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1. INTRODUCTION

Vacation queue modeling is being employed in a large variety of day-to-day
congestion issues as well as industrial scenarios including communication and man-
ufacturing systems, transportation systems, call centers, web services and so on.
A vast literature has been devoted to vacation queueing models in different frame-
works. Research works on single vacation (once the vacation is ended, the server
switches to the busy period and stays there waiting for a new arrival) and multiple
vacation (the server continues his vacation as long as there is no customers in the
system) have a significant developments (cf. Doshi [15], Tian [28], Takagi [26],
Tian and Zhang [29], Zhang and Tian [40], Ke et al. [18], and Upadhyaya [31]).
In recent years, queueing models with variant of multiple vacations have drawn a
significant attention, different from the above policies, this new concept considers
the case wherein at the vacation completion instant, if the system is still empty,
the server is permitted to take a certain number of successive vacations, and once
the vacations are ended, the server has to come back to the busy period and re-
mains there, busy or idle, depending on the presence of customers in the system
(cf. Banik [6], Yue et al. [36], Wang et al. [34], and Laxmi and Rajesh [32]).

Impatience (balking and/or reneging) is the most prominent feature in queue-
ing theory. Vacation queueing models with impatient customers are considered to
be very appropriate tools in analysing various complex service systems and impor-
tant industries. Therefore, it has generated a fundamental results with extensive
bibliographical references on this area (cf. Zhang et al. [41], Altman and Yechaili
[2, 3], Ke [16], Ke et al. [17], Adan et al. [1], Yue et al. [37], Ammar [4], Laxmi
and Rajesh [33], Bouchentouf et al. [9, 10], and Kumar [20]).

In traditional vacation queueing literature with impatient customers, the stud-
ies of customer’s behavior was always based on the hypothesis that customers’
impatience happens only during the absence of the server. This is the case where
the customers can see the state of the server. However, in many real-life situations
including call center and production systems, it may not be possible to have infor-
mation on the server’s state. Further, a long wait in the queue is another factor
which leads to customer’s impatience whatever the state of the system (active or
on vacation). Despite the rapid growth of the literature about customers’s impa-
tience in vacation queueing models, there is very limited literature to deal with the
customers’ impatience during both vacation and busy periods. The authors can
refer to Yue et al. [39] and Bouchentouf and Guendouzi [11, 12], and Cherfaoui et
al. et al. [13].

Customer feedback has an utmost importance in queueing systems at which
if the customer is not satisfied with the service, he can return to the system
asking for another one. He can retry several times until he gets a satisfactory
service. Such queues usually occur in our everyday life. As a concrete example,
we cite multiple access telecommunication systems, where the data packet with
errors at the destination will be sent over and over again until the data packet
is transmitted with success. Queueing models with feedback have been widely
studied. The pioneer research work on the subject was done by Takacs [25] who
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dealt with an M/M/1 queue with feedback, where he determined the stationary
process of the queue length as well as a customer waiting distribution in the system.
The literature on the related topic is abundant, for a comprehensive overview, the
readers may refer to Davignon and Disney [14], Bengtsson [7], Santhakumaran
and Thangaraj [23], Atencia et al. [5], Upadhyaya [31], Liu and Whitt [21], and
Shekhar et al. [24].

In regard to the mathematical solution techniques, it is worth pointing out that
a distinction can be made between algorithms that allow efficient calculation of the
system characteristics numerically; i.e., matrix-analytic approaches; a very pow-
erful numerical technique employed when it is not easy to obtain clear and closed
form analytical solutions for queueing problems (see Neuts [22], Blondia and Casals
[8]), and analytical approaches that give rise to (exact or approximate) closed-form
expressions; i.e., probability generating functions based techniques ”special case of
the z-transform” (see Takagi [27], Wittevrongel and Bruneel [35]), or approaches
based on the maximum entropy approach (see Kouvatsos et al. [19]). Via this
method, the unbiased distribution of the concerned queueing system is obtained
by maximizing the defined entropy function in terms of known performance mea-
sures.

In line with the above, we consider in this paper a queueing model under K-
variant of multiple vacations, Bernoulli feedback, server’ states-dependent reneg-
ing, and retention. The analysis of such a model is complicated. Generally, the
problems encountered by processes describing this kind of systems are facing a big
challenge. The behavior of the suggested queueing system is studied analytically
by means of a generating-functions approach. The probability generating functions
(PGF) is a powerful tool for presenting the solution of a difference equations set
and solving probability problems. Through the use of PGFs, we can without diffi-
culty convert the discrete sequence of numbers, i.e., probabilities into a function of
dummy variable. This results in closed-form expressions for the steady-state dis-
tributions of the system. Further, the PGFs are utilized to deduce diverse system
characteristics. The obtained expressions are easy to be numerically evaluated. To
the best of authors’ knowledge, the existing literature mainly focuses on impatient
customers during vacation period, whereas, there have been no results present-
ing the analytic and computational aspects of the M/M/1 queueing model with
Bernoulli feedback, balking, server’s states-dependent reneging, and retention of
reneged customers under variant of multiple vacation policy. This motivate us to
investigate such a queueing model, where the stationary analysis of the queueing
model is established via probability generating functions (PGFs) method. Then,
various measures of effectiveness including the mean system size, the mean queue
length, the mean number of customers served, and average rates of balking and
reneging, are derived in terms of steady-state probabilities. Further, we carried
out numerical experiments that can be very beneficial to examine the effects of the
parameters of impatience timers on the performance measures in different contexts.

The paper is arranged as follows. Section 2 describes the queueing model. In
Section 3, we present the theoretical analysis of the suggested queueing system. In
Section 4, we deduce useful system characteristics. Section 5 is devoted to some
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particular cases. Section 6 presents numerical computation of the analytical results
in order to show the effect of customers’s impatience on the performance measures
of the queueing system under consideration. Section 7 concludes the paper.

2. MODEL FORMULATION

We analyze a M/M/1 Bernoulli feedback queueing system under a variant of a
multiple vacation policy with balking, reneging and retention of reneging in which
customers arrive at the system according to a Poisson process of rate λ .

During busy period, all customers have i.i.d. service time, assumed to be
exponential with parameter μ.

Whenever the system becomes empty at a service completion instant, the sever
goes on a vacation of random length, which is assumed to be exponentially dis-
tributed with rate φ .

If at a vacation completion instant, some customers are present in the queue,
the server immediately begins the busy period. Otherwise, it will take vacations
consecutively until the server has taken a maximum number of vacations (denoted
by K-vacations), then the server switches to the busy period and remains idle
waiting for a new arrival if the system is still empty.

In addition, we suppose that on arrival a customer either decides to join the
queue with probability θ if the number of customers in the system is bigger or
equal to one and may balk with probability θ = 1−θ .

Whenever a customer arrives at the system and finds the server on vacation
(respectively, busy), he activates an impatience timer T0 (respectively, T1), which
follows exponential distribution function with parameter ξ0 (respectively, ξ1). If
the customer’s service has not been finished before the customer’s timer expires,
the customer may abandon the system. That is, the customer’s deadline is effective
until the end of his service. This sort of customer behavior occurs often in practice
including a situation where a customer’s deadline corresponds to a fundamentally
irreversible property such as failure or death, at which, the absence of a deadline
by the customer may be seen as a permanent phenomenon, and may occur at any
time including the time a customer is served. Further, each reneged customer may
leave the system without getting service with probability α and may be retained
in the queue with probability α ′ = 1−α.

With probability β ′
, a customer rejoin the system as a Bernoulli feedback

customer to receive another regular service if the initial one is unsatisfactory or
incomplete. Otherwise, he leaves the system definitively with probability β =
1−β ′

.
We also suppose that inter-arrival times, service times, impatience times, and

vacation times are all mutually independent. The service order is supposed to be
First-Come-First-Served (FCFS).
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3. STEADY-STATE SOLUTION OF THE QUEUEING SYSTEM

Let N(t) denote the number of customers in the system at time t, and let J(t)
denote the state of the server at time t, which is defined as follows:

J(t)=
{

j, the server is taking the ( j+1)th vacation at time t for j = 0,1, ...,K −1,
K, the server is idle or busy at time t.

Figure 1 depicts the state transition diagram of the queueing model under
consideration.

Figure 1: The state-transition diagram.

The pair {(N(t); J(t)); t ≥ 0} defines a Markovian, continuous-time process
where its state space is Ω = {(n, j) : n ≥ 0; j = 0,K}.

Let Pn, j = lim
t→∞

P(N(t) = n; J(t) = j, n ≥ 0, j = 0,K), denote the steady-state

probabilities of the process {(N(t), J(t)); t ≥ 0}.
Then, based on the theory of Markov process, it is easy to show that the
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steady-state equations of the model are:

(λ +φ)P0,0 = αξ0P1,0 +(β μ +αξ1)P1,K , (1)

(λ +φ +αξ0)P1,0 = λP0,0 +2αξ0P2,0, n = 1, (2)

(θλ +φ +nαξ0)Pn,0 = θλPn−1,0 +(n+1)αξ0Pn+1,0, n ≥ 2, (3)

(λ +φ)P0, j = αξ0P1, j +φP0, j−1, j = 1,K −1, (4)

(θλ +φ +αξ0)P1, j = λP0, j +2αξ0P2, j, j = 1,K −1, n = 1, (5)

(θλ +φ +nαξ0)Pn, j = θλPn−1, j +(n+1)αξ0Pn+1, j, j = 1,K −1,n ≥ 2,(6)
λP0,K = φP0,K−1, (7)

(θλ +β μ +αξ1)P1,K = λP0,K +(β μ +2αξ1)P2,K +φ
K−1

∑
j=0

P1, j, n = 1, (8)

(θλ +β μ +nαξ1)Pn,K = θλPn−1,K +(β μ +(n+1)αξ1)Pn+1,K +

+φ
K−1

∑
j=0

Pn, j,n ≥ 2. (9)

Next, the steady-state-probabilities are given in the following theorem.

Theorem 1. The steady-state-probabilities Pn, j of system size are given by

P•, j = A j−1P0,0, j = 0,K −1, (10)

P•,K = Φ(1)P0,0, (11)

where

P0,0 =

(
1−AK

A(1−A)
+Φ(1)

)−1

, (12)

with

A =
φC2(1)
αξ0B

,

and

Φ(1) = e
λθ
αξ1

{(
Bξ0

C2(1)ξ1
+

φ
αξ1

(
1−AK−1

1−A

))
H1(1)

+
φ

αξ1

(
AK

Aλ
H2(1)−

(
1−AK

1−A

)
H3(1)

)}
,
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with

B =

(
1+

λ (1−θ)C1(1)
αξ0

)
,

C1(1) =
∫ 1

0
e
−λθ
αξ0

s
(1− s)

φ
αξ0 ds,

C2(1) =
∫ 1

0
e
−λθ
αξ0

s
(1− s)

φ
αξ0

−1
ds,

H1(1) =
∫ 1

0
s

β μ
αξ1 e

− λθ
αξ1

s
(1− s)−1ds,

H2(1) =
∫ 1

0
(λθs+β μ)s

β μ
αξ1

−1
e
− λθ

αξ1
s
ds,

H3(1) =
∫ 1

0
s

β μ
αξ1 e

− λθ
αξ1

s
(1− s)−1Ψ(s)ds,

Ψ(s) = e
λθ
αξ0

s
(1− s)

− φ
αξ0

{
1+

λθ
αξ0

C1(s)− B
C2(1)

C2(s)
}
,

C1(s) =
∫ s

0
e
− λθ

αξ0
t
(1− t)

φ
αξ0 dt,

C2(s) =
∫ s

0
e
− λθ

αξ0
t
(1− t)

φ
αξ0

−1
dt.

Proof. We investigate the steady-state probabilities of the system through the use
of PGFs. Define the probability generating functions (PGFs) as

G j(z) =
∞

∑
n=0

znPn, j,

G
′
j(z) =

d
dz

G j(z), j = 0,K.

The normalizing condition is given as

∞

∑
n=0

K

∑
j=0

Pn, j = 1.

Multiplying equation (3) by zn, using equations (1)–(2) and summing all pos-
sible values of n, we get

αξ0(1− z)G′
0(z)− [λθ(1− z)+φ ]G0(z) =−(β μ +αξ1)P1,K +λθ(1− z)P0,0. (13)

In the same manner, we obtain from equations (6) and (9), respectively.

αξ0(1−z)G′
j(z)− [λθ(1−z)+φ ]G j(z) = λθ(1−z)P0, j −φP0, j−1, j = 1,K −1, (14)

and

αξ1z(1− z)G′
K(z) − (1− z)(θλ z−β μ)GK(z) = (1− z)[λθz+β μ]P0,K

+ z(β μ +αξ1)P1,K −φz
K−1

∑
j=0

G j(z)+φz
K−2

∑
j=0

P0, j. (15)
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For z 
= 1, equation (13) can be written as follows :

G′
0(z)−

[
λθ
αξ0

+
φ

αξ0(1− z)

]
G0(z) =− β μ +αξ1

αξ0(1− z)
P1,K +

λθ
αξ0

P0,0. (16)

Multiply both sides of equation (16) by e
− λθ

αξ0
z
(1− z)

φ
αξ0 , we get

d
dz

[
e
− λθ

αξ0
z
(1− z)

φ
αξ0 G0(z)

]
= e

− λθ
αξ0

z
(1− z)

φ
αξ0

[
λθ
αξ0

P0,0 − (β μ +αξ1)

αξ0(1− z)
P1,K

]
.

Then, integrating from 0 to z, we obtain

G0(z) = e
λθ
αξ0

z
(1− z)

− φ
αξ0

{
G0(0)+

λθ
αξ0

P0,0C1(z)− β μ +αξ1

αξ0
P1,KC2(z)

}
, (17)

where

C1(z) =
∫ z

0
e
− λθ

αξ0
s
(1− s)

φ
αξ0 ds,

C2(z) =
∫ z

0
e
− λθ

αξ0
s
(1− s)

φ
αξ0

−1
ds.

Since G0(1) = ∑∞
n=0 Pn,0 > 0 and z = 1 is the root of denominator of the right

hand side of equation (17), we have that z = 1 must be the root of the nominator
of the right hand side of equation (17). So, we obtain

G0(0) = P0,0 =
(β μ +αξ1)P1,K

αξ0
C2(1)− λθP0,0

αξ0
C1(1). (18)

Next, equation (18) implies

P1,K =
αξ0

(β μ +αξ1)C2(1)
BP0,0, (19)

with

B =

[
1+

λ
αξ0

θC1(1)
]
.

Substituting equation (19) into equation (17), we obtain

G0(z) = e
λθ
αξ0

z
(1− z)

− φ
αξ0

{
1+

λθ
αξ0

C1(z)− B
C2(1)

C2(z)
}

P0,0. (20)

Equation (14) can be written as

G′
j(z)−

[
λθ
αξ0

+
φ

αξ0(1− z)

]
G j(z) =

λθ
αξ0

P0, j − φ
αξ0(1− z)

P0, j−1. (21)
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In a similar manner used for solving equation (14), we get

G j(z) = e
λθ
αξ0

z
(1− z)

− φ
αξ0

{
G j(0)+

λθ
αξ0

C1(z)P0, j − φ
αξ0

C2(z)P0, j−1

}
, j = 1,K −1.

(22)

Since G j(1) = ∑∞
n=0 Pn, j > 0 (G j(1) = P•, j represents the probability that the

server is taking the ( j + 1)th vacation), and z = 1 is the root of denominator of
the right hand side of equation (22), we have that z = 1 must be the root of the
nominator of the right hand side of equation (22). So, we get

G j(0) = P0, j =
φC2(1)
αξ0B

P0, j−1 = AP0, j−1, j = 1,K −1. (23)

Remark 2. It is easy to check that 0 < φC2(1) < αξ0 and λθC1(1) > 0. Thus,
0 < φC2(1)< αξ0 +λθC1(1). Consequently, we have 0 < A < 1.

Using equation (23) repeatedly, we find

P0, j = A jP0,0, j = 1,K −1. (24)

Substituting equation (24) into equation (22), we obtain

G j(z) = e
λθ
αξ0

z
(1− z)

− φ
αξ0 A j

{
1+

λθ
αξ0

C1(z)− B
C2(1)

C2(z)
}

P0,0, j = 1,K −1. (25)

Using equations (7) and (24), we obtain

P0,K =
φ
λ

AK−1P0,0. (26)

Next, equation (15) can be written as

G′
K(z)−

[
θλ
αξ1

− β μ
αξ1z

]
GK(z) =

[
β μ +αξ1

αξ1(1− z)

]
P1,K +

λθz+β μ
αξ1z

P0,K

+
φ

αξ1(1− z)

[
K−2

∑
j=0

P0, j −
K−1

∑
j=0

G j(z)

]
. (27)

Then, multiplying by e
−θλ
αξ1

z
z

β μ
αξ1 , we find

d
dz

(
e
−θλ
αξ1

z
z

β μ
αξ1 GK(z)

)
= e

−θλ
αξ1

z
z

β μ
αξ1

{[
β μ +αξ1

αξ1(1− z)

]
P1,K +

λθz+β μ
αξ1z

P0,K

+
φ

αξ1(1− z)

[
K−2

∑
j=0

P0, j −
K−1

∑
j=0

G j(z)

]}
. (28)
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Then, integrating from 0 to z and using equations (19) and (24)-(26), we obtain

GK(z) = e
λθ
αξ1

z
z
− β μ

αξ1

{(
Bξ0

C2(1)ξ1
+

φ
αξ1

(
1−AK−1

1−A

))
H1(z)

+
φ

αξ1

(
AK−1

λ
H2(z)−

(
1−AK

1−A

)
H3(z)

)}
P0,0, (29)

where

H1(z) =
∫ z

0
s

β μ
αξ1 e

− λθ
αξ1

s
(1− s)−1ds,

H2(z) =
∫ z

0
(λθs+β μ)s

β μ
αξ1

−1
e
− λθ

αξ1
s
ds,

H3(z) =
∫ z

0
s

β μ
αξ1 e

− λθ
αξ1

sΨ(s)(1− s)−1ds,

Ψ(s) = e
λθ
αξ0

s
(1− s)

− φ
αξ0

{
1+

λθ
αξ0

C1(s)− B
C2(1)

C2(s)
}
.

Thus, we get GK(1); the probability that the server is busy or idle:

GK(1) = P•,K = Φ(1)P0,0, (30)

where,

Φ(1) = e
λθ
αξ1

{(
Bξ0

C2(1)ξ1
+

φ
αξ1

(
1−AK−1

1−A

))
H1(1)

+
φ

αξ1

(
AK−1

λ
H2(1)−

(
1−AK

1−A

)
H3(1)

)}
,

H1(1) =
∫ 1

0
s

β μ
αξ1 e

− λθ
αξ1

s
(1− s)−1ds,

H2(1) =
∫ 1

0
(λθs+β μ)s

β μ
αξ1

−1
e
− λθ

αξ1
s
ds,

H3(1) =
∫ 1

0
s

β μ
αξ1 e

− λθ
αξ1

s
(1− s)−1Ψ(s)ds.

From equations (13)–(14), for z = 1, we have

P•, j = G j(1) = A j−1P0,0, j = 0,K −1. (31)

By the definition of P•, j and using the normalizing condition, we get

K

∑
j=0

P•, j = 1.

From equations (30)–(31), we get

P0,0 =

(
1−AK

A(1−A)
+Φ(1)

)−1

.

This completes the proof.
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4. PERFORMANCE MEASURES

Now, we present some important performance measures of the queueing model.

The mean number of customers in the system when the server is in the state j :

E(L j) =
∞

∑
n=1

nPn, j , j = 0,K.

The mean system size when the server is on vacation period :

E(LV ) =
K−1

∑
j=0

E(L j) =
K−1

∑
j=0

∞

∑
n=1

nPn, j =
∞

∑
n=1

n

(
K−1

∑
j=0

Pn, j

)
.

The mean system size when the server is on busy period :

E(LK) =
∞

∑
n=1

nPn,K .

The mean size of the system :

E(L) =
K

∑
j=0

∞

∑
n=0

nPn, j = E(LV )+E(LK).

The probability that the system is in a vacation period :

PV =
K−1

∑
j=0

∞

∑
n=0

Pn, j =
K−1

∑
j=0

P•, j.

The probability that the server is idle and not in vacation period :

PI = P0,K .

The probability that the system is busy :

PB = 1−PV −P0,K .

The mean size of the queue :

E(Lq) =
K−1

∑
j=0

∞

∑
n=1

nPn, j +
∞

∑
n=1

(n−1)Pn,K

= E(L)− (1−PV −P0,K)

= E(L)−PB.
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The expected number of customers served per unit of time :

Ecs = β μPB.

The average rate of balking :

Br = θλ

(
K

∑
j=0

∞

∑
n=0

Pn, j

)
.

The average rate of abandonment of a customer due to impatience :

Rren = αξ0

K−1

∑
j=0

∞

∑
n=1

nPn, j +αξ1

∞

∑
n=1

nPn,K

= αξ0E(LV )+αξ1E(LK). (32)

The average rate of retention of impatient customers :

Rret = α ′ξ0E(LV )+α ′ξ1E(LK). (33)

5. SPECIAL CASES

Case 1: If ξ1 = 0, K = 1, θ = 1, α = 1 and β = 1, then, the steady-state
probabilities P•,0 and P•,1 are as:

P•,0 =
ξ0

φC(1)
P0,0,

P•,1 =
1

μ −λ

(
λξ0

φ +ξ0
+

φ μC(1)
λ

)
P0,0,

where

P0,0 = (μ −λ )
(

λξ0

(ξ0 +φ)C(1)
+

(μ −λ )
φC(1)

+
φ μ
λ

)−1

,

C(1) =
∫ 1

0
(1− s)

φ
ξ0

−1
e
−λ
ξ0

s
ds,

which coincide with Equations (5.8) and (5.12) of Altman and Yechiali [2].
Case 2: When ξ1 = 0, θ = 1, α = 1 and β = 1, the steady-state-probabilities of

the number of customers in the system have the following form:

P•, j = A j−1P0,0, j = 0,K −1,

P•,K =
φ

μ −λ

(
λ (1−AK)

(φ +ξ0)A(1−A)
+

μ
λ

AK−1
)

P0,0,
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where

P0,0 =

{
(μφ +(μ −λ )ξ0)(1−AK)

(μ −λ )(φ +ξ0)A(1−A)
+

μφAK−1

λ (μ −λ )

}−1

,

with

A =
φC(1)

ξ0
,

such that

C(1) =
∫ 1

0
e
−λ
ξ0

s
(1− s)

φ
ξ0

−1
ds.

The obtained results match with Equations (26), (33), and (35) in Yue et al. [38].
Case 3: If K = 1, θ = 1, α = 1 and β = 1, the steady-state probabilities P•,0

and P•,1 are as:

P•,0 =
ξ0

φC0(1)
P00,

P•,1 =
e

λ
ξ1

ξ1

(
ξ0

C1(1)
C0(1)

−φC2(1)+
φ μ
λ

C3(1)
)

P0,0,

where

P0,0 =

⎛⎝ ξ0

φC0(1)
+

e
λ
ξ1

ξ1

(
ξ0

C1(1)
C0(1)

−φC2(1)+
φ μ
λ

C3(1)
)⎞⎠−1

,

with

C0(1) =
∫ 1

0
(1− s)

φ
ξ0

−1
e
−λ
ξ0

s
ds,

C1(1) =
∫ 1

0
(1− s)−1s

μ
ξ1 e

−λ
ξ1

s
ds,

C2(1) =
∫ 1

0

(
1− C0(t)

C0(1)

)
s

μ
ξ1 (1− s)

−( φ
ξ0

+1)
e

λ
ξ0

− λ
ξ1

s
ds,

C3(1) =
∫ 1

0
s

μ
ξ1

−1
e

λ
ξ1

s
ds,

which coincide with Equations (44), (43), and (45) in Yue et al. [39].

6. NUMERICAL ANALYSIS

To show the applicability of the theoretical results obtained previously, we
present some numerical results pointing out the impact of the impatience rates
on different performance measures of the considered queueing system. Numerical
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ξ0 ξ1 PB PV PI E(LV ) E(LK ) E(L) E(Lq) Br Rren Rret
1.00 0.5228 0.4765 0.0006 0.8160 1.3195 2.1355 1.6127 0.5546 0.9676 0.6451

1.00 2.00 0.4218 0.5774 0.0009 0.9827 0.8843 1.8670 1.4452 0.4913 1.1446 0.7631
3.00 0.3749 0.6242 0.0008 1.0654 0.7178 1.7832 1.4083 0.4708 1.2564 0.8376
4.00 0.3494 0.6497 0.0010 1.1033 0.6326 1.7358 1.3865 0.4589 1.3417 0.8944
1.00 0.4499 0.5475 0.0026 0.5922 1.0804 1.6725 1.2226 0.4413 1.0888 0.7259

2.00 2.00 0.3530 0.6440 0.0031 0.6982 0.6856 1.3838 1.0308 0.3724 1.2370 0.8246
3.00 0.3122 0.6845 0.0032 0.7403 0.5456 1.2859 0.9736 0.3482 1.3084 0.8723
4.00 0.2880 0.7087 0.0034 0.7668 0.4703 1.2371 0.9492 0.3359 1.3578 0.9052
1.00 0.4041 0.5902 0.0056 0.4672 0.9512 1.4184 1.0142 0.3762 1.1691 0.7794

3.00 2.00 0.3129 0.6806 0.0065 0.5408 0.5909 1.1317 0.8187 0.3070 1.3069 0.8713
3.00 0.2725 0.7207 0.0067 0.5724 0.4598 1.0322 0.7596 0.2822 1.3673 0.9116
4.00 0.2507 0.7425 0.0068 0.5904 0.3940 0.9844 0.7336 0.2701 1.4065 0.9377
1.00 0.3748 0.6169 0.0084 0.3873 0.8739 1.2612 0.8864 0.3351 1.2290 0.8193

4.00 2.00 0.2872 0.7031 0.0096 0.4415 0.5357 0.9771 0.6899 0.2661 1.3576 0.9051
3.00 0.2487 0.7412 0.0101 0.4657 0.4128 0.8784 0.6298 0.2413 1.4130 0.9420
4.00 0.2274 0.7620 0.0106 0.4787 0.3506 0.8293 0.6019 0.2288 1.4446 0.9630

Table 1: Model characteristics vs. ξ0 and ξ1

works have been carried out using MATLAB program. To this end, we put λ = 3,
μ = 4, φ = 0.5, K = 3, β = 0.4 and α = 0.6. The obtained results are presented in
Table 1 and Figures 2–6.

From the numerical results given in Table 1 and Figures 2–7, we have
∗ The monotonicity of PB, PV , PI , E(LK), E(L), E(Lq), Br, Rren, and Rret with

regard to ξ0 is similar to the monotonicity of PB, PV , PI , E(LK), E(L), E(Lq), Br,
Rren, and Rret with regard to ξ1. However, E(LV ) increases with the increasing of
ξ1 and decreases with ξ0 (see Figure 5).

∗ As intuitively expected, the increasing of the impatience rates during both
vacation and busy periods generate a decrease in the mean number of customers
in the queue E(Lq) as well as in the system E(L) (see Figures 2–3). Consequently,
the probability that the server is idle during busy period monotonically increase.
This leads to a decrease in the average rate of balking Br.

∗ As it should be, the increasing of the impatience rates ξ0 and ξ1 implies a
diminution in the mean number of customers in the system during vacation E(LV )
and busy E(LK) period, respectively (see Figures 5–6). This implies a decreasing
in the probability of busy period PB and an increasing in the vacation period PV
(see Figure 7).

∗ Obviously, the increase of ξ0 and ξ1 implies an increase in the average rate
of reneging Rren (see Figure 4). In this situation, the system uses certain per-
suasive mechanism in order to convince customers not to leave the system; Rret
monotonically increases with ξ0 and ξ1.



A. A. Bouchentouf et al. / Feedback Queue With Vacation and Impatience 571

1 1.5 2 2.5 3 3.5 4

1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

E
(
L
)

0
=1

0
=2

0
=3

0
=4

Figure 2: E(L) vs. ξ0 and ξ1.
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Figure 3: E(Lq) vs. ξ0 and ξ1.
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Figure 4: Rren vs. ξ0 and ξ1.
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Figure 5: E(LV ) vs. ξ0 and ξ1.

1 1.5 2 2.5 3 3.5 4

1

0.2

0.4

0.6

0.8

1

1.2

1.4

E
(
L
k
)

0=1

0=2

0=3

0=4

Figure 6: E(LK) vs. ξ0 and ξ1.
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7. CONCLUSION

In this paper, we analyzed an M/M/1 Bernoulli feedback queue with balk-
ing, reneging which depends on the state of the server, and retention of re-
neged customers under K-variant vacation policy. The steady-state probabilities
of the queueing system have been obtained, using probability generating functions
(PGFs). Then, important system characteristics have been derived. An illustrative
numerical example is presented to confirm the theoretical results. Our queueing
system can be considered as a generalized version of different existing queueing
models presented by Altman and Yechiali [2], Yue et al. [37], and Yue et al. [39].
Other variations can be done on the considered queueing system, e.g., the queueing
model can be extended to a state dependent arrival, state dependent service, and
state dependent vacation.

Acknowledgement: The authors are pleased to thank the Editor and the anony-
mous referees for their valuable comments and suggestions, which improved the
content and the presentation of this paper.
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