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Abstract: A graph G can serve as a model for the Multiprocessor Interconnection Net-
works (MINs) in which the vertices represent the processors, while the edges represent
connections between processors. This paper presents several graphs that could qualify
as models for efficient MINs based on the small values of the graph tightness previously
introduced by Cvetković and Davidović in 2008. These graphs are constructed using some
well-known and widely used graph operations. The tightness values of these graphs range
from O( 4

√
N) to O(

√
N), where N is the order of the graph under consideration. Also, two

new graph tightness values, namely Third type mixed tightness t3(G) and Second type of
Structural tightness t4(G) are defined in this paper. It has been shown that these tightness
types are easier to calculate than the others for the considered graphs. Moreover, their
values are significantly smaller.
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1. INTRODUCTION

Throughout this paper, we consider only finite, undirected, and simple graphs.
LetG be a simple graph with the adjacency matrix A = A(G). Here λ1(G), λ2(G), ...
, λn(G) are the eigenvalues of A in non-increasing order and they form the spec-
trum of G. The largest eigenvalue λ1(G) is called index of G; m = m(G) denotes
the number of distinct eigenvalues of G. Connected and undirected graphs are con-
sidered as models for MINs. The nodes (vertices) represent the processors, and the
edges represent the connection links between the processors. The time taken to
exchange data between different processing units is one of the main communication
overheads in multiprocessor systems. Interconnection networks with shorter paths
between processors, along with the average number of connections per processor,
are preferred. In order to minimize communication time within multiprocessor net-
works, they must comply with two contradictory characteristics: reduce the number
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of wires (diameter D) and maximize the rate of exchange of data (maximum vertex
degree Δ). The diameter D and maximum vertex degree Δ are two main factors of
the graph that play an essential role in the design of multiprocessor topologies.

In 2003, Elsässer et al. [10] established a link between the graph spectra and
the design of multiprocessor topologies. The key conclusion was as follows: if mΔ is
small for a given graph G, it was anticipated that the corresponding multiprocessor
topology would have excellent communication properties and was called well-suited;
also, it was noted that there exists an optimal load balancing algorithm that com-
pleted load balancing within m − 1 computational steps. Graphs with large mΔ
have been named ill-suited and found to be unsuitable for multiprocessor network
design.

Let δ and Δ be the minimum and maximum degree, respectively, d be the average
vertex degree, λ1 be the largest eigenvalue, D be the diameter, and m be the number
of distinct eigenvalues. From [9], considering the inequalities, δ ≤ d ≤ λ1 ≤ Δ and
D ≤ m − 1, in 2008, Cvetkovic̀ and Davidovic̀ [7], defined four types of graph
tightness values, namely t1(G), stt(G), spt(G), and t2(G). Here the use of largest
eigenvalue λ1(G) and diameterD, instead of Δ andm, was considered more suitable.
Dragoš Cvetkovic̀ [6] proved that the index of the graph λ1(G) is equal to the
dynamic mean value of the vertex degrees. Since the dynamical mean value of
the vertices takes into account not only the immediate vertex neighbors but also
the neighbors of the neighbors, Cvetkovic̀ and Davidovic̀ [7] suggested that it was
appropriate to use the largest eigenvalue (index). Furthermore, they showed that
the four tightness values are partially ordered by the relation ‘≤’ as follows:

t2(G) ≤ stt(G) ≤ t1(G)

t2(G) ≤ spt(G) ≤ t1(G)

Later, they concluded that the graphs with small tightness values of t2(G) are more
suitable for the design of multiprocessor interconnection networks.

In this paper, a few interesting graphs are considered, and it is demonstrated that
they could be suitable models for MINs. It is noted that determining the chromatic
number for these and similar graphs is easy. This allows the introduction of two
additional tightness values, t3(G) and t4(G), which could be calculated efficiently.
The relation ‘≤’ can also be used to partially arrange these new tightness values.
Keeping in mind the emphasis on λ1, from [19] we consider the inequality χ(G) ≤
1+λ1(G) and define t3(G) and t4(G) based on the chromatic number of the graph.
Also, we show that graphs with small values of t3(G) and t4(G) are well suited for
the design of multiprocessor interconnection networks.

The rest of the paper is organized as follows: in Section 2, we present some
known definitions and theorems which will be used later; in Section 3, based on
the chromatic number of the graph, the two new tightness values t3(G) and t4(G)
are defined, showing that graphs with small values of t3(G) and t4(G) are well
suited for the design of multiprocessor interconnection networks; Section 4 describes
examples of several new families of well-suited graphs whose tightness values range
from O( 4

√
N) to O(

√
N), where N is the number of vertices of the graph under

consideration. The examples shown under Section 4 are the results of some well-
known graph operations.

2. PRELIMINARIES

Several definitions and theorems that will be used in the remainder of this paper
are given in this section. Harary and Norman [12] used the term line graph for the
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very first time in 1960. However, these concepts were studied by Whitney [18] in
1932 and Krausz [14] in 1943.

Definition 2.1. [12] The line graph L(G) of a graph G has E(G) as its vertex set,
and two vertices are adjacent in L(G) if and only if they are adjacent as edges in
G.

A proper vertex (edge) coloring of a graph G is an assignment of colors to the
vertices (edges) of G, so that adjacent vertices (edges) are uniquely colored. A
proper vertex (edge) coloring that uses colors from a set of k colors is a k-vertex
(edge) coloring.

Definition 2.2. [5] The minimum positive integer k for which G is k-vertex col-
orable is called the chromatic number of G and is denoted by χ(G). The chro-
matic index (or edge chromatic number) χ

′
(G) of a graph G is the minimum

positive integer k for which G is k-edge colorable. Furthermore, χ
′
(G) = χ(L(G))

for every non empty graph G.

According to Vizing [17], the definition of Class one and Class two graphs are
given below:

Definition 2.3. [17] Let Δ(G) be the maximum vertex degree of the graph G.
Graphs that have χ

′
(G) = Δ(G) are called Class one graphs. Graphs with χ

′
(G) =

Δ(G) + 1 are called Class two graphs.

The concept of total graphs was introduced by Behzad [1] in 1970.

Definition 2.4. [1] The total graph T (G) of a graph G is that graph whose vertex
set is V (G) ∪ E(G), and in which two vertices are adjacent if and only if they are
adjacent or incident in G.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. For the con-
struction of new well-suited graphs, the following graph operations are considered.

Definition 2.5. [11] The Cartesian product G�H of graphs G andH has vertex set
V (G�H) = V (G)× V (H), and edge set E(G�H) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G)
and v1 = v2 , or u1 = u2 and v1v2 ∈ E(H)} .

Definition 2.6. [11] The Tensor product (direct product) G × H of graphs G
and H has vertex set V (G × H) = V (G) × V (H), and edge set E(G × H) =
{(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1v2 ∈ E(H)}.
Definition 2.7. [3] Let X be a finite set. The Johnson graph of the e-sets in X
has vertex set

(
X
e

)
, the collection of e-subsets of X. Two vertices γ, δ are adjacent

whenever γ ∩ δ has cardinality e− 1. When X is some unspecified n-set, the graph
is denoted as

(
n
e

)
or J(n, e).

Definition 2.8. [3] The Rook’s graph is defined as the Cartesian product of two
complete graphs Kn and Km, expressed as Kn�Km. It is also called as m× n grid
by Brouwer [3].

Definition 2.9. [3] The n-crown graph is defined as the complement of the 2× n
grid, i.e., it is isomorphic to the complement of Rook’s graph K2�Kn.

The following are the definitions of four types of graph tightness introduced by
Cvetkovic̀ and Davidovic̀ [7].

Definition 2.10. First type mixed tightness t1(G) of a graph G is defined as
the product of the number of distinct eigenvalues m and the maximum vertex degree
Δ of G, i.e., t1(G) = mΔ.
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Definition 2.11. Structural tightness stt(G) is the product (D+1)Δ, whereD is
diameter and Δ is the maximum vertex degree of a graph G, i.e., stt(G) = (D+1)Δ.

Definition 2.12. Spectral tightness spt(G) is the product of the number of
distinct eigenvaluesm and the largest eigenvalue λ1 of a graphG, i.e., spt(G) = mλ1.

Definition 2.13. Second type mixed tightness t2(G) is defined as a product of
the diameter D of G and the largest eigenvalue λ1, i.e., t2(G) = (D + 1)λ1.

In the analysis of a graph’s tightness, the following theorem seems to be of
fundamental importance [7].

Theorem 2.14. [7] For any kind of tightness, the number of connected graphs with
a bounded tightness is finite.

The following theorem gives the eigenvalues of G×H:

Theorem 2.15. [6] The eigenvalues of G×H are just the pairwise products of the
eigenvalues of G and H.

The following theorem gives the eigenvalues of G�H:

Theorem 2.16. [6] The eigenvalues of G�H are just the pairwise sums of the
eigenvalues of G and H.

The following result gives an explicit formula for the eigenvalues of L(G) in
terms of the eigenvalues of a regular graph G.

Corollary 2.17. [4] If G is a regular graph of degree r, with n vertices andm(= nr
2 )

edges, and eigenvalues θi for i = 1, 2, ..., n, then line graph L(G) is (2r − 2)-regular
with eigenvalues (θi + r − 2) for i = 1, ..., n, and −2 with the multiplicity (m− n).

The following result gives an explicit formula for the eigenvalues of L(G) in
terms of the signless Laplace eigenvalues of a non-regular graph G.

Proposition 2.18. [4] Let G be a graph on n vertices, having m edges, and let
q1 ≥ q2 ≥ ... ≥ qn be the signless Laplace eigenvalues of G, then the eigenvalues of
Line graph of G are θi = qi − 2 for i = 1, 2, ..., n, and θi = −2 if n < i ≤ m.

A graph G = (V,E) is bipartite if V can be partitioned into two sets V1 and V2,
such that every edge of G joins a vertex of V1 and a vertex of V2. If the degree of
each vertex is r, then the graph is called as r-regular graph.

Theorem 2.19. [5] (Konig’s Theorem) If G is a non empty bipartite graph, then
χ

′
(G) = Δ(G).

A factor of a graph refers to its spanning subgraph. A sequence of pairwise
edge-disjoint subgraphs G1, G2, . . . , Gn whose union is G is called a decomposition
of G, and is represented as G =

⋃n
1 Gi. If Gi is r-regular spanning subgraph of G,

then every Gi is called an r-factor, and G is called r-factorable graph. A graph M
is a matching if each vertex has a degree of 0 or 1. Thus, the edge set of a 1-factor
in a graph G is a perfect matching in G. So, a graph G has a 1-factor if and only
if G has a perfect matching.

Theorem 2.20. [5] A regular graph G is of Class one if and only if G is 1-factorable.

Corollary 2.21. [5] Every regular graph of odd order is of Class two.

Theorem 2.22. [15] If χ
′
(G) = Δ(G), then χ

′
(G�H) = Δ(G+H) = Δ(G)+Δ(H)

Theorem 2.23. [13] Let G and H be two graphs such that χ
′
(H) = Δ(H). Then

χ
′
(G×H) = Δ(G×H) = Δ(G)Δ(H)
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3. NEW TIGHTNESS VALUES BASED ON THE CHROMATIC
NUMBER

Cvetkovic̀ and Davidovic̀ [7] showed that the tightness values t1(G), stt(G), spt(G),
and, t2(G) are partially ordered by the relation ‘≤’ as follows:

t2(G) ≤ stt(G) ≤ t1(G)

t2(G) ≤ spt(G) ≤ t1(G)

Later, they concluded that the graphs with small tightness values of t2(G) are more
suitable for the design of multiprocessor interconnection networks.

All the graphs presented in this paper are line graphs of regular graphs, bipartite
graphs, or products of these graphs. It is a well known fact that the index of r-
regular graph is equal to the vertex degree r, while the complete bipartite graph
Kp,q has spectrum ± √pq, and 0 whose multiplicity is p + q − 2. As a result, we
can determine the eigenvalues of the graphs based on whether the graph is regular
or bipartite, as mentioned below.

To get the eigenvalues of a Line graph, one must first compute the spectrum
of the original graph, knowing whether it is a regular or bipartite graph. The
spectrum of the resulting Line graph is then computed using the Corollary 2.17
and the Proposition 2.18. The eigenvalues of the graphs generated from graph
operations, such as Tensor product and Cartesian product are computed using the
Theorem 2.15 and the Theorem 2.16. However, by determining whether the graph
is a Class one or Class two graph, using the results from the preliminaries section,
the chromatic index of these graphs is easily obtained without any complicated
calculations. Since, it is known that χ

′
(G) = χ(Line Graph(G)) [5] for any non-

empty graph G, determining the edge chromatic number of the graphs presented
here is all that is required.

Considering the Line graph of Tensor product Kn × Kp, we show that com-
puting the chromatic number is more straightforward than computing the largest
eigenvalue for this graph. The largest eigenvalue λ1 is computed as follows:
The complete graphKn is an (n−1) regular graph and the characteristic polynomial
is P (Kn, x) = (x−n+1)(x+1)n−1. From the polynomial, it is clear that the eigen-
values of Kn are (n− 1) and −1 with the multiplicities 1 and n− 1. From Theorem
2.15, it is known that the eigenvalues of Kn×Kp are (n− 1)(p− 1),(n− 1)(−1)p−1,
(−1)n−1(p− 1), and (−1)n−1(−1)p−1. From Corollary 2.17, the eigenvalues of the
line graph of Tensor product of Kn ×Kp are calculated as follows:

λ1 = np− n− p+ 1 + np− n− p+ 1− 2 = 2np− 2(n+ p)
λ2 = (n− 1)(−1) + np− n− p+ 1− 2 = np− 2n− p
λ3 = (−1)(p− 1) + np− n− p+ 1− 2 = np− 2p− n
λ4 = (−1)(−1) + np− n− p+ 1− 2 = np− n− p
and λ5 = −2

Therefore λ1 = 2np− 2(n+ p).
The chromatic number of the Line graph of Kn×Kp can be quickly computed as

follows: the first step is to figure out whether the graph is a Class one or Class two
graph; Theorem 2.20, Corollary 2.21, and Theorem 2.23 are then used to compute
the chromatic index of the graph. Here, the chromatic index is np−n− p+2 when
the number of vertices in the original graph is odd, and np − n − p + 1 when the
number of vertices in the original graph is even. The observation that one could
quickly determine the chromatic number for the graphs presented as examples in
this paper leads to the introduction of two additional tightness values, t3(G) and
t4(G), which can be partially ordered by the relation ‘≤’. The basis for the present
investigation is the following result from [19] by Wilf.
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Theorem 3.1. [19] If χ is the chromatic number and λ1 is the largest eigenvalue,
then

χ ≤ 1 + λ1 (3.1)

with equality if and only if G is a complete graph or an odd circuit.

The maximum and minimum vertex degree of graph G is denoted by Δ = Δ(G)
and δ = δ(G), respectively. The average vertex degree of G is represented as
d = d(G). From [9], we have

δ ≤ d ≤ λ1 ≤ Δ and (3.2)

D ≤ m− 1, where D is the diameter. (3.3)

Rewrite (3.1) as

χ− 1 ≤ λ1 (3.4)

Recalling Definition 2.12, which states spt(G) = mλ1 and from (3.4), the new
tightness value called the Third type mixed tightness t3(G) can be defined as follows:

Definition 3.2. Third type mixed tightness t3(G) is the product of the number
of distinct eigenvalues m and (χ− 1), where χ is the chromatic number of a graph
G, i.e., t3(G) = m(χ− 1).

Considering Definition 2.13, which states t2(G) = (D + 1)λ1 and equation(3.4),
the new tightness value called the Second type of Structural tightness t4(G) can be
defined as follows:

Definition 3.3. Second type of Structural tightness t4(G) is the product
(D + 1)(χ − 1), where D is diameter and χ is the chromatic number of a graph
G.

From Definition 3.2, Definition 3.3, equations (3.2), (3.3), and (3.4), the new
tightness values can be partially ordered as follows:

t3(G) ≤ spt(G) ≤ t1(G)

t4(G) ≤ t2(G) ≤ stt(G) ≤ t1(G)

t4(G) ≤ t2(G) ≤ spt(G) ≤ t1(G), and

t4(G) ≤ t3(G)

Hence, from the above inequalities, it is clear that the graphs with small values of
t3(G) and t4(G) are well suited for the design of the multiprocessor interconnection
topologies. In Theorem 2.14 [7], it has been proved that the number of connected
graphs with bounded tightness is finite for the four types of tightness values defined.
The following theorem proves that this criterion also applies to the two new tightness
values defined in this paper.

Theorem 3.4. The number of connected graphs with the bounded Third type
mixed tightness t3(G) and Second type of Structural tightness t4(G) is finite.

Proof. The following inequality holds for the number of vertices n in a graph G:

n ≤ 1 + Δ+Δ(Δ− 1) + Δ(Δ− 1)2 · · ·+Δ(Δ− 1)D−1

(3.5)



S. M. Hegde, and Y. M. Saumya / Construction and Analysis of Graph Models 93

As in the proof of Theorem 2.14 [7], we assume that t(G) ≤ a, for a given positive
integer a, where t(G) represents the two new tightness values t3(G) and t4(G). We
now prove that for the new tightness values, both the diameter D and maximum
vertex degree Δ are bounded by a number denoted as b. According to Brooks [2], it
is known that χ(G) ≤ 1 +Δ(G), and from Cvetkovic̀ et al. [9], we have D ≤ m− 1
for the diameter D. Here, m is the number of distinct eigenvalues, and χ(G) is the
chromatic number of G. Note that Δ ≤ a and D ≤ a− 1, as shown in the proof of
Theorem 2.14 [7]. Now for t3(G) = m(χ− 1), t3(G) ≤ a implies

m(χ− 1) ≤ a⇒ m ≤ a and (χ− 1) ≤ a, which implies

D ≤ a− 1, Δ ≤ a, and we assign b = a;

and for t4(G) = (D + 1)(χ− 1), when t4(G) ≤ a, the following holds :

(D + 1)(χ− 1) ≤ a⇒ D + 1 ≤ a and (χ− 1) ≤ a,

which implies D ≤ a− 1,Δ ≤ a, and we assign b = a;

Based on the relationship in (3.5), and assuming that both D and Δ are bound by
the number b, we have the following:

n ≤ 1 + Δ+Δ2 +Δ3 · · ·+ΔD ≤ 1 + Δ+Δ2 +Δ3 · · ·+Δb

≤ 1 + b+ b2 + b3 · · ·+ bb

Hence, we prove that a connected graph with the given number of vertices n and
a bounded tightness is also bounded. Therefore, we conclude that the number of
connected graphs with the bounded tightness t3(G) and t4(G) is finite.

4. GRAPHS SUITABLE FOR MINs

One can find examples of well-suited MINs resulting from some graph operations
with tightness values as O(

√
N) or O(N) in [8]. In this section, we present examples

of graphs resulting from several graph operations. Graph operations include line
graphs of graph products, such as the Cartesian product and the Tensor product
of graphs. Also, we consider the line graphs of Johnson graphs, Rook graphs, and
Crown graphs. The resulting graphs are considered as well-suited interconnection
network models since their tightness values range from O( 4

√
N) to O(

√
N), where

N is the number of vertices of the graph that is considered.

Obtaining the chromatic number of an arbitrary graph is NP-Hard, but one can
get the chromatic number for the well-known graphs using Sage[16]. The graphs
presented here are line graphs of some regular or bipartite graphs or products of
these graphs. For every non-empty graph G, χ′(G) = χ(L(G)), according to Def-
inition2.2. As a result, obtaining the chromatic index of the graphs provided here
is sufficient. We can determine the edge chromatic index of these graphs using the
results in the Preliminaries section. The computations in this section are performed
using Sage. [16].

Let Gc be the set of connected graphs with at least two vertices, and t(G) ∈
{t1(G), stt(G), spt(G), t2(G), t3(G), t4(G)}. Now consider the following notations:

SO(
√
N) = {G : G ∈ Gc, t(G) = O(

√
N)}

SO(
3√
N) = {G : G ∈ Gc, t(G) = O(

3
√
N)}

SO(
4√
N) = {G : G ∈ Gc, t(G) = O(

4
√
N)}
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Some of the notations used in the examples are given below in Table 1. Throughout
the examples, we consider the order of the original graph and its regularity. The
graph parameters such as D, Δ, m, λ1, and NOG are computed. Since χ

′
(G) =

χ(L(G)), the graph’s chromatic number is derived from the edge chromatic index
obtained for such graphs using the theorems stated in Section 2.

Table. 1 Notations

N Number of vertices in the newly constructed graph

D Diameter
m Number of distinct eigenvalues of G.
Δ Maximum degree
λ1 Largest eigenvalue of G

NOG Number of vertices in the original graph

Example 4.1. The set SO(
√
N) contains the following graphs:

4.1.1. Line graph of Tensor product Kn ×Kp

4.1.2. Line graph of Tensor product Kn ×Kp,p

4.1.3. Line graph of Cartesian product K1,n−1�K1,p−1

4.1.4. Line graph of Complete graph Kn

4.1.5. Line graph of Complete Bipartite graph Kn,n

4.1.6. Line graph of Crown graph Kn,n − I
4.1.7. Line graph of Complete Tripartite graph Kn,n,n

4.1.1. Line graph of Tensor product Kn×Kp: Consider G1 = L(Kn×Kp)
= Line graph of Tensor product Kn × Kp, for n > 2 and p > 2. All relevant
parameters of G1 are summarized in Table 2.

Table. 2 Line graph of Tensor product Kn ×Kp, for n > 2 and p > 2.

N D m Δ λ1

n2p2−n2p−np2+np
2 ≤ 3 ≤ 5 2np− 2(n+ p) 2np− 2(n+ p)

Table 3 presents some properties of the Tensor product Kn ×Kp, for n > 2:

Table. 3 Tensor product Kn ×Kp, for n > 2 and p > 2.

NOG Δ Is Regular?

n ∗ p np− n− p+ 1 Yes

The chromatic number of the Line graph of Tensor productKn×Kp is calculated
as follows: if the number of vertices NOG is odd, then from Corollary 2.21 it is clear
that the edge chromatic number (chromatic index) of Kn ×Kp is np − n − p + 2;
if the number of vertices NOG is even, then from Theorem 2.20 the edge chromatic
number (chromatic index) of Kn ×Kp is np− n− p+ 1. Also, from Definition 2.2,

χ
′
(Kn × Kp) = χ(L(Kn × Kp)). If n = p, then the tightness values are given as

follows:
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t1(G1) ≤ 5(2n2 − 2(n+ n)) ≤ 10n2 − 10(2n) = O(
√
N);

stt(G1) ≤ 4(2n2 − 2(n+ n)) ≤ 8n2 − 8(2n) = O(
√
N);

spt(G1) ≤ 5(2n2 − 2(n+ n)) ≤ 10n2 − 10(2n) = O(
√
N);

t2(G1) ≤ 4(2n2 − 2(n+ n)) ≤ 8n2 − 8(2n) = O(
√
N).

If n = p, the new tightness values t3(G1) and t4(G1) are also given as follows:

t3(G1) = m(χ− 1) ≤ 5(n2 − 2n) = O(
√
N); if no. of vertices is even

t3(G1) = m(χ− 1) ≤ 5(n2 − 2n+ 1) = O(
√
N); if no. of vertices is odd

t4(G1) = (D + 1)(χ− 1) ≤ 4(n2 − 2n) = O(
√
N); if no. of vertices is even

t4(G1) = (D + 1)(χ− 1) ≤ 4(n2 − 2n+ 1) = O(
√
N); if no. of vertices is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√
N), and hence

G1 can be used as a model for MINs. The Line graph of Tensor product K3 ×K3

is given in Fig. 1.

Fig. 1 Line graph of Tensor product K3 ×K3

4.1.2. Line graph of Tensor product Kn ×Kp,p: Consider G2 = L(Kn ×
Kp,p) = Line graph of Tensor product Kn×Kp,p, for n > 2. All relevant parameters
of G2 are summarized in Table 4.

Table. 4 Line graph of Tensor product Kn ×Kp,p, for n > 2.

N D m Δ λ1

n2p2 − np2 ≤ 3 ≤ 5 2np− 2p− 2 2np− 2p− 2

Table 5 presents some properties of the Tensor product Kn ×Kp,p, for n > 2:

Table. 5 Tensor product Kn ×Kp,p, for n > 2.

NOG Δ Is Regular?

2 ∗ n ∗ p np− p Yes

The chromatic number of the Line graph of Tensor product Kn × Kp,p is cal-
culated as follows: from Theorem 2.23, it can be observed that the edge chromatic
number (chromatic index) of Kn×Kp,p is np−p. Also, from Definition 2.2, the edge
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chromatic number χ
′
(Kn ×Kp,p) = χ(L(Kn ×Kp,p)). If n = p, then the tightness

values are given as follows:

t1(G2) ≤ 5(2n2 − 2n− 2) = O(
√
N);

stt(G2) ≤ 4(2n2 − 2n− 2) = O(
√
N);

spt(G2) ≤ 5(2n2 − 2n− 2) = O(
√
N);

t2(G2) ≤ 4(2n2 − 2n− 2) = O(
√
N).

If n = p, the new tightness values t3(G2) and t4(G2) are also given as follows:

t3(G2) = m(χ− 1) ≤ 5(n2 − n− 1) ≤ 5n2 − 5n− 5 = O(
√
N);

t4(G2) = (D + 1)(χ− 1) ≤ 4(n2 − n− 1) ≤ 4n2 − 4n− 4 = O(
√
N).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√
N), and hence

G2 can be used as a model for MINs. The Line graph of Tensor product K3 ×K2,2

is given in Fig. 2.

Fig. 2 Line graph of Tensor product K3 ×K2,2

4.1.3. Line graph of Cartesian product K1,n−1�K1,p−1: Consider G3 =
L(K1,n−1�K1,p−1) = Line graph of Cartesian product K1,n−1�K1,p−1. Table 6
summarizes all the relevant parameters of G3 .

Table. 6 Line graph of Cartesian product K1,n−1�K1,p−1.

N D m Δ λ1

2np− n− p ≤ 3 ≤ 8 2p+ n− 4 n+ p− 2

. The properties of Cartesian product K1,n−1�K1,p−1 are given in Table 7.

Table. 7 Cartesian product K1,n−1�K1,p−1.

NOG Δ Is Regular?

n ∗ p n+ p− 2 No
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The chromatic number of the Line graph of Cartesian product K1,n−1�K1,p−1

is calculated as follows: from Theorem 2.22 the edge chromatic number (chromatic
index) of K1,n−1�K1,p−1 is n+p−2. Also, from Definition 2.2, the edge chromatic

number χ
′
(K1,n−1�K1,p−1) = χ(L(K1,n−1�K1,p−1)). If n = p, then the tightness

values are given as follows:

t1(G3) ≤ 8(2n+ n− 4) ≤ 8(3n− 4) = O(
√
N);

stt(G3) ≤ 4(2n+ n− 4) ≤ 8(3n− 4) = O(
√
N);

spt(G3) ≤ 8(n+ n− 2) ≤ 8(2n− 2) = O(
√
N);

t2(G3) ≤ 4(n+ n− 2) ≤ 4(2n− 2) = O(
√
N).

If n = p, the new tightness values t3(G3) and t4(G3) are also given as follows:

t3(G3) = m(χ− 1) ≤ 8(2n− 3) = O(
√
N);

t4(G3) = (D + 1)(χ− 1) ≤ 4(2n− 3) = O(
√
N).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√
N), and hence

G3 can be used as a model for MINs. Fig. 3 gives the Line graph of Cartesian
product K1,2�K1,3.

Fig. 3 Line graph of Cartesian product K1,2�K1,3

4.1.4. Line graph of Complete graph Kn: Consider G4 = L(Kn) = Line
graph of Complete graph of Kn, for n > 2. Table 8 summarizes all the relevant
properties of G4 .

Table. 8 Line graph of Complete graph Kn.

N D m Δ λ1

n2−n
2 ≤ 2 ≤ 3 2(n− 2) 2(n− 2)

The properties of the Complete graph Kn are given in Table 9.

Table. 9 Complete graph Kn

NOG Δ Is Regular?

n n− 1 Yes
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The chromatic number of the Line graph of Complete graph Kn is calculated as
follows: from Theorem 2.20 and Corollary 2.21, if NOG is odd, the edge chromatic
number (chromatic index) ofKn is n, and n−1 if NOG is even. Also, from Definition
2.2, the edge chromatic number χ

′
(Kn) = χ(L(Kn)). The tightness values are given

as follows: :

t1(G4) ≤ 3× 2(n− 2) ≤ 6(n− 2) = O(
√
N);

stt(G4) ≤ 3× 2(n− 2) ≤ 6(n− 2) = O(
√
N);

spt(G4) ≤ 3× 2(n− 2) ≤ 6(n− 2) = O(
√
N);

t2(G4) ≤ 3× 2(n− 2) ≤ 6(n− 2) = O(
√
N).

The new tightness values t3(G4) and t4(G4) are also given as follows:

t3(G4) = m(χ− 1) ≤ 3(n− 2) ≤ 3n− 6 = O(
√
N); if n is even

t3(G4) = m(χ− 1) ≤ 3(n− 1) ≤ 3n− 3 = O(
√
N); if n is odd

t4(G4) = (D + 1)(χ− 1) ≤ 3(n− 2) ≤ 3n− 6 = O(
√
N); if n is even

t4(G4) = (D + 1)(χ− 1) ≤ 3(n− 1) ≤ 3n− 3 = O(
√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√
N), and hence

G4 can be used as a model for MINs. The Line graph of Complete graph K5 is
given in Fig. 4.

Fig. 4 Line graph of Complete graph K5

4.1.5. Line graph of Complete Bipartite graph Kn,n: Consider G5 =
L(Kn,n) = Line graph of Complete Bipartite graph Kn,n. Table 10 summarizes all
the relevant properties of G5 .

Table. 10 Line graph of Complete Bipartite graph Kn,n.

N D m Δ λ1

n2 2 3 2(n− 1) 2(n− 1)

The properties of the Complete Bipartite graph Kn,n are given in Table 11.

Table. 11 Complete Bipartite graph Kn,n

NOG Δ Is Regular?

2 ∗ n n Yes
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The chromatic number of the Line graph of Complete Bipartite graph Kn,n is
calculated as follows: from Theorem 2.19, the edge chromatic number (chromatic
index) of Kn,n is n. Also, from Definition 2.2, the edge chromatic number χ

′
(Kn,n)

= χ(L(Kn,n)). The tightness values are given as follows:

t1(G5) = 3× 2(n− 1) = 6(n− 1) = O(
√
N);

stt(G5) = 3× 2(n− 1) = 6(n− 1) = O(
√
N);

spt(G5) = 3× 2(n− 1) = 6(n− 1) = O(
√
N);

t2(G5) = 3× 2(n− 1) = 6(n− 1) = O(
√
N).

The new tightness values t3(G5) and t4(G5) are also given as follows:

t3(G5) = m(χ− 1) = 3(n− 1) = 3n− 3 = O(
√
N);

t4(G5) = (D + 1)(χ− 1) = 3(n− 1) = 3n− 3 = O(
√
N).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√
N), and hence

G5 can be used as a model for MINs. The Line graph of Complete Bipartite graph
K3,3 is shown in Fig. 5.

Fig. 5 Line graph of Complete Bipartite graph K3,3

4.1.6. Line graph of Crown graph Kn,n−I: Consider G6 = Kn,n−I = Line
graph of Crown graph Kn,n− I. Table 12 summarizes all the relevant properties of
G6 .

Table. 12 Line graph of Crown graph Kn,n − I.

N D m Δ λ1

n2 − n 3 4 2(n− 2) 2(n− 2)

The properties of the Crown graph Kn,n − I are given in Table 13.

Table. 13 Crown graph Kn,n − I

NOG Δ Is Regular?

2 ∗ n n− 1 Yes

The chromatic number of the Line graph of Crown graph Kn,n− I is calculated
as shown below. The Crown graph Kn,n−I is a (n−1)-regular bipartite graph with
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the number of vertices is given as 2n. It can be observed that the edge chromatic
number (chromatic index) of Kn,n − I is n − 1 (from Theorem 2.19). Also, from

Definition 2.2 the edge chromatic number χ
′
(Kn,n − I) = χ(L(Kn,n − I)). The

tightness values are given as follows:

t1(G6) = 4× 2(n− 2) = 8n− 8 = O(
√
N);

stt(G6) = 4× 2(n− 2) = 8n− 8 = O(
√
N);

spt(G6) = 4× 2(n− 2) = 8n− 8 = O(
√
N);

t2(G6) = 4× 2(n− 2) = 8n− 8 = O(
√
N).

The new tightness values t3(G6) and t4(G6) are also given as follows:

t3(G6) = m(χ− 1) = 4(n− 2) = 4n− 8 = O(
√
N);

t4(G6) = (D + 1)(χ− 1) = 4(n− 2) = 4n− 8 = O(
√
N).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√
N), and hence

G6 can be used as a model for MINs. In Fig. 6 the Line graph of Crown graph
K4,4 − I is shown.

Fig. 6 Line graph of Crown graph K4,4 − I

4.1.7. Line graph of Complete Tripartite graph Kn,n,n: Consider G7 =
L(Kn,n,n) = Line graph of Complete Tripartite graph Kn,n,n. Table 14 summarizes
all the relevant properties of G7.

Table. 14 Line graph of Complete Tripartite graph Kn,n,n.

N D m Δ λ1

3n2 2 4 4n− 2 4n− 2

The properties of the Complete Tripartite graph Kn,n,n are given in Table 15.

Table. 15 Complete Tripartite graph Kn,n,n

NOG Δ Is Regular?

3 ∗ n 2 ∗ n Yes

The chromatic number of the Line graph of Complete Tripartite graph Kn,n,n

is calculated as shown below. It can be observed that the edge chromatic number



S. M. Hegde, and Y. M. Saumya / Construction and Analysis of Graph Models 101

(chromatic index) of Complete Tripartite graph Kn,n,n is 2n + 1 if the number of
vertices is odd (from Corollary 2.21), and 2n if number of vertices is even (from
Theorem 2.20). Also, from Definition 2.2 the edge chromatic number χ

′
(Kn,n,n) =

χ(L(Kn,n,n)). The tightness values are given as follows:

t1(G7) = 4× (4n− 2) = 16n− 8 = O(
√
N);

stt(G7) = 3× (4n− 2) = 12n− 6 = O(
√
N);

spt(G7) = 4× (4n− 2) = 16n− 8 = O(
√
N);

t2(G7) = 3× (4n− 2) = 12n− 6 = O(
√
N).

The new tightness values t3(G7) and t4(G7) are also given as follows:

t3(G7) = m(χ− 1) = 4(2n− 1) = 8n− 4 = O(
√
N); if n is even

t3(G7) = m(χ− 1) = 4(2n) = 8n = O(
√
N); if n is odd

t4(G7) = (D + 1)(χ− 1) = 3(2n− 1) = 6n− 3 = O(
√
N); if n is even

t4(G7) = (D + 1)(χ− 1) = 3(2n) = 6n = O(
√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√
N), and hence

G7 can be used as a model for MINs. The Line graph of Complete Tripartite graph
K2,2,2 is given in Fig. 7.

Fig. 7 Line graph of Complete Tripartite graph K2,2,2

Example 4.2. The set SO(
3√
N) contains the following graphs:

4.2.1. Line graph of Johnson graph J(n, 2)
4.2.2. Line graph of Cartesian product K1,n−1�Kp

4.2.3. Line graph of Rook graph Kn�Kn

4.2.4. Line graph of Total graph of complete bipartite graph Kn,n

4.2.5. Line graph of Total graph of complete graph Kn

4.2.1. Line graph of Johnson graph J(n, 2): Consider G1 = L(J(n, 2)) =
Line graph of Johnson graph J(n, 2), for n > 3. The graph parameters of G1 are
given in Table 16.

Table. 16 Line graph of Johnson graph J(n, 2).

N D m Δ λ1

n3−3n2+2n
2 ≤ 3 ≤ 4 4n− 10 4n− 10

The properties of Johnson graph J(n, 2) are given in Table 17.
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Table. 17 Johnson graph J(n, 2)

NOG Δ Is Regular?

(
n
2

)
2(n− 2) Yes

It can be observed that the edge chromatic number (chromatic index) of J(n, 2)
is 2(n−2)+1 if the number of vertices is odd (from Corollary 2.21), and 2(n−2) if
number of vertices is even (from Theorem 2.20). Also, from Definition 2.2 the edge
chromatic number χ

′
(J(n, 2)) = χ(L(J(n, 2))). The tightness values are given as

follows:

t1(G1) ≤ 4(4n− 10) ≤ 16n− 40 = O( 3
√
N);

stt(G1) ≤ 4(4n− 10) ≤ 16n− 40 = O( 3
√
N);

spt(G1) ≤ 4(4n− 10) ≤ 16n− 40 = O( 3
√
N);

t2(G1) ≤ 4(4n− 10) ≤ 16n− 40 = O( 3
√
N).

The new tightness values t3(G1) and t4(G1) are also given as follows:

t3(G1) = m(χ− 1) ≤ 4(2n− 5) ≤ 8n− 20 = O( 3
√
N); if no. of vertices is even

t3(G1) = m(χ− 1) ≤ 4(2n− 4) ≤ 8n− 16 = O( 3
√
N); if no. of vertices is odd

t4(G1) = (D + 1)(χ− 1) ≤ 4(2n− 5) ≤ 8n− 20 = O( 3
√
N); if no. of vertices is

even
t4(G1) = (D + 1)(χ− 1) ≤ 4(2n− 4) ≤ 8n− 16 = O( 3

√
N); if no. of vertices is

odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O( 3
√
N), and hence

G1 can be used as a model for MINs. The Line graph of Johnson graph J(4, 2) is
provided in Fig. 8.

Fig. 8 Line graph of Johnson graph J(4, 2)

4.2.2. Line graph of Cartesian product K1,n−1�Kp: Consider G2 =
L(K1,n−1�Kp) = Line graph of Cartesian product K1,n−1�Kp. The graph pa-
rameters of G2 are given in Table 18.
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Table. 18 Line graph of Cartesian product K1,n−1�Kp.

N D m Δ λ1

np2+np−2p
2 ≤ 4 ≤ 7 2n+ 2p− 6 n+ 2p− 4

The properties of Cartesian product K1,n−1�Kp are given in Table 19.

Table. 19 Cartesian product K1,n−1�Kp

NOG Δ Is Regular?

n ∗ p n+ p− 2 No

The chromatic number of the Line graph of Cartesian product K1,n−1�Kp is
calculated as follows: from Theorem 2.22, the edge chromatic number (chromatic
index) of K1,n−1�Kp is n + p − 2. Also, from Definition 2.2, the edge chromatic

number χ
′
(K1,n−1�Kp) = χ(L(K1,n−1�Kp)). If n = p, then the tightness values

are given as follows:

t1(G2) ≤ 7(2n+ 2n− 6) ≤ 7(4n− 6) = O( 3
√
N);

stt(G2) ≤ 5(2n+ 2n− 6) ≤ 5(4n− 6) = O( 3
√
N);

spt(G2) ≤ 7(n+ 2n− 4) ≤ 7(3n− 4) = O( 3
√
N);

t2(G2) ≤ 5(n+ 2n− 4) ≤ 5(3n− 4) = O( 3
√
N).

If n = p, the new tightness values t3(G2) and t4(G2) are also given as follows:

t3(G2) = m(χ− 1) ≤ 7(n+ n− 3) ≤ 7(2n− 3) = O( 3
√
N);

t4(G2) = (D + 1)(χ− 1) ≤ 5(n+ n− 3) ≤ 5(2n− 3) = O( 3
√
N)

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O( 3
√
N), and hence

G2 can be used as a model for MINs. In Fig. 9, the Line graph of Cartesian product
K1,2�K3 is shown.

Fig. 9 Line graph of Cartesian product K1,2�K3

4.2.3. Line graph of Rook graph Kn�Kn: Consider G3 = L(Kn�Kn) =
Line graph of Rook graph Kn�Kn, for (n > 2). The graph parameters of G3 are
given in Table 20.
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Table. 20 Line graph of Rook graph Kn�Kn.

N D m Δ λ1

n3 − n2 3 4 4n− 6 4n− 6

The properties of Rook graph Kn�Kn are given in Table 21.

Table. 21 Rook graph Kn�Kn

NOG Δ Is Regular?

n2 2 ∗ n− 2 Yes

The chromatic number of the Line graph of Rook graph Kn�Kn is calculated
as follows: it can be observed that the edge chromatic number (chromatic index)
of Kn�Kn is 2n − 1 if the number of vertices is odd (from Corollary 2.21), and
2n− 2 if number of vertices is even (from Theorem 2.20). Also, from Definition 2.2
the edge chromatic number χ

′
(Kn�Kn) = χ(L(Kn�Kn)). The tightness values are

given as follows:

t1(G3) = 4(4n− 6) = 16n− 24 = O( 3
√
N);

stt(G3) = 4(4n− 6) = 16n− 24 = O( 3
√
N);

spt(G3) = 4(4n− 6) = 16n− 24 = O( 3
√
N);

t2(G3) = 4(4n− 6) = 16n− 24 = O( 3
√
N).

The new tightness values t3(G3) and t4(G3) are also given as follows:

t3(G3) = m(χ− 1) = 4(2n− 3) = 8n− 12 = O( 3
√
N); if n is even

t3(G3) = m(χ− 1) = 4(2n− 2) = 8n− 8 = O( 3
√
N); if n is odd

t4(G3) = (D + 1)(χ− 1) = 4(2n− 3) = 8n− 12 = O( 3
√
N); if n is even

t4(G3) = (D + 1)(χ− 1) = 4(2n− 2) = 8n− 8 = O( 3
√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O( 3
√
N), and hence

G3 can be used as a model for MINs. The Line graph of Rook graph K3�K3 is
shown in Fig. 10.

Fig. 10 Line graph of Rook graph K3�K3
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4.2.4. Line graph of Total graph of complete bipartite graph Kn,n:
Consider G4 = L(T (Kn,n)) = Line graph of Total graph of complete bipartite
graph Kn,n. The graph parameters of G4 are given in Table 22.

Table. 22 Line graph of Total graph of complete bipartite graph Kn,n.

N D m Δ λ1

n3 + 2n2 ≤ 3 ≤ 7 4n− 2 4n− 2

The properties of Total graph of complete bipartite graph Kn,n are given in
Table 23.

Table. 23 Total graph of complete bipartite graph Kn,n

NOG Δ Is Regular?

n2 + 2n 2 ∗ n Yes

The chromatic number of the Line graph of Total graph of complete bipartite
graph Kn,n is calculated as follows: it can be observed that the edge chromatic
number (chromatic index) of Total graph of complete bipartite graph Kn,n is 2n+1
if the number of vertices is odd (from Corollary 2.21), and 2n if number of vertices
is even (from Theorem 2.20). Also, from Definition 2.2 the edge chromatic number
χ

′
(T (Kn,n)) = χ(L(T (Kn,n))). The tightness values are given as follows:

t1(G4) ≤ 7(4n− 2) ≤ 28n− 14 = O( 3
√
N);

stt(G4) ≤ 4(4n− 2) ≤ 16n− 8 = O( 3
√
N);

spt(G4) ≤ 7(4n− 2) ≤ 28n− 14 = O( 3
√
N);

t2(G4) ≤ 4(4n− 2) ≤ 16n− 8 = O( 3
√
N).

The new tightness values t3(G4) and t4(G4) are also given as follows:

t3(G4) = m(χ− 1) ≤ 7(2n− 1) ≤ 14n− 7 = O( 3
√
N); if n is even

t3(G4) = m(χ− 1) ≤ 7(2n) ≤ 14n = O( 3
√
N); if n is odd

t4(G4) = (D + 1)(χ− 1) ≤ 4(2n− 1) ≤ 8n− 4 = O( 3
√
N); if n is even

t4(G4) = (D + 1)(χ− 1) ≤ 4(2n) ≤ 8n = O( 3
√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O( 3
√
N), and hence

G4 can be used as a model for MINs. The Line graph of Total graph of complete
bipartite graph K2,2 is given in Fig. 11.
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Fig. 11 Line graph of Total graph of complete bipartite graph K2,2

4.2.5. Line graph of Total graph of complete graph Kn: Consider G5 =
L(T (Kn)) = Line graph of Total graph of complete graph Kn. The graph parame-
ters of G5 are given in Table 24.

Table. 24 Line graph of Total graph of complete graph Kn.

N D m Δ λ1

n3−n
2 ≤ 2 ≤ 4 4n− 6 4n− 6

The properties of Total graph of complete graph Kn are given in Table 25.

Table. 25 Total graph of complete graph Kn

NOG Δ Is Regular?

n2+n
2 2n− 2 Yes

The chromatic number of the Line graph of Total graph of complete graph Kn is
calculated as follows: it can be observed that the edge chromatic number (chromatic
index) of Total graph of complete graph Kn is 2n−1 if the number of vertices is odd
(from Corollary 2.21), and 2n−2 if number of vertices is even (from Theorem 2.20).
Also, from Definition 2.2 the edge chromatic number χ

′
(T (Kn)) = χ(L(T (Kn))).

The tightness values are given as follows:

t1(G5) ≤ 4(4n− 6) ≤ 16n− 24 = O( 3
√
N);

stt(G5) ≤ 3(4n− 6) ≤ 12n− 18 = O( 3
√
N);

spt(G5) ≤ 4(4n− 6) ≤ 16n− 24 = O( 3
√
N);

t2(G5) ≤ 3(4n− 6) ≤ 12n− 18 = O( 3
√
N).

The new tightness values t3(G5) and t4(G5) are also given as follows:

t3(G5) = m(χ− 1) ≤ 4(2n− 3) ≤ 8n− 12 = O( 3
√
N); if n is even

t3(G5) = m(χ− 1) ≤ 4(2n− 2) ≤ 8n− 8 = O( 3
√
N); if n is odd
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t4(G5) = (D + 1)(χ− 1) ≤ 3(2n− 3) ≤ 6n− 9 = O( 3
√
N); if n is even

t4(G5) = (D + 1)(χ− 1) ≤ 3(2n− 2) ≤ 6n− 6 = O( 3
√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O( 3
√
N), and hence

G5 can be used as a model for MINs. Fig. 12 shows the Line graph of Total graph
of complete graph K3.

Fig. 12 Line graph of Total graph of complete graph K3

Example 4.3. The Line graph of Johnson graph J(n, 3) belongs to the set SO(
4√
N)

Consider G1 = L(J(n, 3)) = Line graph of Johnson graph J(n, 3), for n > 5.
The graph parameters of G1 are given in Table 26.

Table. 26 The Line graph of Johnson graph J(n, 3).

N D m Δ λ1

n4−6n3+11n2−6n
4 ≤ 4 ≤ 5 6n− 20 6n− 20

The properties of Johnson graph J(n, 3) are given in Table 27.

Table. 27 Johnson graph J(n, 3)

NOG Δ Is Regular?

(
n
3

)
3(n− 3) Yes

The chromatic number of the Line graph of Johnson graph J(n, 3) is calculated
as follows: it can be observed that the edge chromatic number (chromatic index) of
J(n, 3) is 3(n − 3) + 1 if the number of vertices is odd (from Corollary 2.21), and
3(n − 3) if number of vertices is even(from Theorem 2.20). Also, from Definition
2.2 the edge chromatic number χ

′
(J(n, 3)) = χ(L(J(n, 3))). The tightness values

are given as follows:

t1(G1) ≤ 5(6n− 20) ≤ 30n− 100 = O( 4
√
N);

stt(G1) ≤ 5(6n− 20) ≤ 30n− 100 = O( 4
√
N);



108 S. M. Hegde, and Y. M. Saumya / Construction and Analysis of Graph Models

spt(G1) ≤ 5(6n− 20) ≤ 30n− 100 = O( 4
√
N);

t2(G1) ≤ 5(6n− 20) ≤ 30n− 100 = O( 4
√
N).

The new tightness values t3(G1) and t4(G1) are also given as follows:

t3(G1) = m(χ− 1) ≤ 5(3n− 10) = O( 4
√
N); if no. of vertices is even

t3(G1) = m(χ− 1) ≤ 5(3n− 9) = O( 4
√
N); if no. of vertices is odd

t4(G1) = (D + 1)(χ− 1) ≤ 5(3n− 10) = O( 4
√
N); if no. of vertices is even

t4(G1) = (D + 1)(χ− 1) ≤ 5(3n− 9) = O( 4
√
N); if no. of vertices is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O( 4
√
N), and hence

G1 can be used as a model for MINs. The Line graph of Johnson graph J(6, 3) is
shown in Fig. 13.

Fig. 13 Line graph of Johnson graph J(6, 3)

5. CONCLUSION

We have studied some well-known classes of graphs, such as the line graphs
of Johnson graphs, Rook graphs, Crown graphs, complete graphs, and complete
bipartite graphs. Also, graphs resulting from various graph operations, such as line
graphs of the Cartesian product of graphs and line graphs of the Tensor product
of graphs, are included in our study. All these graphs turned out to be well-suited
interconnection network models because their tightness values range from O( 4

√
N)

to O(
√
N), where N is the number of vertices in the graph under consideration.

Based on some theorems from the literature, we noticed that for these graphs it
is easier to compute chromatic number than the spectrum, and we proposed the
new tightness values t3(G) and t4(G) for these and similar graphs. In addition, the
resulting values of t3(G) and t4(G) are significantly smaller than the corresponding
values for t2(G). As a result, we propose using the tightness values t3(G) and
t4(G) whenever it seems more appropriate. In the future, we can extend examples
by comparing the tightness values of various graphs obtained from different graph
operations.
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