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extensively used for many theoretical and computational problems in mathematical pro-
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1. INTRODUCTION

In 1966, Levinson [21], extending some theorems of linear programming to
complex space, introduced complex mathematical programming. Since then a
great deal of work has been done in this field. His duality results were extended
to quadratic programs by Hanson and Mond [16]. Ben-Israel [5] studied duality
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for linear programs over general polyhedral cones. Abrams and Ben-Israel [3] sur-
veyed contemporary work in complex mathematical programming and discussed
some applications.

The complex version of well known Kuhn-Tucker necessary/sufficient opti-
mality conditions and duality in nonlinear programming were obtained by Abrams
and Ben-Israel [2] and Abrams [1], while Craven and Mond [8, 9] studied Fritz John
conditions. In [7] Craven and Mond proved the converse and symmetric duality
theorems for complex space. Some work in complex mathematical programming
may be seen in [1-3,7-9,11,16-23].

Kaul and Sharma [18] presented a pair of differentiable symmetric dual non-
linear programs over special polyhedral cones and established weak duality theo-
rem under convexity/concavity assumptions.They have also given an example to
show that the strong duality theorem is not true. Some work on symmetric duality
can be seen in [6,10,12-14,25,26].

Mishra and Rueda [25], assuming F -convexity established duality theorems
for Wolfe and Mond-Weir type first and second order symmetric dual programs
in complex space. Their four pairs of primal and dual problems contain the con-
straints z ≥ 0 and v ≥ 0 respectively, which appear to have no meaning for complex
vector variables z and v. Also, in complex mathematical programming the con-
straints are always defined over polyhedral cones and their polar cones [1-3, 7-9,
11, 15-23] but the constraints of the primal and dual problems studied in Mishra
and Rueda [25] do not fit into cones.

In the present article, we have studied the primal and dual models of Kaul
and Sharma [18] over general polyhedral cones. The paper is divided into ten
sections. Section 2 contains some basic notations and definitions, used in the
paper. Weak duality theorems for Wolfe type first and second order symmetric
dual programs are obtained in Sections 3 and 5 respectively. The duality relations
for Mond-Weir type first and second order models are discussed in Sections 4 and
8 respectively. The anomalies contained in Mishra and Rueda [25] are given in
section 4. Some special cases are discussed in Section 6. In Section 7, we make
two important observations regarding the strong duality theorem. One is that the
example in [18] does not satisfy the nonsingularity assumption required for the
strong duality theorem and so seems to be inappropriate. Secondly, unlike the
statement in [25], we could not obtain the proof of the strong duality theorem on
the lines of Dantzig et al.[10]. In sections 9 and 10, we state weak duality theorems
for Wolfe and Mond-Weir type nondifferentiable first and second order primal and
dual pairs. This work will remove inconsistencies in the earlier work in Mishra
and Rueda [25] and Mishra [24]
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2. PRELIMINARIES

Let Cn(Rn) denote the n-dimensional complex (real) vector space and Cm×n(Rm×n)
the set of m × n complex (real) matrices. For A = (aij) ∈ Cm×n, Ā = (āij) is
the conjugate of A. AT = (aji) is the transpose of A and AH = ĀT = (āji) is
the conjugate transpose of A. For x ∈ Cn, Re x = (Re xj) ∈ Rn is the real part
of x, arg x = (arg xj) ∈ Rn is argument of x. Let Rn

+ = {x ∈ Rn : xj ≥ 0(j =
1, 2, · · · , n)} be non-negative orthant of Rn.

For a nonempty set S ⊂ Cn,
S∗ = {y ∈ Cn : x ∈ S ⇒ Re(yHx) ≥ 0}

denotes the dual (or positive polar) of S. For a complex function f : Cn × Cn ×
Cm×Cm �→ C analytic in the 2n-variables (w1, w2) at the point (z◦, z̄◦) ∈ Cn×Cn,
the gradients are given as

∇zf(z◦, z̄◦, η) =
[
∂f

∂w1
i

(z◦, z̄◦, η)
]
, i = 1, 2, . . . , n

∇z̄f(z◦, z̄◦, η) =
[
∂f

∂w2
i

(z◦, z̄◦, η)
]
, i = 1, 2, . . . , n,

where η = (w1, w2) ∈ Cm × Cm.
Definition 2.1. [1]. A nonempty set S ⊂ Cn is said to be a polyhedral cone if
for some positive integer k and A ∈ Cn×k, S = ARk

+ = {Ax : x ∈ Rk
+}, i.e., S is

generated by finitely many vectors (the columns of A).
Definition 2.2. [1, 17]. The real part of f is said to be convex at (z◦, z̄◦) with
respect to R+ for fixed (w, w̄) ∈ Cm × Cm , if

Re [f(z, z̄, w, w̄) − f(z◦, z̄◦, w, w̄)] ≥ Re[(z − z◦)T∇zf(z◦, z̄◦, w, w̄)+(z −
z◦)H∇z̄f(z◦, z̄◦, w, w̄)]
for all z ∈ Cn.

Definition 2.3. [1]. The real part of f is said to be pseudoconvex at (z◦, z̄◦) with
respect to R+ for fixed (w, w̄) ∈ Cm × Cm, if

Re [(z − z◦)T∇zf(z◦, z̄◦, w, w̄) + (z − z◦)H∇z̄f(z◦, z̄◦, w, w̄)] ≥ 0

⇒ Re f(z, z̄, w, w̄) ≥ Re f(z◦, z̄◦, w, w̄)

for all z ∈ Cn.

Definition 2.4. The real part of f is said to be pseudoinvex at (z◦, z̄◦) with respect
to R+ for fixed (w, w̄) ∈ Cm × Cm, if there exists a function η : Cn × Cn �→ Cn

such that

Re [ηT (z, z◦)∇zf(z◦, z̄◦, w, w̄) + ηH(z, z◦)∇z̄f(z◦, z̄◦, w, w̄)] ≥ 0

⇒ Re f(z, z̄, w, w̄) ≥ Re f(z◦, z̄◦, w, w̄)
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for all z ∈ Cn.

Definition 2.5. A functional F : Cn × Cn × Cn �→ R is said to be sublinear in
the third component, if for any z, u ∈ Cn

(A) F (z, u, a1 + a2) ≤ F (z, u, a1) + F (z, u, a2), for any a1, a2 ∈ Cn

(B) F (z, u, αa) = α F (z, u, a), for any α ∈ R+ and a ∈ Cn.

Definition 2.6. [25]. The real part of f is said to be F -convex at (z◦, z̄◦) with
respect to R+ for fixed (w, w̄) ∈ Cm × Cm, if

Re [f(z, z̄, w, w̄)−f(z◦, z̄◦, w, w̄)] ≥ F (z, z◦;∇zf(z◦, z̄◦, w, w̄)+∇z̄f(z◦, z̄◦, w, w̄))

for all z ∈ Cn and for some arbitrary sublinear functional F .

Definition 2.7. [25]. The real part of f is said to be F -concave at (w◦, w̄◦) with
respect to R+ for fixed (z, z̄) ∈ Cn × Cn, if

Re [f(z, z̄, w◦, w̄◦)−f(z, z̄, w, w̄)] ≥ F (w,w◦;−∇wf(z, z̄, w◦, w̄◦)−∇w̄f(z, z̄, w◦, w̄◦))

for all w ∈ Cm and for some arbitrary sublinear functional F .

Definition 2.8. The real part of f is said to be second order F -convex at (z◦, z̄◦)
with respect to R+ for fixed (w, w̄) ∈ Cm × Cm, if

Re [f(z, z̄, w, w̄)− f(z◦, z̄◦, w, w̄) +
1

2
rT1 (∇zz +∇zz̄)

f(z◦, z̄◦, w, w̄)r1 +
1

2
rH1 (∇z̄z +∇z̄z̄)f(z◦, z̄◦, w, w̄)r1]

≥ F (z, z◦;∇zf(z◦, z̄◦, w, w̄) + (∇zz +∇zz̄)

f(z◦, z̄◦, w, w̄)r1 +∇z̄f(z◦, z̄◦, w, w̄) + (∇z̄z +∇z̄z̄)f(z◦, z̄◦, w, w̄)r1)

for all z ∈ Cn , r1 ∈ Cn and for some arbitrary sublinear functional F .

Definition 2.9. The real part of f is said to be second order F -concave at (w◦, w̄◦)
with respect to R+ for fixed (z, z̄) ∈ Cn × Cn, if

Re [f(z, z̄, w◦, w̄◦)− f(z, z̄, w, w̄)− 1

2
rT2 (∇ww +∇ww̄)f(z, z̄, w◦,

w̄◦)r2 − 1

2
rH2 (∇w̄w +∇w̄w̄)f(z, z̄, w◦, w̄◦)r2]

≥ F (w,w◦;−∇wf(z, z̄, w◦, w̄◦)− (∇ww +∇ww̄)f(z, z̄, w◦, w̄◦)r2 −∇w̄

f(z, z̄, w◦, w̄◦)− (∇w̄w +∇w̄w̄)f(z, z̄, w◦, w̄◦)r2)

for all w ∈ Cm, r2 ∈ Cm and for some arbitrary sublinear functional F .
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Definition 2.10. [25]. The real part of f is said to be F -pseudoconvex at (z◦, z̄◦)
with respect to R+ for fixed (w, w̄) ∈ Cm × Cm, if

F (z, z◦;∇zf(z◦, z̄◦, w, w̄) +∇z̄f(z◦, z̄◦, w, w̄)) ≥ 0

⇒ Re f(z, z̄, w, w̄) ≥ Re f(z◦, z̄◦, w, w̄)

for all z ∈ Cn and for some arbitrary sublinear functional F.

Definition 2.11. [25]. The real part of f is said to be F -pseudoconcave at
(w◦, w̄◦) with respect to R+ for fixed (z, z̄) ∈ Cn × Cn, if

F (w,w◦;−∇wf(z, z̄, w◦, w̄◦)−∇w̄f(z, z̄, w◦, w̄◦)) ≥ 0

⇒ Ref(z, z̄, w, w̄) ≤ Ref(z, z̄, w◦, w̄◦)

for all w ∈ Cm and for some arbitrary sublinear functional F.

Definition 2.12. The real part of f is said to be second-order F -pseudoconvex
at (z◦, z̄◦) with respect to R+ for fixed (w, w̄) ∈ Cm × Cm, if

F (z, z◦;∇zf(z◦, z̄◦, w, w̄) + (∇zz +∇zz̄)f(z◦, z̄◦, w, w̄)r1

+∇z̄f(z◦, z̄◦, w, w̄) + (∇z̄z +∇z̄z̄)f(z◦, z̄◦, w, w̄)r1) ≥ 0

⇒ Re [f(z, z̄, w, w̄)− f(z◦, z̄◦, w, w̄) +
1

2
rT1 (∇zz +∇zz̄)f(z◦, z̄◦, w, w̄)r1

+
1

2
rH1 (∇z̄z +∇z̄z̄)f(z, z̄◦, w, w̄)r1] ≥ 0

for all z ∈ Cn, r1 ∈ Cn and for some arbitrary sublinear functional F.

Definition 2.13. The real part of f is said to be second-order F -pseudoconcave
at (w◦, w̄◦) with respect to R+ for fixed (z, z̄) ∈ Cn × Cn, if

F (w,w◦;−∇wf(z, z̄, w◦, w̄◦)− (∇ww +∇ww̄)f(z, z̄, w◦, w̄◦)r2

−∇w̄f(z, z̄, w◦, w̄◦)− (∇w̄w +∇w̄w̄)f(z, z̄, w◦, w̄◦)r2) ≥ 0

⇒ Re [f(z, z̄, w◦, w̄◦)− f(z, z̄, w, w̄)− 1

2
rT2 (∇ww +∇ww̄)f(z, z̄, w◦, w̄◦)r2

− 1

2
rH2 (∇w̄w +∇w̄w̄)f(z, z̄, w◦, w̄◦)r2] ≥ 0

for all w ∈ Cm, r2 ∈ Cm and for some arbitrary sublinear functional F.

Lemma 2.1. (Generalized Schwartz Inequality). Let A be a positive semidefinite
Hermitian matrix of order n. Then for all z, w ∈ Cn,

Re (zHAw) ≤ (zHAz)
1
2 (wHAw)

1
2 .

Remark 2.1.
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1. If we take F (z, z◦, ξ) = Re [(z − z◦)Hξ], then the definitions of F− pseudo-
convexity/pseudoconcavity reduce to pseudoconvexity/pseudoconcavity.

2. Let F (z, z◦, ξ) = Re [ηH(z, z◦)ξ], then the definitions of F− pseudoconvex-
ity/pseudoconcavity become the definitions of η− pseudoconvexity/pseudoconcavity.

3. If r1 = 0, then the definitions of second-order F− pseudoconvexity/pseudoconcavity
yield F− pseudoconvexity/pseudoconcavity.

3. WOLFE TYPE FIRST ORDER SYMMETRIC DUALITY

In this section, we present the following pair of first order Wolfe type symmet-
ric primal-dual pair over general polyhedral cones in complex spaces and establish
weak duality theorems.

Primal (WP1)

Minimize φ(z, z̄, w, w̄) = Re[f(z, z̄, w, w̄)−wH�wf(z, z̄, w, w̄)−wH�w̄f(z, z̄, w, w̄)]
subject to

−�wf(z, z̄, w, w̄)−�w̄f(z, z̄, w, w̄) ∈ S, (1)

z ∈ T. (2)

Dual (WD1)

Maximize ψ(u, ū, v, v̄) = Re[f(u, ū, v, v̄)−uH�zf(u, ū, v, v̄)−uH �z̄ f(u, ū, v, v̄)]
subject to

�zf(u, ū, v, v̄) +�z̄f(u, ū, v, v̄) ∈ T ∗, (3)

v ∈ S∗ (4)

where f : Cn × Cn × Cm × Cm �→ C is analytic, S and T are general polyhedral
cones in Cm and Cn respectively.

Theorem 3.1 (Weak Duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solu-
tions of (WP1) and (WD1) respectively. If Ref(., ., v, v̄) is convex at (u, ū) and
Re f(z, z̄, ., .) is concave at (w, w̄) with respect to R+, then

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Proof. Using (1) and (4), we have

Re[−vH∇wf(z, z̄, w, w̄)− vH∇w̄f(z, z̄, w, w̄)] ≥ 0. (5)

Similarly, the constraints (2) and (3) yield

Re[zH∇zf(u, ū, v, v̄) + zH∇z̄f(u, ū, v, v̄)] ≥ 0. (6)
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Adding the inequalities (5) and (6), we get

Re[−vH∇wf(z, z̄, w, w̄)−vH∇w̄f(z, z̄, w, w̄)+zH∇zf(u, ū, v, v̄)+zH∇z̄f(u, ū, v, v̄) ≥ 0.

(7)

Further, convexity of Ref(., ., v, v̄) at (u, ū) gives

Re[f(z, z̄, v, v̄)−f(u, ū, v, v̄)] ≥ Re[(z−u)T∇zf(u, ū, v, v̄)+(z−u)H∇z̄f(u, ū, v, v̄)]

(8)

and by concavity of Ref(z, z̄, ., .) at (w, w̄), we have

Re[f(z, z̄, v, v̄)−f(z, z̄, w, w̄)] ≤ Re[(v−w)T∇wf(z, z̄, w, w̄)+(v−w)H∇w̄f(z, z̄, w, w̄)].

(9)

It follows from (8) and (9) that
Re[f(z, z̄, w, w̄)− f(u, ū, v, v̄)]

≥ Re[(z − u)T∇zf(u, ū, v, v̄) + (z − u)H∇z̄f(u, ū, v, v̄)

−(v − w)T∇wf(z, z̄, w, w̄)

−(v − w)H∇w̄f(z, z̄, w, w̄)].

(10)

Now,
φ(z, z̄, w, w̄)− ψ(u, ū, v, v̄)

= Re[f(z, z̄, w, w̄)− wH∇wf(z, z̄, w, w̄)− wH∇w̄f(z, z̄, w, w̄)

−f(u, ū, v, v̄) + uH∇zf(u, ū, v, v̄) + uH∇z̄f(u, ū, v, v̄)]

≥ Re[(z − u)T∇zf(u, ū, v, v̄) + (z − u)H∇z̄f(u, ū, v, v̄)− (v − w)T∇wf(z, z̄, w, w̄)

− (v − w)H∇w̄f(z, z̄, w, w̄)− wT∇wf(z, z̄, w, w̄)− wH∇w̄f(z, z̄, w, w̄)

+ uT∇zf(u, ū, v, v̄) + uH∇z̄f(u, ū, v, v̄)]

= Re[zT∇zf(u, ū, v, v̄)+zH∇z̄f(u, ū, v, v̄)−vT∇wf(z, z̄, w, w̄)−vH∇w̄f(z, z̄, w, w̄)

≥ 0 (using (7) and (10)).
Hence

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Remark 3.1. It may be noted that the second term in the objective functions
of the two problems contain wH and uH respectively instead of wT and uT as in
Mishra and Rueda [25]. With the objectives as given in [25] we could not obtain
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the above weak duality theorem. Their other models also need similar corrections.

Theorem 3.2. (Weak Duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solu-
tions of (WP1) and (WD1) respectively. If Ref(., ., v, v̄) is F1-convex at (u, ū) and
Ref(z, z̄, ., .) is F2-concave at (w, w̄) with respect to R+, and

(i) F1(z, u; ξ) +Re[uHξ] ≥ 0 for ξ ∈ T ∗,
(ii) F2(v, w; η) +Re[wHη] ≥ 0 for η ∈ S,

then φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Proof. Using F1-convexity ofRe f(., ., v, v̄) at (u, ū) and F2-concavity ofRe f(z, z̄, ., .)
at (w, w̄), we have

Re [f(z, z̄, v, v̄)− f(u, ū, v, v̄)] ≥ F1(z, u;∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄)) and

Re [f(z, z̄, w, w̄)−f(z, z̄, v, v̄)] ≥ F2(v, w;−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)).

Adding these two inequalities, we get
Re [f(z, z̄, w, w̄)− f(u, ū, v, v̄)] ≥ F1(z, u;∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄))+

F2(v, w;−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)). (11)

On taking
ξ = ∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) ∈ T ∗, and

η = −∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄) ∈ S,

the assumptions (i) and (ii), respectively reduce to

F1(z, u;∇zf(u, ū, v, v̄)+∇z̄f(u, ū, v, v̄)) ≥ Re [−uH∇zf(u, ū, v, v̄)−uH∇z̄f(u, ū, v, v̄)],

(12)

and

F2(v, w;−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)) ≥ Re [wH∇wf(z, z̄, w, w̄)

+wH∇w̄f(z, z̄, w, w̄)].
(13)

Inequality (11) together with (12) and (13) yields

Re [f(z, z̄, w, w̄)− f(u, ū, v, v̄)] ≥ Re [−uH∇zf(u, ū, v, v̄)

−uH∇z̄f(u, ū, v, v̄) + wH∇wf(z, z̄, w, w̄) + wH∇w̄f(z, z̄, w, w̄)]. (14)

Hence
φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).
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4. MOND-WEIR TYPE SYMMETRIC DUALITY

In this section, we present the following first order Mond-Weir type problems
in complex spaces over general polyhedral cones and establish weak duality theo-
rems.

Primal (MP1)

Minimize φ(z, z̄, w, w̄) = Re f(z, z̄, w, w̄)
subject to

−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄) ∈ S, (15)

Re {wT∇wf(z, z̄, w, w̄) + wH∇w̄f(z, z̄, w, w̄)} ≥ 0, (16)

z ∈ T. (17)

Dual (MD1)

Maximize ψ(u, ū, v, v̄) = Re f(u, ū, v, v̄)
subject to

∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) ∈ T ∗, (18)

Re {uT∇zf(u, ū, v, v̄) + uH∇z̄f(u, ū, v, v̄)} ≤ 0, (19)

v ∈ S∗ (20)

where f : Cn×Cn×Cm×Cm �→ C is analytic and S and T are general polyhedral
cones in Cm and Cn, respectively.

Theorem 4.1. (Weak duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solutions
of (MP1) and (MD1), respectively. If Ref(., ., v, v̄) is pseudoconvex at (u, ū) and
Ref(z, z̄, ., .) is pseudoconcave at (w, w̄) with respect to R+ , then

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Proof. Using (15) and (20), we have

Re[vH{∇wf(z, z̄, w, w̄) +∇w̄f(z, z̄, w, w̄)}] ≤ 0.

which implies

Re[vT∇wf(z, z̄, w, w̄) + vH∇w̄f(z, z̄, w, w̄)] ≤ 0.

This together with (16) gives

Re[(v − w)T∇wf(z, z̄, w, w̄) + (v − w)H∇w̄f(z, z̄, w, w̄)] ≤ 0.
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Since Ref(z, z̄, ., .) is pseudoconcave at (w, w̄), the above inequality yields

Re {f(z, z̄, w, w̄)− f(z, z̄, v, v̄)} ≥ 0. (21)

Similarly, from (17), (18) and (19), we obtain

Re[(z − u)T∇zf(u, ū, v, v̄) + (z − u)H∇z̄f(u, ū, v, v̄)] ≥ 0,

which by pseudoconvexity of Ref(., ., v, v̄) at (u, ū) implies

Re {f(z, z̄, v, v̄)− f(u, ū, v, v̄)} ≥ 0. (22)

Finally, adding (21) and (22), we have

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Hence the result.
Theorem 4.2. (Weak duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solu-
tions of (MP1) and (MD1), respectively. Let
(i) Ref(., ., v, v̄) be F1-pseudoconvex at (u, ū) and
(ii) Ref(z, z̄, ., .) be F2-pseudoconcave at (w, w̄)
with respect to R+, where the sublinear functionals F1 : Cn × Cn × Cn �→ R and
F2 : Cm × Cm × Cm �→ R satisfy the following conditions:
(iii) F1(z, u; ξ) +Re(uHξ) ≥ 0 for all ξ ∈ T ∗,
(iv) F2(v, w; η) +Re(wHη) ≥ 0 for all η ∈ S.
Then

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Proof. On taking ξ = ∇zf(u, ū, v, v̄)+∇z̄f(u, ū, v, v̄) ∈ T ∗, from Hypothesis (iii)
and (19), we have

[F1(z, u;∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄))] ≥ 0

which by F1-pseudoconvexity of Re f(., ., v, v̄) at (u, ū) yields

Re {f(z, z̄, v, v̄)− f(u, ū, v, v̄)} ≥ 0. (23)

Similarly, taking η = −∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄) ∈ S and using Hypothesis
(iv), (16), we get

[F2(v, w;−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄))] ≥ 0

which by using F2-pseudoconcavity of Re f(z, z̄, ., .) at (w, w̄) gives

{f(z, z̄, w, w̄)− f(z, z̄, v, v̄)} ≥ 0. (24)

Combining (23) and (24), we get the required result.
Remark 4.1.

For the weak duality theorem in [25], Mishra and Rueda assumed that
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F1(z, u; ξ1 + ξ2) + Re[uT ξ1 + uHξ2] ≥ 0 for all ξ1, ξ2 ∈ Cn, (25)

F2(v, w; η1 + η2) + Re[wT η1 + wHη2] ≥ 0 for all η1, η2 ∈ Cm. (26)

The above assumptions appear to be inappropriate due to the following :
(i) Under convexity assumptions

F1(z, u, ξ1 + ξ2) = Re[(z − u)H(ξ1 + ξ2)], and
F2(v, w, η1 + η2) = Re[(v − w)H(η1 + η2)],

the inequalities (25) and (26) give
Re[zH(ξ1 + ξ2) + ξ1(u

T − uH)] ≥ 0 for all ξ1, ξ2 ∈ Cn.
Re[vH(η1 + η2) + η1(w

T − wH)] ≥ 0 for all η1, η2 ∈ Cm.
These imply that z = 0 and v = 0. Thus the primal variable z and the dual
variable v must be zero vectors.
(ii) The inequalities (25) and (26) do not reduce to the assumptions for the corre-
sponding weak duality theorem over real nonnegative orthants [18-21].

Remark 4.2.
The assumptions (iii) and (iv) in Theorem 4.2 differ from the assumptions

(25) and (26) in the sense that instead of two vectors ξ1, ξ2 ∈ Cn, we have taken
ξ = ξ1 + ξ2 ∈ T ∗. Moreover, under convexity assumptions, the Hypotheses (iii)
and (iv) reduce to Re(zHξ) ≥ 0 for all ξ ∈ T ∗ and Re(vHη) ≥ 0 for all η ∈ S,
which in turn give z ∈ T and v ∈ S∗. These are the constraints (17) and (20) of
the problems (MP1) and (MD1).

We now state a weak duality theorem under η− pseudoconvexity assumptions.
Its proof follows on the lines of Theorem 4.2 on taking

F1(z, u, ξ) = Re[ηH1 (z, u)ξ]andF2(v, w, η) = Re[ηH2 (v, w)η].

Also, the assumptions (iii) and (iv) of the Theorem 4.2 reduces to Re{(η1(z, u) + u)
H
ξ} ≥

0 for all ξ ∈ T ∗ and Re{(η2(v, w) + w)
H
η} ≥ 0 for all η ∈ S which imply

η1(z, u) + u ∈ T and η2(v, w) + w ∈ S∗.

Theorem 4.3. (Weak duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solutions
of (MP1) and (MD1) , respectively. If

(i) Ref(., ., v, v̄) is η1-pseudoconvex at (u, ū) with respect to R+,

(ii) Ref(z, z̄, ., .) is η1-pseudoconcave at (w, w̄) with respect to R+,

(iii) η1(z, u) + u ∈ T and

(iv) η2(v, w) + w ∈ S∗,

then
φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).
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5. WOLFE TYPE SECOND ORDER SYMMETRIC DUALITY

In this section, we extend the Wolfe type primal and dual problems presented
in Section 3 to second order primal and dual problems, and establish a weak du-
ality theorem.

Primal (WP2)

Minimize φ(z, z̄, w, w̄) = Re [f(z, z̄, w, w̄)−wH∇wf(z, z̄, w, w̄)−wH∇w̄f(z, z̄, w, w̄)

−wH(∇ww +∇ww̄)f(z, z̄, w, w̄)r2−wH(∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2

− 1
2r

H
2 (∇ww +∇ww̄)f(z, z̄, w, w̄)r2− 1

2r
H
2 (∇w̄w+∇w̄w̄)f(z, z̄, w, w̄)r2

subject to

[−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)

−(∇ww +∇ww̄)f(z, z̄, w, w̄)r2 − (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2] ∈ S
(27)

z ∈ T. (28)

Dual (WD2)

Maximize ψ(u, ū, v, v̄) = Re [f(u, ū, v, v̄)− uH∇zf(u, ū, v, v̄)− uH∇z̄f(u, ū, v, v̄)

− uH(∇zz +∇zz̄)f(u, ū, v, v̄)r1 − uH(∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1

− 1
2r

H
1 (∇zz +∇zz̄)f(u, ū, v, v̄)r1 − 1

2r
H
1 (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1]

subject to

[∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄)

+(∇zz +∇zz̄)f(u, ū, v, v̄)r1 + (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1] ∈ T ∗ (29)

v ∈ S∗. (30)

where, r1 ∈ Cn and r2 ∈ Cm.

Theorem 5.1. (Weak Duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solu-
tions of (WP2) and (WD2). If Re f(., ., v, v̄) is second order F1-convex at (u, ū)
and Ref(z, z̄, ., .) is second order F2-concave at (w, w̄) with respect to R+, and

(i) F1(z, u; ξ) +Re[uHξ] ≥ 0 for ξ ∈ T ∗,
(ii) F2(v, w; η) +Re[wHη1 + wHη] ≥ 0 for η ∈ S.
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then
φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Proof. Using second order F1-convexity of Ref(., ., v, v̄) at (u, ū) and second or-
der F2-concavity of Ref(z, z̄, ., ., ) at (w, w̄), we have

Re[f(z, z̄, v, v̄)− f(u, ū, v, v̄) +
1

2
rH1 (∇zz +∇zz̄)f(u, ū, v, v̄)r1

+
1

2
rH1 (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1]

≥ F1(z, u;∇zf(u, ū, v, v̄) + (∇zz +∇zz̄)f(u, ū, v, v̄)r1

+∇z̄f(u, ū, v, v̄) + (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1),
and

Re[f(z, z̄, w, w̄)− f(z, z̄, v, v̄)

−1

2
rH2 (∇ww +∇ww̄)f(z, z̄, w, w̄)r2 − 1

2
rH2 (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2]

≥ F2(v, w;−∇wf(z, z̄, w, w̄)− (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

−∇w̄f(z, z̄, w, w̄)− (∇w̄w +∇w̄w̄)

f(z, z̄, w, w̄)r2).

Adding these two inequalities, we get

Re [f(z, z̄, w, w̄)− f(u, ū, v, v̄)]

≥ F1(z, u;∇zf(u, ū, v, v̄) + (∇zz +∇zz̄)f(u, ū, v, v̄)r1

+ ∇z̄f(u, ū, v, v̄) + (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1)

+ F2(v, w;−∇wf(z, z̄, w, w̄)− (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

−∇w̄f(z, z̄, w, w̄)− (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2)

−Re[ 12r
H
1 (∇zz +∇zz̄)f(u, ū, v, v̄)r1 +

1
2r

H
1 (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1]

+Re[
1

2
rH2 (∇ww +∇ww̄)f(z, z̄, w, w̄)r2+

1

2
rH2 (∇w̄w+∇w̄w̄)f(z, z̄, w, w̄)r2]

(31)
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On taking

ξ = ∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) + (∇zz +∇zz̄)f(u, ū, v, v̄)r1

+ (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1 ∈ T ∗,

η = −∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)− (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

− (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2 ∈ S

The assumptions (i) and (ii) respectively reduce to

F1(z, u;∇zf(u, ū, v, v̄)+ ∇z̄f(u, ū, v, v̄)+ (∇zz +∇zz̄)f(u, ū, v, v̄)r1+(∇z̄z+
∇z̄z̄)f(u, ū, v, v̄)r1)

≥ Re[−uH∇zf(u, ū, v, v̄)− uH∇z̄f(u, ū, v, v̄)− uH(∇zz +∇zz̄)f(u, ū, v, v̄)r1

− uH(∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1], (32)

and
F2(v, w;−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)−(∇ww +∇ww̄)f(z, z̄, w, w̄)r2−(∇w̄w+
∇w̄w̄)f(z, z̄, w, w̄)r2)

≥ Re[wH∇wf(z, z̄, w, w̄)+wH∇w̄f(z, z̄, w, w̄)+wH(∇ww +∇ww̄)f(z, z̄, w, w̄)r2

+ wH(∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2]. (33)

Inequality (31) together with (32) and (33) yields

Re[f(z, z̄, w, w̄)− wH∇wf(z, z̄, w, w̄)− wH∇w̄f(z, z̄, w, w̄)

− wH(∇ww +∇ww̄)f(z, z̄, w, w̄)r2 − wH(∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2

− 1
2r

H
2 (∇ww +∇ww̄)f(z, z̄, w, w̄)r2 − 1

2r
H
2 (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2]

≥ Re[f(u, ū, v, v̄)− uH∇zf(u, ū, v, v̄)− uH∇z̄f(u, ū, v, v̄)

− uH(∇zz +∇zz̄)f(u, ū, v, v̄)r1 − uH(∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1

− 1

2
rH1 (∇zz +∇zz̄)f(u, ū, v, v̄)r1− 1

2
rH1 (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1]. (34)

Hence,
φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).
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6. PARTICULAR CASES

(i) If
S = {w ∈ Cm : | arg w |≤ α}
T = {z ∈ Cn : | arg z |≤ β}

where α ∈ Rm
+ , β ∈ Rn

+ satisfying 01 ≤ α ≤ π
21, 01 ≤ β ≤ π

21, 1 is the vector
of ones, then the primal and dual programs of Section 3 reduce to the problems
studied by Kaul and Sharma [18].

(ii) If we fit the constraints of Wolfe type first order symmetric dual problems
studied by Mishra and Rueda [25] into our problems of Section 3, then in addition
to S and T as defined in (i) above, α = (π2 ,

π
2 , · · · , π

2 ) , β = (0, 0, · · · , 0) and we
get,

Primal (WP)

Minimize φ(z, z̄, w, w̄) = Re[f(z, z̄, w, w̄)−wH�wf(z, z̄, w, w̄)−wH�w̄f(z, z̄, w, w̄)]

subject to

Re(�wf(z, z̄, w, w̄) +�w̄f(z, z̄, w, w̄)) ≤ 0, (35)

z ∈ Rn
+. (36)

Dual (WD)
Maximize ψ(u, ū, v, v̄) = Re[f(u, ū, v, v̄)−uH�zf(u, ū, v, v̄)−uH �z̄ f(u, ū, v, v̄)]

subject to

Re(�zf(u, ū, v, v̄) +�z̄f(u, ū, v, v̄)) ≥ 0. (37)

v ∈ Rm
+ . (38)

In the above models, the complex variables z and v are required to satisfy (36)
and (38) reducing the above models to real mathematical programming problems
over nonnegative orthants, which were studied by Chandra et al. [6, Section 3].

(iii) If f is a twice differentiable real valued function, S = Rm
+ , T = Rn

+ and
F1 = F2, then our problems (WP2) and (WD2) reduce to Wolfe type second order
symmetric dual problems of Mishra [24, Section 3].
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7. STRONG DUALITY

Mishra and Rueda [25] after establishing weak duality theorem have stated
that the strong duality theorem can be developed on the lines of Dantzig et al.,
while Kaul and Sharma [18] have given an example to show that the strong duality
theorem does not hold. The example appears to be inappropriate as the nonsin-
gularity assumption on the Hessian matrix is not satisfied and the proof of the
strong duality theorem could not be obtained on the lines of Dantzig et al. Below
we discuss both these points.

(1) Example (Kaul and Sharma [18])

Let z = x+ix1 ∈ C1, w = y+iy1 ∈ C1, u = ξ+iξ1 ∈ C1 and v = η+iη1 ∈ C1

Let f(z, z̄, w, w̄) = h(x, y) = −x + y(1 − x)2, S = {w ∈ C1 : | arg w |≤ α} and
T = {z ∈ C1 : | arg z |≤ β} with α = 0 and β = π

2 . Then (WP1) and (WD1)
reduce to the following problems:

Primal (WP*)
Minimize −x
subject to − (1− x)2 ≥ 0,

x ≥ 0.

Dual (WD*)
Maximize η(1− ξ)(1 + ξ)
subject to 1 + 2η(1− ξ) ≤ 0,

η ≥ 0.

Kaul and Sharma observed that z0 = 1 and any w0 is an optimal solution of
(WP*), but such a pair is not even feasible for (WD*). However, the strong du-
ality theorem requires ∂yyh(z0, w0) to be negative definite [10 (p. 810), 6 (p. 5)]
or nonsingular [14, p. 81], but in the above example ∂yyh(z0, w0) = 0. Hence this
assumption of strong duality is not satisfied and so, the example becomes inap-
propriate.

(2) Strong Duality Theorem : Let (z0, z̄0, w0, w̄0) be an optimal solution for
(WP1) and (∇ww + ∇ww̄ + ∇w̄w + ∇w̄w̄)f(z0, z̄0, w0, w̄0) be positive or negative
definite. Further, if the hypotheses of Theorem 3.1 or Theorem 3.2 hold for all
feasible solutions of (WP1) and (WD1), then (z0, z̄0, w0, w̄0) is an optimal solution
for (WD1) and the two objectives are equal.

Proof. Since (z0, z̄0, w0, w̄0) is an optimal solution for (WP1), there exists,
τ ∈ R+,
r ∈ S∗, μ ∈ T ∗ such that (τ, r, μ) 
= 0 satisfying the following Fritz John
conditions [8]:
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τ(∇zf(z0, z̄0, w0, w̄0) + τ ∇z̄f(z0, z̄0, w0, w̄0)− τ wH
0 (∇zw +∇zw̄)f(z0, z̄0, w0, w̄0)

+ rT (∇zw +∇zw̄)f(z0, z̄0, w0, w̄0) + (r− τ w0)
H(∇z̄w +∇z̄w̄)f(z0, z̄0, w0, w̄0)

− μT = 0. (39)

−τ wH
0 (∇ww +∇ww̄)f(z0, z̄0, w0, w̄0) + rT (∇ww +∇ww̄)f(z0, z̄0, w0, w̄0)

+(r − τ w0)
H(∇w̄w +∇w̄w̄)f(z0, z̄0, w0, w̄0) = 0. (40)

Re{rH∇wf(z0, z̄0, w0, w̄0)+rH∇w̄f(z0, z̄0, w0, w̄0)} = 0. (41)

Re{ μH z0} = 0. (42)

To use the positive or negative definite assumption, we need to write the equation
(40) as

(r−τ w0)
H(∇ww+∇ww̄+∇w̄w+∇w̄w̄)f(z0, z̄0, w0, w̄0) = 0 (43)

to get, r = τ w0

and we can continue to complete the proof on the lines of Dantzig et al.[10]. How-
ever to write equation (40) as (43) we need r = r̄, which need not be true. Thus
we are unable to complete the proof of the strong duality theorem.
Therefore, the question whether the strong duality theorem between the problems
(WP1) and (WD1) and also between the problems considered by Kaul and Sharma
[18] holds or not remains unanswered.

8. MOND-WEIR TYPE SECOND ORDER SYMMETRIC
DUALITY

Primal (MP2)
Minimize φ(z, z̄, w, w̄) = Re [f(z, z̄, w, w̄)− 1

2r
H
2 (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

− 1
2r

H
2 (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2]

subject to
{−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)− (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

− (∇w̄w+∇w̄w̄)f(z, z̄, w, w̄)r2} ∈ S, (44)

Re [wT∇wf(z, z̄, w, w̄) + wH∇w̄f(z, z̄, w, w̄) + wT (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

+ wH(∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2] ≥ 0, (45)

z ∈ T. (46)

Dual (MD2)
Maximize ψ(u, ū, v, v̄) = Re [f(u, ū, v, v̄)− 1

2r
H
1 (∇zz +∇zz̄f(u, ū, v, v̄)r1

− 1
2r

H
1 (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1
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subject to
∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) + (∇zz +∇zz̄)f(u, ū, v, v̄)r1

+ (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1 ∈ T ∗, (47)

Re [uT∇zf(u, ū, v, v̄) + uH∇z̄f(u, ū, v, v̄) + uT (∇zz +∇zz̄)f(u, ū, v, v̄)r1

+ uH(∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1] ≤ 0, (48)

v ∈ S∗. (49)

where r1 ∈ Cn and r2 ∈ Cm.

Theorem 8.1. (Weak duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solutions
of (MP2) and (MD2), respectively . Let with respect to R+

(i) Ref(., ., v, v̄) be second-order F1-pseudoconvex at(u, ū)
(ii) Ref(z, z̄, ., .) be second-order F2-pseudoconcave at (w, w̄),
where the sublinear functionals F1 : Cn×Cn×Cn �→ R and F2 : Cm×Cm×Cm �→
R satisfy the following conditions:
(iii) F1(z, u; ξ) +Re(uHξ) ≥ 0 for all ξ ∈ T ∗,
(iv) F2(v, w; η) +Re(wHη) ≥ 0 for all η ∈ S.
Then

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Proof. Let

ξ = ∇zf(u, ū, v, v̄)+∇z̄f(u, ū, v, v̄)+(∇zz +∇zz̄)f(u, ū, v, v̄)r1+(∇z̄z+∇z̄z̄)f(u, ū, v, v̄)r1

∈ T ∗.
Then from Hypothesis (iii), we have

{F1(z, u;∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄)

+(∇zz +∇zz̄)f(u, ū, v, v̄)r1 + (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1)}
≥ −Re[uH∇zf(u, ū, v, v̄)+

uH∇z̄f(u, ū, v, v̄) + uH(∇zz +∇zz̄)f(u, ū, v, v̄)r1 + uH(∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1]
≥ 0. (from (48))

Using second-order F1-pseudoconvexity of Ref(., ., v, v̄) at (u, ū), we have

Re[f(z, z̄, v, v̄)− f(u, ū, v, v̄) +
1

2
rH1 (∇zz +∇zz̄)f(u, ū, v, v̄)r1

+
1

2
rH1 (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1] ≥ 0.

(50)

Similarly,

η = −∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)− (∇ww +∇ww̄)f(z, z̄, w, w̄)r2
− (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2 ∈ S
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So, Hypothesis (iv) becomes

F2(v, w,−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)

−(∇ww +∇ww̄)f(z, z̄, w, w̄)r2 − (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2)

≥ Re[wH∇wf(z, z̄, w, w̄) + wH∇w̄f(z, z̄, w, w̄) + wH(∇ww +∇ww̄)

f(z, z̄, w, w̄)r2 + wH(∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2)]

≥ 0 (from (45)).
Applying second-order F2-pseudoconcavity of Ref(z, z̄, ., .) at (w, w̄), we get

Re[f(z, z̄, w, w̄)− f(z, z̄, v, v̄)− 1

2
rH2 (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

−1

2
rH2 (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2] ≥ 0.

(51)

Finally, adding (50) and (51), we obtain

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

9. WOLFE TYPE NONDIFFERENTIABLE SYMMETRIC
DUALITY

In this section, we present the following pairs of first and second order Wolfe
type nondifferentiable symmetric dual problems over general polyhedral cones in
complex spaces and state weak duality theorems. Their proofs can be developed
on the lines of the proofs of Theorems 3.2 and 3.3 using Lemma 2.1.

9.1 First Order Symmetric Duality

Primal (WP1*)

Minimize φ(z, z̄, w, w̄) = Re[f(z, z̄, w, w̄)+(zHBz)
1
2 −wH�wf(z, z̄, w, w̄)−wH�w̄

f(z, z̄, w, w̄)]
subject to

−�wf(z, z̄, w, w̄)−�w̄f(z, z̄, w, w̄) + Cp ∈ S, (52)

pHCp ≤ 1, (53)

z ∈ T. (54)

Dual (WD1*)

Maximize ψ(u, ū, v, v̄) = Re[f(u, ū, v, v̄)− (vHCv)
1
2 − uH�zf(u, ū, v, v̄)− uH �z̄

f(u, ū, v, v̄)] subject to

�zf(u, ū, v, v̄) +�z̄f(u, ū, v, v̄) +Bq ∈ T ∗, (55)

qHBq ≤ 1, (56)
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v ∈ S∗ (57)

where, B and C are positive semidefinite Hermitian matrices of order n and m
respectively, p ∈ Cm, q ∈ Cn, f , S and T are the same as in Section 3.

Theorem 9.1. (Weak Duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solu-
tions of (WP1*) and (WD1*) respectively. If Re[f(., ., v, v̄)+(.)HBq] is F1-convex
at (u, ū) and Re[f(z, z̄, ., .)− (.)HCp] is F2-concave at (w, w̄) with respect to R+,
and

(i) F1(z, u; ξ) +Re[uHξ] ≥ 0 for ξ ∈ T ∗,
(ii) F2(v, w; η) +Re[wHη] ≥ 0 for η ∈ S,

then
φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

9.2 Second order symmetric duality

Primal (WP2*)

Minimize φ(z, z̄, w, w̄) = Re [f(z, z̄, w, w̄) + (zHBz)
1
2 − wH∇wf(z, z̄, w, w̄) −

wH∇w̄f(z, z̄, w, w̄)

−wH(∇ww +∇ww̄)f(z, z̄, w, w̄)r2−wH(∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2

− 1
2r

H
2 (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

1
2r

H
2 (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2

subject to

[−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)− (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

− (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2 + Cp] ∈ S, (58)

pHCp ≤ 1, (59)

z ∈ T. (60)

Dual (WD2*)

Maximize ψ(u, ū, v, v̄) = Re [f(u, ū, v, v̄)−(vHCv)
1
2−uH∇zf(u, ū, v, v̄)−uH∇z̄f(u, ū, v, v̄)

− uH(∇zz +∇zz̄)f(u, ū, v, v̄)r1 − uH(∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1

− 1
2r

H
1 (∇zz +∇zz̄)f(u, ū, v, v̄)r1 − 1

2r
H
1 (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1]

subject to

[∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) + (∇zz +∇zz̄)f(u, ū, v, v̄)r1
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+ (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1 +Bq] ∈ T ∗, (61)

qHBq ≤ 1, (62)

v ∈ S∗. (63)

Theorem 9.2. (Weak Duality). Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solu-
tions of (WP2*) and (WD2*). If Re [f(., ., v, v̄)+(.)HBq] is second order F1-convex
at (u, ū) and Re[f(z, z̄, ., .) − (.)HCp] is second order F2-concave at (w, w̄) with
respect to R+, and

(i) F1(z, u; ξ) +Re[uHξ] ≥ 0 for all ξ ∈ T ∗,
(ii) F2(v, w; η) +Re[wHη] ≥ 0 for η ∈ S.

then
φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

10. MOND-WEIR TYPE NONDIFFERENTIABLE SYMMETRIC
DUALITY

Now, we present the primal and dual pair of nondifferentiable Mond-Weir
type problems in complex spaces over genral polyhedral cones and establish weak
duality theorems.

10.1 First-order dual problems
Primal (MP1*)

Minimize φ(z, z̄, w, w̄) = (Re [f(z, z̄, w, w̄) + (zHBz)
1
2 − wHCp]

subject to

−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄) + Cp ∈ S, (64)

Re [wT∇wf(z, z̄, w, w̄) + wH{∇w̄f(z, z̄, w, w̄)− Cp}] ≥ 0, (65)

pHCp ≤ 1, (66)

z ∈ T. (67)

Dual (MD1*)

Maximize ψ(u, ū, v, v̄) = Re [f(u, ū, v, v̄)− (vHCv)
1
2 + uHBq]

subject to

∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) +Bq ∈ T ∗, (68)

Re [uT∇zf(u, ū, v, v̄) + uH{∇z̄f(u, ū, v, v̄) +Bq}] ≤ 0, (69)

qHBq ≤ 1, (70)

v ∈ S∗. (71)

Theorem 10.1. Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solutions of (MP1∗)
and (MD1∗), respectively . Let with respect to R+
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(i) Re{f(., ., v, v̄) + (.)HBq} be F1 -pseudoconvex at (u, ū)
(ii)Re{f(z, z̄, ., .)− (.)HCp} be F2-pseudoconcave at (w, w̄)
where the sublinear functionals F1 : Cn×Cn×Cn �→ R and F2 : Cm×Cm×Cm �→
R satisfy the following conditions:
(i) F1(z, u; ξ) +Re[uHξ] ≥ 0 for ξ ∈ T ∗, and
(ii) F2(v, w; η) +Re[wHη] ≥ 0 for η ∈ S.
Then

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Proof. On taking ξ = ∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) +Bq, from Hypothesis (i),
we have

F1(z, u;∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) +Bq)
≥ Re [−uH∇zf(u, ū, v, v̄)− uH{∇z̄f(u, ū, v, v̄) +Bq}]
≥ 0 (using (69)),

which by F1-pseudoconvexity of Re {f(., ., v, v̄) + (.)HBq} at (u, ū) yields

Re [f(z, z̄, v, v̄) + zHBq − f(u, ū, v, v̄)− uHBq] ≥ 0 (72)

On taking η = −∇wf(z, z̄, w, w̄)−∇wf(z, z̄, w, w̄) + Cp, we get from Hypothesis
(ii) that

F2(v, w;−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄) + Cp)
≥ Re[wH∇wf(z, z̄, w, w̄) + wH{∇w̄f(z, z̄, w, w̄)− Cp}]
≥ 0 (from (65)),

which by using F2-pseudoconcavity of Re {f(z, z̄, ., .)− (.)HCp} at (w, w̄) gives

Re [f(z, z̄, w, w̄)− wHCp− f(z, z̄, v, v̄) + vHCp] ≥ 0. (73)

Combining (72) and (73), we have

Re [f(z, z̄, w, w̄)− f(u, ū, v, v̄) + zHBq − uHBq − wHCp+ vHCp] ≥ 0.

Using Schwartz inequality, (66) and (70), we obtain

Re [f(z, z̄, w, w̄) + (zHBz)
1
2 − wHCp] ≥ Re[f(u, ū, v, v̄)− (vHCv)

1
2 + uHBq],

Hence
φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

10.2 Second-order dual problems
Primal (MP2*)

Minimize φ(z, z̄, w, w̄) = Re [f(z, z̄, w, w̄) + (zHBz)
1
2 − wHCp− 1

2r
H
2

(∇ww +∇ww̄f(z, z̄, w, w̄)r2

- 1
2rH2 (∇w̄w+∇w̄w̄)f(z,z̄,w,w̄)r2]

noindent subject to

−∇wf(z, z̄, w, w̄)−∇w̄f(z, z̄, w, w̄)− (∇ww +∇ww̄)f(z, z̄, w, w̄)r2

− (∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2 + Cp] ∈ S, (74)
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Re [wT∇wf(z, z̄, w, w̄) + wH{∇w̄f(z, z̄, w, w̄)− Cp}
+wT (∇ww +∇ww̄)f(z, z̄, w, w̄)r2+wH(∇w̄w +∇w̄w̄)f(z, z̄, w, w̄)r2] ≥ 0, (75)

pHCp ≤ 1, (76)

z ∈ T. (77)

Dual (MD2*)

Maximize ψ(u, ū, v, v̄) = Re [f(u, ū, v, v̄)− (vHCv)
1
2 + uHBq − 1

2r
H
1

(∇zz +∇zz̄f(u, ū, v, v̄)r1

- 1
2rH1 (∇z̄z+∇z̄z̄)f(u,ū,v,v̄)r1

subject to

∇zf(u, ū, v, v̄) +∇z̄f(u, ū, v, v̄) + (∇zz +∇zz̄)f(u, ū, v, v̄)r1

+ (∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1 +Bq ∈ T ∗, (78)

Re [uT∇zf(u, ū, v, v̄) + uH{∇z̄f(u, ū, v, v̄) +Bq}
+uT (∇zz +∇zz̄)f(u, ū, v, v̄)r1 + uH(∇z̄z +∇z̄z̄)f(u, ū, v, v̄)r1] ≤ 0, (79)

qHBq ≤ 1, (80)

v ∈ S∗. (81)

Theorem 10.2. Let (z, z̄, w, w̄) and (u, ū, v, v̄) be feasible solutions of (MP2∗)
and (MD2∗), respectively . Let with respect to R+

(i) Re{f(., ., v, v̄) + (.)HBq} be second-order F1 -pseudoconvex at (u, ū)
(ii)Re{f(z, z̄, ., .)− (.)HCp} be second-order F2-pseudoconcave at (w, w̄)
where the sublinear functionals F1 : Cn×Cn×Cn �→ R and F2 : Cm×Cm×Cm �→
R satisfy the following conditions:
(i) F1(z, u; ξ) +Re[uHξ] ≥ 0 for ξ ∈ T ∗, and
(ii) F2(v, w; η) +Re[wHη] ≥ 0 for η ∈ S.
Then

φ(z, z̄, w, w̄) ≥ ψ(u, ū, v, v̄).

Proof. Follows on the lines of Theorem 8.1 and 10.1.
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