∣N t
n(y)− L2

∣∣ < ε

2|β|
}

∈ F(I),

be such that Ac
1, A

c
2 ∈ I. Then

A3 =
{
n ∈ N :

∣∣αN t
n(x) + βN t

n(y)− (αL1 + βL2)
∣∣ < ε

} ⊇ {A1 ∩A2} . (12)

Thus, the sets on the right hand sides of (12) belong to F(I). By the definition of
filter associated with an ideal I, the complement of the set on the left hand side
of (12) belongs to I. This implies that (αx+ βy) ∈ cI(N t). Hence, cI(N t) is a
linear space. The proof of the remaining results is similar.

Theorem 20. Let I ⊆ 2N be a non–trivial ideal. Then the inclusion c(N t) ⊂
cI(N t) is strict.

Proof. The inclusion c ⊆ cI is obvious and for any X and Y spaces, if X ⊆ Y ,
then X(N t) ⊆ Y (N t). (see [6] Theorem 2.3). Therefore, we have c(N t) ⊂ cI(N t).
For strict inclusion consider the following example.

Example 21. Define the sequence x = (xk) ∈ ω such that

N t
n(x) =

{√
n, if n = i2, for i ∈ N

0, otherwise.

Then x ∈ cId(N t) but x /∈ c(N t).

Theorem 22. A sequence x = (xk) ∈ ω is Nörlund I–convergent if and only if
for every ε > 0, there exists m = m(ε) ∈ N, such that{

n ∈ N :
∣∣N t

n(x)−N t
m(x)

∣∣ < ε
} ∈ F(I). (13)



Vakeel A. Khan, et al. / A study of Nörlund Ideal Convergent Sequence Spaces 489

Proof. Let the sequence x = (xn) ∈ ω be Nörlund I–convergent to some number
L ∈ R. Then, for a given ε > 0, the set

Aε =
{
n ∈ N :

∣∣N t
n(x)− L

∣∣ < ε

2

}
∈ F(I).

Fix an integer m = m(ε) ∈ Aε. Then, we have∣∣N t
n(x)−N t

m(x)
∣∣ ≤ ∣∣N t

n(x)− L
∣∣+ ∣∣L−N t

m(x)
∣∣ < ε

2
+

ε

2
= ε

for all n ∈ Aε. Hence (13) holds.

Conversely, suppose that (13) holds for all ε > 0. Then

Eε =
{
n ∈ N : N t

n(x) ∈
[
N t

n(x)− ε,N t
n(x) + ε

]} ∈ F(I), for all ε > 0.

Let Jε = [N t
n(x)− ε,N t

n(x) + ε]. Fixing ε > 0, we have Eε ∈ F(I) as well as
E ε

2
∈ F(I). Hence Eε ∩ E ε

2
∈ F(I). This implies that J = Jε ∩ J ε

2

= ∅. That is,

{n ∈ N : N t
n(x) ∈ J} ∈ F(I) and thus, diam (J) ≤ 1

2 diam (Jε), where, the diam
of J denotes the length of interval J . Proceeding in this way, by induction, we get
a sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ · · ·
such that

diam (In) ≤ 1

2
diam (In−1), for n = (2, 3, . . . )

and {
n ∈ N : N t

n(x) ∈ In
} ∈ F(I).

Then there exists a number L ∈ ⋂
n∈N

In and it is a routine work to verify that
L = I– limN t

n(x) showing that x = (xk) ∈ ω is Nörlund I–converges. Hence the
result.

Theorem 23. The inclusions cI0(N
t) ⊂ cI(N t) ⊂ LI

∞(N t) are strict.

Proof. The inclusion cI0(N
t) ⊂ cI(N t) is obvious. Now, to show the strictness of

the inclusion, consider the sequence x = (xk) ∈ ω such that N t
n(x) = 1. It is easy

to see that the sequence N t
n(x) ∈ cI but N t

n(x) /∈ cI0. That is, x ∈ cI(N t)\cI0(N t).
Next, let x = (xk) ∈ cI(N t). Then there exists a number L ∈ R such that
I– lim |N t

n(x)− L| = 0. That is,{
n ∈ N :

∣∣N t
n(x)− L

∣∣ ≥ ε
} ∈ I.

We have∣∣N t
n(x)

∣∣ = ∣∣N t
n(x)− L+ L

∣∣ ≤ ∣∣N t
n(x)− L

∣∣+ |L| .
From this it easily follows that the sequence (xk) must belong to �I∞(N t). Further,
we show the strictness of the inclusion cI(N t) ⊂ �I∞(N t) by constructing the
following example.
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Example 24. Consider the sequence x = (xk) ∈ ω to be such that

N t
n(x) =

⎧⎪⎨⎪⎩
√
n, if n is square

1, if n is odd non–square

0, if n is even non–square.

Then the sequence N t
n(x) ∈ �I∞ but N t

n(x) /∈ cI , which implies that the sequence
x ∈ �I∞(N t)\cI(N t).

Thus, the inclusions cI0(N
t) ⊂ cI(N t) ⊂ �I∞(N t) are strict.

Remark 25. A Nörlund bounded sequence is obviously Nörlund I–bounded as the
empty set belongs to the ideal I. However, the converse is not true. For example,
we consider the sequence

N t
n(x) =

{
n, if n is square

0, if n is not square.

Clearly N t
n(x) is not a bounded sequence. However, {n ∈ N : |N t

n(x)| ≥ 1
2} ∈ I.

Hence (xk) is Nörlund I–bounded.

Theorem 26. The spaces mI(N t) and mI
0(N

t) are Banach spaces normed by

‖x‖X(Nt) = sup
n

|N t
n(x)| where X ∈ {

mI ,mI
0

}
.

Proof. Let (xi
k) be a Cauchy sequence in mI(N t) ⊂ �∞(N t). Then we have (xi

k)
converges in �∞(N t) and limi→∞ N t

n(x
i) = N t

n(x). Let I– limN t
n(x

i) = �i for each
i ∈ N. Then we have to show that

(i) (Li) is convergent say to L,

(ii) I– limN t
n(x) = L.

(i) Since (xi
k) is a Cauchy, so for each ε > 0 there exists n0 ∈ N such that∣∣N t

n(x
i)−N t

n(x
j)
∣∣ < ε

3
, for all i, j ≥ n0. (14)

Now, let A and B be the following sets in I:

A =
{
n ∈ N :

∣∣N t
n(x

i)− Li

∣∣ ≥ ε

3

}
(15)

and

B =
{
n ∈ N :

∣∣N t
n(x

j)− Lj

∣∣ ≥ ε

3

}
. (16)

Consider i, j ≥ n0 and n /∈ A ∩B. Then we have

|Li − Lj | ≤
∣∣N t

n(x
i)− Li

∣∣+∣∣N t
n(x

j)− Lj

∣∣+∣∣N t
n(x

i)−N t
n(x

j)
∣∣ < ε by (14), (15) and (16).

Thus (Li) is a Cauchy sequence of R and thus convergent, say to L, that is,
limi→∞ Li = L.
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(ii) Let δ > 0 be given, then we can fined m0 such that

|Li − L| < δ

3
, for each i > m0. (17)

We have (xi
k) → xk as i → ∞. Thus

∣∣N t
n(x

i)−N t
n(x)

∣∣ < δ

3
, for each i > m0. (18)

Since (xj
k) is I–convergent to Lj , there exists D ∈ I such that, for each

n /∈ D, we have∣∣N t
n(x

j)− Lj

∣∣ < δ

3
. (19)

Without loss of generality, let j > m0 then for all n /∈ D, we have by (17),
(18) and (19) that∣∣N t

n(x)− L
∣∣ ≤ ∣∣∣N t

n(x)−N (t)
n (xj)

∣∣∣+ ∣∣∣N (t)
n (xj)− Lj

∣∣∣+ |Lj − L| < δ.

Hence (xk) is Nörlund I–convergent to L. Thus mI(N t) is a Banach space.
The other cases can be Similarly established.

Theorem 27. If I is not maximal ideal then the space cI(N t) is neither solid nor
monotone.

Proof. Consider the sequence xk = 1 for all k ∈ N, then (xk) ∈ cI(N t). Since, I
is not maximal, by Lemma 7 there exists a subset K of N such that, K /∈ I and
Kc /∈ I. Let us define y = (yk) by

yk =

{
xk, if k ∈ K

0, otherwise.

Then, (yk) belongs to the canonical pre–image of the K–step space of cI(N t). But
(yk) /∈ cI(N t). Hence, cI(N t) is not monotone. Therefore, by Lemma 6 is not
solid.

Theorem 28. The spaces cI0(N
t) and mI

0(N
t) are solid and monotone.

Proof. We shall prove the result for cI0(N
t). Other follows similarity. Let x =

(xk) ∈ cI0(N
t) for ε > 0, the set{

n ∈ N :
∣∣N t

n(x)
∣∣ ≥ ε

} ∈ I. (20)
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Let α = (αk) be a sequence of scalars with |α| ≤ 1 for all k ∈ N. Then∣∣N t
n(αx)

∣∣ = ∣∣αN t
n(x)

∣∣ ≤ |α| ∣∣N t
n(x)

∣∣ ≤ ∣∣N t
n(x)

∣∣ , for all n ∈ N.

Thus, from the above inequality and (20):{
n ∈ N :

∣∣N t
n(αx)

∣∣ ≥ ε
} ⊆ {

n ∈ N :
∣∣N t

n(x)
∣∣ ≥ ε

} ∈ I

implies{
n ∈ N :

∣∣N t
n(αx)

∣∣ ≥ ε
} ∈ I

Therefore, (αxn) ∈ cI0(N
t). Hence the space cI0(N

t) is solid, and hence by Lemma,
6 the space cI0(N

t) is monotone.

Theorem 29. The spaces cI(N t) and cI0(N
t) are not convergence free.

Proof. The proof of this result follows from the following example.

Example 30. Let I = Id. Consider xk = 1
k and yk = k for all k. Then (xk)

belongs to cI(N t) and cI0(N
t), but (yk) does not belongs to cI(N t) and cI0(N

t).
Hence, the spaces are not convergence free.

Theorem 31. The function g : mI(N t) → R defined by g(x) = |I– limN t
n(x)| ,

where mI(N t) = �∞(N t) ∩ cI(N t), is a Lipschitz function and hence uniformly
continuous.

Proof. First of all, we show that the function is well defined. Let x, y ∈ mI(N t) ,
such that

x = y ⇒ I– limN t
n(x) = I– limN t

n(y)

⇒ |I– limN t
n(x)| = |I– limN t

n(y)| ⇒ g(x) = g(y).

Thus, g is well defined. Next, let x = (xk), y = (yk) ∈ mI(N t
n), x 
= y. Then

A1 =
{
n ∈ N :

∣∣N t
n(x)− g(x)

∣∣ ≥ |x− y|∗
} ∈ I,

A2 =
{
n ∈ N :

∣∣N t
n(y)− g(y)

∣∣ ≥ |x− y|∗
} ∈ I,

where |x− y|∗ = sup
n

∣∣N t
n(x)−N t

n(y)
∣∣. Thus

B1 =
{
n ∈ N :

∣∣N t
n(x)− g(x)

∣∣ < |x− y|∗
} ∈ F(I)

and

B2 =
{
n ∈ N :

∣∣N t
n(y)− g(y)

∣∣ < |x− y|∗
} ∈ F(I).

Hence B = B1 ∩ B2 ∈ F(I), so that B is non–empty set. Therefore choosing
n ∈ B, we have

|g(x)− g(y)| ≤ ∣∣g(x)−N t
n(x)

∣∣+ ∣∣N t
n(x)−N t

n(y)
∣∣+ ∣∣N t

n(y)− g(y)
∣∣

≤ 3|x− y|∗.
Thus, g is Lipschitz function and hence uniformly continuous.



Vakeel A. Khan, et al. / A study of Nörlund Ideal Convergent Sequence Spaces 493

Theorem 32. If x = (xk), y = (yk) ∈ mI(N t) with N t
n(x · y) = N t

n(x) · N t
n(y),

then (x · y) ∈ mI(N t) and (x · y) = g(x) · g(y), where g : mI(N t) → R is defined
by g(x) = |I– limN t

n(x)|.

Proof. For ε > 0,

A =
{
n ∈ N :

∣∣N t
n(x)− g(x)

∣∣ < ε
} ∈ F(I), (21)

and

B =
{
n ∈ N :

∣∣N t
n(y)− g(y)

∣∣ < ε
} ∈ F(I) (22)

where ε = |x− y|∗ = sup
n

∣∣N t
n(x)−N t

n(y)
∣∣. Now, we have

∣∣N t
n(x · y)− g(x)g(y)

∣∣ = ∣∣N t
n(x)N

t
n(y)−N t

n(x)g(y) +N t
n(x)g(y)− g(x)g(y)

∣∣
≤ ∣∣N t

n(x)
∣∣ ∣∣N t

n(y)− g(y)
∣∣+ |g(y)| ∣∣N t

n(x)− g(x)
∣∣ . (23)

As mI(N t) ⊆ �∞(N t), there exists an M ∈ R such that |N t
n(x)| < M . Therefore,

from the equations (21), (22) and (23), we have∣∣N t
n(xy)− g(x)g(y)

∣∣ = ∣∣N t
n(x) ·N t

n(y)− g(x)g(y)
∣∣

≤ Mε+ |g(y)|ε = ε1, (say)

for all n ∈ A ∩B ∈ F(I). Hence (x · y) ∈ mI(N t) and g(x · y) = g(x) · g(y).

3. CONCLUSIONS AND SUGGESTIONS

In this present paper we have defined and investigated some sequence spaces,
cI0(N

t), cI(N t), and �I∞(N t) that is derived by Nörlund mean. Also, we presented
some inclusions relation concerning these spaces. Finally, some properties on these
spaces were studied. These new spaces and results related to them furnish new
approach to deal with the convergence problems of sequences occurring in many
branches of science and engineering.

Acknowledgement: We thank the editor and referees for valuable comments
and suggestions for improving the paper.
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[14] Filipów, R., Mrożek, N., Rec�law, I., and Szuca, P., “Ideal convergence of bounded se-
quences”, The Journal of Symbolic Logic, 72 (2) (2007) 501–512.

[15] Khan, V.A., Alshlool, K., and Abdullah, S.A., “Spaces of ideal convergent sequences of
bounded linear operators”, Numerical Functional Analysis and Optimization, 39 (12) (2018)
1278–1290.

[16] Khan, V.A., and Khan, N., “On Zweier I-convergent double sequence spaces”, Filomat, 30
(12) (2016) 3361–3369.

[17] Khan, V.A., Rababah, R.K.A., Esi, A., Abdullah, S.A., and Alshlool, K., “Some new
spaces of ideal convergent double sequences by using compact operator”, Journal of Applied
Sciences, 17 (9) (2017) 467–474.

[18] Tripathy, B.C., Hazarika, B., and Choudhary, B., “Lacunary I-Convergent Sequences”,
Kyungpook Mathematical Journal, 52 (4) (2012) 473–482.

[19] Khan, V.A., and Tabassum, S., “On Ideal Convergent Difference Double Sequence Spaces
in n-Normed Spaces Defined by Orlicz Function”, Theory and Applications of Mathematics
& Computer Science, 3 (1) (2013) 90–98.
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