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1. INTRODUCTION

The theory of set-valued optimization problems, being an expanding branch of
optimization theory, has attracted the attention of many researchers in the past
few years. A set-valued optimization problem is one that involves set-valued maps
as objective functions and constraints. Many optimization problems in mathe-
matical economics, differential inclusions, image processing, optimal control, and
viability theory are set-valued optimization problems, but there exist various types
of notions of differentiability of set-valued maps. In 1997, Jahn and Rauh [22] in-
troduced the notion of contingent epiderivative of set-valued maps. It has a vital
role for establishment of optimality conditions of set-valued optimization prob-
lems. Borwein [6] introduced the notion of cone convexity of set-valued maps,
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which plays an important role in the theory of set-valued optimization problems.
There are various classes of set-valued optimization problems. An important class
is that of set-valued fractional programming problems. In 1997, Bhatia and Mehra
[4] introduced the notion of cone preinvexity of set-valued maps and established
the Lagrangian duality results for the set-valued fractional programming prob-
lems. They also [5] developed the duality results for Geoffrion efficient solutions
of the set-valued fractional programming problems via cone convexity. Gadhi and
Jawhar [20] established the necessary optimality conditions of the set-valued frac-
tional programming problems without any convex separation approach in 2013.
Many authors like Kaul and Lyall [23], Bhatia and Garg [3], Suneja and Gupta
[27], Suneja and Lalitha [28], and Lee and Ho [24] established the optimality condi-
tions and developed the duality theorems for vector-valued fractional programming
problems under generalized convexity assumptions. Li et al. [25, 26] established
the necessary and sufficient optimality conditions by using higher-order contingent
derivative. They also formulated the higher-order Mond-Weir dual for set-valued
optimization problems and studied the duality theorems under convexity assump-
tions. In 2015, Das and Nahak [11] established the sufficient Karush-Kuhn-Tucker
(KKT) optimality conditions for set-valued fractional programming problems un-
der contingent epiderivative and p-cone convexity assumptions. They also studied
the duality results of parametric, Mond-Weir, Wolfe, and mixed types for the
problem. Later, they [9] established the sufficient KKT optimality conditions of
set-valued optimization problems under generalized convexity assumptions and
higher-order contingent derivative assumptions. They also proved weak, strong,
and converse duality theorems of Mond-Weir, Wolfe and mixed types.

In this paper, we establish the second-order sufficient KKT optimality con-
ditions of a set-valued fractional programming problem by using second-order p-
cone convexity assumptions. The duality results between the primal problem and
second-order dual problems of parametric, Mond-Weir, Wolfe, and mixed types
are also proved via the notion of second-order contingent epiderivative.

This paper is organized as follows. Section 2 deals with some definitions and
preliminary concepts of set-valued maps. In Section 3, a set-valued fractional
programming problem (FP) is considered and the second-order sufficient KKT
conditions are established for the problem (FP). Various types of duality the-
orems are studied under second-order contingent epiderivative and second-order
generalized cone convexity assumptions.

2. DEFINITIONS AND PRELIMINARIES

Let K be a nonempty subset of the m-dimensional Euclidean space R™. Then
K is called a cone if \y € K, for all y € K and A > 0. Furthermore, K is called
non-trivial if K # {Ogm }, proper if K # R™, pointed if K N (—K) = {Og= }, solid
if int(K) # 0, closed if K = K, and convex if \K + (1 - \)K C K, for all A € [0,1],
where int(K) and K denote the interior and closure of K, respectively and Ogm is
the zero element of R™.
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Let us define the non-negative orthant R of R™ by
RY ={y = (y1,.-sym) €ER™ 1y, > 0,Vi = 1,2,...,m}.

Then RY is a solid pointed closed convex cone and int(R'?") U {Ogm} is a solid
pointed convex cone in R™.

There are two types of cone-orderings in R™ with respect to the solid pointed
convex cone R* of R™. For any two elements y1,y2 € R™, we have

y1 <y2 ifyo —y1 € RY
and
y1 < yo if yo —y1 € int(RY).

We say yo > y1, if y1 < ys and ys > y1, if y1 < yo.
The following notions of minimality are mainly used with respect to the solid
pointed convex cone R of R™.

Definition 2.1. Let B be a nonempty subset of R™. Then minimal and weakly
minimal points of B are defined as

(i) ¥’ € B is a minimal point of B if there is noy € B\ {y'} such thaty <y’.
(ii) ¢’ € B is a weakly minimal point of B if there is no y € B such that y < y'.

The sets of minimal points and weakly minimal points of B are denoted by min(B)
and w-min(B), respectively and characterized as

min(B) ={y' € B: (y —RT)NB = {¢/}}
and
w-min(B) = {y’ € B : (y —int(R})) N B = 0}.

Similarly, the sets of maximal points and weakly maximal points of B can be
defined and characterized.

We recall the notions of contingent cone and second-order contingent set in a
real normed space.

Definition 2.2. [1, 2] Let Y be a real normed space, ) # B C Y, and 3y € B.
The contingent cone to B aty' is denoted by T'(B,y') and defined as follows:

An element y € T(B,vy') if there exist sequences {\,} in R, with A\, — 0" and
{yn} in Y, with y, — y such that

Yy 4+ Myn € B,Vn € N,

or, there exist sequences {t,} in R, with t,, > 0 and {y.,} in B, with y,, — y' such
that

tn(yn —Y') = .
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The contingent cone T'(B,y’) is actually a local approximation of the set B — /.
If ¢ € int(B), then T'(B,y') =Y.
Proposition 2.1. [2] The contingent cone T(B,y’) is a closed cone, but not nec-
B !
essarily conver and T'(B,y') C U 4.
h>0 h

Definition 2.3. [1, 2, 7] Let Y be a real normed space, ) # B C Y, y' € B, and
u €Y. The second-order contingent set to B at 1y’ in the direction u is denoted by
T%(B,y',u) and defined as

An element y € T?(B,y',u) if there exist sequences {\,} in R, with \,, — 0%
and {yn} inY, with y, — y such that

1
Y 4+ Au + §An2yn € B,Vn e N,

or, there exist sequences {t,}, {t,.} in R, with t,,t, > 0, t, — oo, tI, = oo,
%n — 2, and {y,,} in B, with y|, =y such that

tn(yp, —y') = wand t;, (ta(y,, — ') —u) = y.

Proposition 2.2. [29] The second-order contingent set T*(B,y',u) is a closed
set, but not necessarily a cone. Even, T?(B,y’,u) may not be convez, though B is
convez. Also, T*(B,y',0y) =T(T(B,y),0y) =T(B,y).

Let X, Y be real normed spaces, 2¥ be the set of all subsets of Y, and K be
a solid pointed convex cone in Y. Let F : X — 2Y be a set-valued map from
X toY,ie, F(z) CY, for all z € X. The effective domain, image, graph, and
epigraph of F' are defined respectively by

dom(F) ={z € X : F(z) # 0},
F(A)= ] F(x), for any A(#0) C X,

z€A
gr(F) ={(z,y) € X xY 1y € F(x)},
and
epi(F) ={(z,y) e X xY :y € F(z) + K}.

Let A be a nonempty subset of X, 2/ € A, F : X — 2Y be a set-valued map,
with A C dom(F) and ¢y’ € F(a’). Jahn and Rauh [22] introduced the notion
of contingent epiderivative of set-valued maps, which plays an important role in
set-valued optimization problems.

Definition 2.4. [22] A single-valued map D+F(x',y") : X — Y whose epigraph
coincides with the contingent cone to the epigraph of F at (2',y'), i.e.,

epi(DTF(CL'/7 y/)) = T(epi(F), (I/, y/))7

is said to be the contingent epiderivative of F at (2',y").
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When f : X — R is a real-valued map, being continuous at ¢y € X and convex,

Dy f(wo, f(x0))(u) = f'(20)(u),Yu € X,

where f'(zg)(u) is the directional derivative of f at xg in the direction w.
Jahn et al. [21] introduced the notion of second-order contingent epiderivative
of set-valued maps which also has a vital role in set-valued optimization problems.

Definition 2.5. [21] A single-valued map D%F(z’,y’,u, v) : X = Y whose epi-
graph coincides with the second-order contingent set to the epigraph of F at (z',y') €
gr(F) in a direction (u,v) € X XY, i.e.,

epi(DIF (2!, u,0)) = T(epi(F), (&, y), (u,0)),

is said to be the second-order contingent epiderivative of F at (z',y’) in the direc-
tion (u,v).

Proposition 2.3. [2] Let ) # AC X, 2’ € A, u € X, and f : X - Y be a
single-valued map that is twice continuously differentiable around x’. The second-
order contingent epiderivative D%f(x/, f(@),u, f/(2")u) of f at (2', f(a')) in the
direction (u, f'(x")u) is given by

1
Dif (' f(a)u, f' (@ )u)(@) = f'(a")a + 51" (@) (u,u), 0 € T*(A, 2 ).
Borwein [6] introduced the notion of cone convexity of set-valued maps.

Definition 2.6. [6] Let A be a nonempty convexr subset of a real normed space
X. A set-valued map F : X — 2Y, with A C dom(F), is called K -convex on A if
Vai,29 € A and X € [0,1],

)\F(l‘l) + (1 — )\)F(IEQ) - F()\Il + (1 — )\)Ig) + K.

It is clear that if a set-valued map F : X — 2Y is K-convex on A, then epi(F)
is a convex subset of X x Y.

The following lemma represents cone convex set-valued maps in terms of con-
tingent epiderivative.

Lemma 2.1. [22] If F : X — 2Y is K-convex on a nonempty convex subset A of
a real normed space X, then for all z,2' € A and y' € F(2'),

F(z)—y' C DiF(a',y)(z — a') + K.

Definition 2.7. [29] Let A be a nonempty subset of a real normed space X and
F: X —2Y be a set-valued map, with A C dom(F). Letz',u € A,y € F(2'), and
v € F(u) + K. Assume that F is second-order contingent epiderivable at (z',y")
in the direction (uw — z’,v —y'). Then F is said to be second-order K -convex at
(2',y') in the direction (u —z',v —y') on A if

F(z) —y CDIF(a',y,u—a',0 —y')(x —a') + K,V € A.
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Let X be a real normed space and A a nonempty subset of X. Let F': X — 28",
G:X—=2%" and H: X — 28" be set-valued maps, with

A C dom(F) Ndom(G) Ndom(H).

Let F = (Fy, Fs, ..., Fy), G = (G1,Gs,...,Gy,), and H = (Hy, Ho, ..., Hy), where
the set-valued maps F; : X — 2% G, : X - 28 i=1,2,...,m, and H; : X — 2%,
7 =1,2,...,k, are defined by

dom(F;) = dom(F'),dom(G;) = dom(G), and dom(H,) = dom(H),
r€Ay=(y1,Y2, - Ym) € F(z) = y; € Fi(x),Vi=1,2,...,m,
z=1(21,22,.y2m) € G(x) = z; € Gi(x),Vi=1,2,...,m,

and
w = (w1, ws, ..., wy) € H(x) = w; € Hj(x),¥j =1,2,.... k.

Assume that F;(z) € Ry and G;(z) C int(Ry),Vi = 1,2,...,m and x € A. Let
N = (M, Ay, .., A7) € RY. Define elements £, \'z € R™ and a subset \'G(x) of
R™ by

y_ (9 ¥ Um
z 21 29" Zm,

Nz = (Nz1, Nyza, s N 2m),

) Ym

and
NG(z)={Nz:2€G(x)}.

For z € A, define a subset gg; of R™ by

s g ey
z Z1 22 Zm

F(x) Y- (yl Y2 yvn) g = (Y1, Y2 s Um) € F(),

2= (21,22, .y 2m) € G(:c)}

We consider a set-valued fractional programming problem (FP).

. F(x)
mn;lernAlze Glo) (FP)

subject to  H(z) N (—R%) # 0.

The feasible set of the problem (FP) is given by

S={zeA:Hx)n (—RE) £ 0}.
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Definition 2.8. A point (gc’f;—:) € X xR™, witha' € S,y € F(z'), and 2’ €
G(z'), is called a minimizer of the problem (FP) if for all (z,%) € X x R™, with
x €S8,y € F(x), and z € G(x),

YU (~RT)\ {On ).

Definition 2.9. A point (x’,g—:) € X xR™, witha' € S,y € F(2'), and 2’ €
G(z'), is called a weak minimizer of the problem (FP) if for all (x,%) € X x R™,
withz € S, y € F(z), and z € G(z),

y Y . om
Let A € R7'. We consider a parametric problem (FPy/) associated with the
set-valued fractional programming problem (FP).

minimize F(x) — NG(z)

e (FPX)
subject to  H(x) N (—RY) # 0.

Definition 2.10. A point (2/,y' — N2') € X x R™, with ' € S, y' € F(2'), and
2 e G(x'), is called a minimizer of the problem (FPy:) if for all (x,y — XN'z) €
X xR™, withx €S,y € F(zx), and z € G(x),

(y = XNz2) = (o = XN2') ¢ (-RY)\ {Orm}.

Definition 2.11. A point (z',y' — N2') € X x R™, with 2’ € S, y' € F(2'), and
2" € G(2'), is called a weak minimizer of the problem (F Py/) if for all (x,y—Nz) €
X xR™, withx €S,y € F(z), and z € G(x),

(y = N2) = (y = N2') ¢ (—int(RY)).

Gadhi and Jawhar [20] proved the relationship between the solutions of the
problems (FP) and (FPy).

Lemma 2.2. [20] A point (2, Z—:) € X x R™ is a weak minimizer of the problem
(EP) if and only if (2, Opm) is a weak minimizer of the problem (FPy/), where
X =1

— 2
For the special case, when f: X - R™, g: X — R™, and h : X — RF are
single-valued maps, we have a multiobjective fractional programming problem as

e 1) (B0 20) )
€A 9(x)  \gi(z) g2()" " gm()
subject to  h(x) € (—]Rff_),

where f = (f1, f2, ..., fm) and g = (91, g2, ..., gm), by considering F(z) = {f(x)},
G(z) ={g(z)}, and H(z) = {h(z)} in the problem (FP).

3

8
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3. MAIN RESULTS

Das and Nahak [8]-[19] introduced the notion of p-cone convex set-valued maps.
They established the sufficient KKT conditions and studied the duality results for
various types of set-valued optimization problems under contingent epiderivative
and p-cone convexity assumptions. For p = 0, we have the usual notion of cone
convexity of set-valued maps introduced by Borwein [6].

Definition 3.1. [8, 11] Let A be a nonempty convex subset of R", e € int(RY")
and F : R™ — 28" be a set-valued map, with A C dom(F). Then F is said to be
p-R7-convex with respect to e on A if there exists p € R such that

AF(z1) 4+ (1 = A F(z2) € F(Az1 + (1 — Na2) + pA(L = N)||z1 — 22]|%e + R,
Vx1, 29 € A and YA € [0,1].

Das and Nahak [11] constructed an example of p-cone convex set-valued map,
which is not cone convex. They also characterized p-cone convexity of set-valued
maps in terms of contingent epiderivative.

Theorem 3.1. [11] Let A be a nonempty convex subset of R™, e € int(R}?) and
F:R™ — 2R be p-R7-conver with respect to e on A. Let 2’ € A and y' € F(z').
Then,

F(z) —y' C DyF(a’,y)(x — ) + pllz — 2'|*e + R, Yz € A.

Das and Nahak [9] introduced second-order p-cone convexity of set-valued maps
via second-order contingent epiderivative.

Definition 3.2. [9] Let A be a nonempty subset of R", e € int(RY), and F :
R™ — 28" be a set-valued map, with A C dom(F). Let 2’',u € A, y' € F(2'), and
v € F(u) +R?. Assume that F is second-order contingent epiderivable at (x',y")
in the direction (v —a',v —y'). Then F is said to be second-order p-R'['-convex
with respect to e at (x',y'") in the direction (u—2z',v—1y'") on A if there exists p € R
such that

F(z)—y' CDIF(¢',y',u—a' v —y)(x — ') + plle — 2| Pe + R}, Vz € A.
Remark 3.1. For u =2’ and v =1y, we have
F(z)—y C D+F(2',y)(x — 2) + pl|lx — 2'||*e + R}, Vz € A.

In this case, we have the first order p-R''-convezity via contingent epiderivative.
If p >0, then F is said to be strongly second-order p-R'-convez, if p =0, we

have the usual notion of second-order R} -convexity, and if p < 0, then F' is said

to be weakly second-order p-R'\'-conver.

Obviously, strongly second-order p-R!-convezity = second-order R’ -convexity =

weakly second-order p-R-converity.
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Das and Nahak [9] constructed a set-valued map F : R — 9%* which is second-
order p—Ri—convex for some p, but is not second-order R’P*-convex.

Remark 3.2. For the case of single-valued map, Definition 3.2 coincides with the
ezisting one. Let X,Y be real normed spaces, K be a solid pointed convexr cone in
Y,eecint(K),ue X, andv €Y. Let f: X =Y be a second-order continuously
differentiable function at ' € X. By considering F(x) = {f(z)}, from Definition
3.2 and Proposition 2.3, we can conclude that f is called second-order p-K -convex
with respect to e at (¢, f(a')) in the direction (u — a',v — f(a')) if there exists
p € R such that

F@)— F@) € §' @)@ —a') + 1 @) s, um ) plle —a et KV € X,
where v — f(a’) = f'(2')(u — 2').

The followings are some special cases.
WhenY =R™, K =RY, f = (f1, 2 fm), and e = (1,1, ..., 1) = Igm, we have

1
file) = fila') = fi@) (@ = 2") + S f' (@) (u =2, u = &) + pllz — 2|17,
Vee Xandi=1,2,...,m.

WhenY =R, K =R, and e = 1, we have
fl@) = f@) = f'(@") (@ —a) + %f”(fﬂ')(u —a’,u—a') +plle —2'|*,Vz € X.
When X =R", Y =R, K =R, and e =1, we have
F@) = 1) 2 (=) TV @) + 5 lama!) T HE ! + plle =) Vo € X,

where Vf(2') and H(z') are the gradient and Hessain matriz of f at x’, respec-
tively.

3.1. Second-order optimality conditions

Let X € RT and G : X — 2R™ be a set-valued map. Define a set-valued map
(-NG): X — 28" by

(=NG)(z) = —NG(z),Vz € dom(G).
We establish the second-order sufficient optimality conditions of the problem

(FP) under second-order contingent epiderivative and second-order p-cone convex-
ity assumptions.

Theorem 3.2. (Second-order sufficient optimality conditions) Let A be a nonempty
convex subset of a real normed space X, x' be an element of the feasible set S

of the problem (FP), v € F(z'), 2/ € G(z'), N € ggi:;, w' € H(z') N (-L),
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and p1,p2,p3 € R. Let u € A, v € F(u) + R}, r € (=NG)(u) + R}, and
s € H(u) + RE. Assume that F is second-order p,-R7-convex at (z',y') in the
direction (u —x',v —y"), —=N'G is second-order pa-R'}'-convex at (x', —N'2") in the
direction (u—a',r+ N2'), respectively, with respect to Igm and H is second-order
p3-RE -convez at (', w') in the direction (u —a',s — w'), with respect to 1z, on
A. Suppose that there exists (y*,z*) € R x Rﬁ, with y* # Ogm, and

(p1+ p2) (Y Irm) + p3(2", Ips) > 0, (3.1)
such that

<y*7 (D%F(m’,y/,u - xlav - y/)

+ DI (-=NG) (', ~ N2 u—a,r+ )\’z’)) (x — x’)> (3:2)

+(z*, D}H(2',w',u— ', s —w')(x — a')) > 0,Vz € 4,

Y = N2 = Ogm, (3.3)
and

(z*,w') = 0. (3.4)

Then (', z—:) is a weak minimizer of the problem (FP).
Proof. We prove the theorem by the method of contradiction. Let (2, 'Z—:) not be
a weak minimzer of the problem (FP). Then there exist x € S, y € F(x), and
z € G(x) such that

/

Y
<;.

SEIES

As 3/ — Nz’ = Ogm, we have

Yy
z

<X,
So,
y— Nz < Ogm.
Hence,
(y*,y — N'z) <0, since Ogm # y* € R
Again, as y' — Nz’ = Ogm, we have
(y* ;' = N2y =0.
Since z € S, there exists an element w € H(xz) N (—R%). Therefore,
(z",w) <0.

So,
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(z*,w—w') <0, as (z*,w) =0.
Hence,
Wy —Nz— (@ =N+ 5 w—w') <0. (3.5)

As F is second-order p;-R7'-convex at (z',y’) in the direction (v — 2',v —y'),
—XG is second-order pp-R7'-convex at (2/, —=\'2’) in the direction (u—a',r+\'2'),
respectively, with respect to 1gm and H is second-order p3-R” -convex at (2, w’)
in the direction (u — 2’, s — w'), with respect to 1gx, on A, we have

F(z) =y C DF(a,y ,u—a',0 —y')(z —a') + pr]le — 2’| 1pm + RY,
(=NG)(x)+)N7 C D%(f)\’G)(x/, Nz u—a’ 7+ N2 ) (=) +po||z—2|*1gm +RT,
and

H(z) —w' C DIH (2w ,u—12',s —w')(z —2) + psllz — 2'||*1pr + RE.
Hence,

Yy € DR o u— a0 — ') — 2') + e — o' PLan + BT

—Nz+ X2 € DI (-NG) (2, - N2 u—a',r+ XN2')(x—a') +po |l —2'|*1rm + R,
and

w—w' € DIH @ w',u—2 s —w)(z—2) + ps|lo — 2/|*1ps + RE.
Hence, from (3.1) and (3.2), we have

<y*ay - Nz - (y/ - )‘/ZI>> + <Z*7 w = w/> 2 07

which contradicts (3.5).
Consequently, (2’,y’) is a weak minimizer of the problem (FP). O

Let z € A, 2’ € S,y = (Y1, Y%, ¥Uh,) € F(2'), and 2/ = (21,25,...,2],) €

G(z'). Define subsets 2z’ F(z) and —y'G(x) of R™ by o
ZF(x) ={z'y = (2191, 2992, s 20 ¥Ym) + ¥ = (Y1, 92, -, ym) € F(2)}

and
—y'G(x) = {—y'z = (=Y 21, — Y522, ooy —Ym2Zm) : 2 = (21,22, ..., 2m) € G(x)}.

Define set-valued maps 2'F, (—y/G) : X — 28" by
(2'F)(z) = 2'F(z),Vz € dom(F)

and
(—y'G)(z) = —y'G(x),Vz € dom(G).

We can also prove the following second-order sufficient optimality conditions
through the same approach of Theorem 3.2.
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Theorem 3.3. (Second-order sufficient optimality conditions) Let A be a nonempty
convez subset of a real normed space X, x' be an element of the feasible set S of the
problem (FP) y € F(x'), 2 € G(a'), w' € Hx')N(—L), and p1, p2,p3 € R. Let
ue A ve (ZF)(u)+R7, r € (—y'G)(u) +RT, and s € H(u) +RY. Assume that
(2'F) is second-order p1-RY-convex at (x',2"y") in the direction (u —z',v —2'y’),
—y'G is second-order ps -RT—convea: at (¢', —y'2") in the direction (u—z',r+y'2"),
respectively, with respect to Igxm and H is second-order ps3 -Rﬁ-convem at (', w') in
the direction (u — 2',s —w'), with respect to Igkx, on A. Suppose that there exists
(y*,2*) e R x ]Rk , with y* # Ogm, and (3.1) and (3.4) are satisfied, with

<y*, (D%(Z/F)(SC/, 2y u—a' v — 2y
+ D} (—y'G)(a', Y2 s u—a' r+ y’z’)) (x— x')> (3.6)
+ (2%, D%H(w’,w,u -2, s—w')(x—2')) >0,Vx € A,

Then (2, z—:) is a weak minimizer of the problem (FP).

We formulate second-order parametric (PD), Mond-Weir (MW D), Wolfe (W D),
and mixed types (M D) duals of the problem (FP) and prove the corresponding
duality results.

3.2. Second-order parametric type dual

We consider a second-order parametric type dual (PD) of the problem (FP),
where F', —X'G, and H are second-order contingent epiderivable set-valued maps
for all N € R, Let u € A,v € F(u) + R}, and r € (=N'G)(u) + R7.

maximize N (PD)
subject to

<y*’ (D%F(ZC/, y/a u— xl7v - y/)

+ DI (-NG) (2, = N2 u—a',r+ N7) ) T — :E’)>

+ (", D}H(2',w',u — 2’ s —w')(x — 2’)) > 0,Va € A,

s€ H(u) +RY,

y/ — N > 0,

“11

E /; w' € H(z'),
d (g Tgm) = 1.

e Ay e F(a),2 e Ga'), N €

y*eRY, 2" € R’j_, (z*,w')y >
Definition 3.3. A feasible point (x',y’, 2", N, w',y*,2*) of the problem (PD) is
called a weak mazimizer of (PD) if for all feasible points (x,y,z, \,w,y;,2}) of
(PD),

A= X ¢ int(RT).
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Theorem 3.4. (Second-order weak duality) Let A be a nonempty conver subset
of a real normed space X and T be an element of the feasible set S of the problem
(FP). Let (2,9, 2, N, w',y*, 2*) be a feasible point of the problem (PD). Let
u€ A ve Fu+RP, re (-NG)(uw+RY, and s € H(u) + RE. Assume
that F is second-order pi-R'}'-convex at (x',y') in the direction (u — z',v —y'),
—XNG is second-order pa-R'!'-convex at (x', —N'2") in the direction (u—z',r+N'2"),
respectively, with respect to Igm and H 1is second-order p3-Rﬁ-convea: at (', w")
in the direction (u — ', s — w'), with respect to Iz, on A such that

(p1+ p2) + p3(2”, Igr) > 0. (3.7)
Then,

FT) ) cmmy (i om

@) A CR™\ (=int(RT)).

Proof. We prove the theorem by the method of contradiction. Suppose that for
some § € F(T) and Z € G(T),

Y_ X e (—int(R™)).
Z
Therefore,
LY
Z
So,
7 — Nz < Ogm.
Therefore,

(y*", g — N'z) <0, since Ogm # y* € R
Again, from the constraints of (PD), we have
y =Nz >0.
Therefore,
(' y = Nz') > 0.
Since T € S, we have

H@)N (~RE) £ 0.
Choose w € H(z) N (—R%). So, we have

(z",w) <0.
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From the constraints of (PD), we have
(z*,w') > 0.
So,
(z*,w—w') = (z",w) — (z",w') <0.
Hence,

W g-XNz—(y = N))+ 5w —-w') <O0. (3.8)

/
9

)

As F is second-order p;-R7'-convex at (z',y’) in the direction (v — 2',v —y’)
—XNG is second-order pp-R7'-convex at (2/, —\'2’) in the direction (u—a’,r+\'2’)
respectively, with respect to 1gm and H is second-order pg—]Ri—conveX at (z/,w’
in the direction (u — z’, s — w'), with respect to 1gx, on A, we have

F(@)—y CDIF(a,y ,u—a',v—y)(&—a)+ p1]|T — 2| *1gm + RT,
(=NG)(@)+ N7 C DI(-NG)(a', N2, u—a',r+ N2 ) (@—2)+p2|[T—2'|*1pm +RT,
and

H(®)—w' C DIH(2' \w' u—12',s —w)(T—2) + ps||T — 2'|*1pr + RY.
Hence,

Y-y € DIF(@,y ,u—a",v—y )@ —2)+ p1||T - 2| *1rm + R,

—Nz+ X2 € DI (-NG) (2, - N2 u—a',r+ X2 )(@—2')+p2|[T—2'|*1rm + R,

and

wW—w' € DIH(a',w' u—a,s —w') (T —2) + ps|T — 2| *1er + RE.
Hence, from the constraints of (PD) and (3.7), we have

W g-Nz—(@ - N)+ (" w-w) >0,
which contradicts (3.8). Therefore,

NS

— N ¢ (~in(RT)).

Since § € F(Z) is arbitrary, we have

F(f) , m . m
@ ATCR™ (—int(RY)),

which completes the proof of the theorem. []
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Theorem 3.5. (Second-order strong duality) Let (a, Z—;) be a weak minimizer of
the problem (FP) and w' € H(x') N (—=RY). Assume that for some (y*,z*) €
R xRi, with (y*, Igm) =1 and X' € ggi:;, (3.2), (3.3), and (3.4) are satisfied at
the point (', y', 2/, N, w', y*, 2*). Then (z',y', 2", N, w’,y*, 2*) is a feasible solution
of the problem (PD). Furthermore, if the second-order weak duality Theorem 3.4
holds between the problems (FP) and (PD), then (z',y/, 2, N, w',y*, z*) is a weak
mazimizer of (PD).

Proof. As the (3.2), (3.3), and (3.4) are satisfied at (z/,y, 2", N, w', y*, 2*), we
have

<y*, (D%F(x', Y ou—a'v—y)+DI-NG)(a, - N2 u—2a/,r+ )\’z')) (x — x’)>
+ (2", D{H(2',w' ,u— ', s —w')(x — 2')) >0,V € A,

y' — Nz’ = Ogm,
and

(z*,w') = 0.

Hence (2,3, 2", N, w', y*, 2*) is a feasible solution of (PD).

Suppose that the second-order weak duality Theorem 3.4 holds between (FP) and
(PD) and (2/,y', 2", N, w',y*, z*) is not a weak maximizer of (PD).

Then there exists a feasible point (z,y, 2, A\, w, y7, 27) of (PD) such that

A— X € int(RT).

As 3y’ — Nz’ = Ogpm, we have

/

y . m
)\—? € int(R'}").

which contradicts the second-order weak duality Theorem 3.4 between (FP) and
(PD).
Consequently, (z/,y/, 2", N, w’, y*, z*) is a weak maximizer of (PD). O

Theorem 3.6. (Second-order converse duality) Let A be a nonempty convex sub-
set of a real normed space X and (2',y',2', N, w' y*, 2*) be a feasible point of
the problem (PD), where N = g—: Let ('), 2/, N, W', y*, 2*) be a feasible point
of the problem (PD). Let u € A, v € F(u) + R}, r € (=NG)(u) + R}, and
s € H(u) + RE. Assume that F is second-order p,-R7-convex at (z',y') in the
direction (u —x',v —y"), =N'G is second-order pa-R'}'-convex at (x', —N'2") in the
direction (u—a',r+ N2, respectively, with respect to Igm and H is second-order
pg—]R’j_—conve:z: at (z',w'") in the direction (u — ', s — w'), with respect to Igx, on
A, satisfying (3.7). If 2’ is an element of the feasible set S of the problem (FP),
then (2, g—:) is a weak minimizer of the problem (FP).
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Proof. We prove the theorem by the method of contradiction.

Suppose (', Z—:) is not a weak minimzer of the problem (FP).

Therefore there exist € S, y € F(x), and z € G(x) such that

!
v_v
z z

’
As X' =% we have

< \.

z
So,

y— Nz < Ogm.
Hence,

(y*,y — N'z) <0, since Ogm # y* € RT.
Again, from the constraints of (PD),

y — N2 >0.
Therefore,

(v, y = XNZ) =0
Since x € S, there exists an element

w e H(z) N (-RE).
Therefore,

(z",w) <0.
We have

(z*,w—w') <0, as (z*,w) > 0.
Hence,

(W y—Nz—( =N+ (" w—w') <0. (3.9)
As F is second-order p;-R7'-convex at (',y’) in the direction (v — 2’,v —y'),
—NG is second-order pp-R7'-convex at (2/, —\'2’) in the direction (u—a',r+\'2'),
respectively, with respect to 1gm and H is second-order pg—]Ri—conveX at (z/,w")
in the direction (u — z’, s — w’), with respect to 1gx, on A, we have

F(z) -4y C D%F(I/, y,ou—2a'v—y)(x—2)+ pil|z — 2||*1gm + R,
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(=NG)(@)+ Nz C DI(=NG)(a', - N2, u—a' ,r+ N2 ) (z—2)+po||Jx—2'|*1pm +RT,

and
H(z) —w' C DIH(2' ,w',u—2' s —w')(x —2') + psllz — 2’| *1pr + RY.

Hence,
y—y € DIF(',y ,u—a',v—y) (& —2') + pillz — 2/|*1gm + RT,

—Nz+ X2 € DI (-NG) (2, - N2 u—a',r+ XN2')(x—a') +po |l — 2| *1rm + R,
and
w—w' € DIH (@ w',u—2' s —w)(z—2) + ps|lz — 2/|*1ps + RE.
Hence, from the constraints of (PD) and (3.7), we have
<y*7y - Nz — (y/ - )‘/ZI» + <Z*a w = U),> > 07

which contradicts (3.9).

Consequently, (2/, %) is a weak minimizer of the problem (FP). []

3.8. Second-order Mond-Weir type dual

We consider a second-order Mond-Weir type dual (MW D) of the problem
(FP), where 2’ F, —y'G, and H are second-order contingent epiderivable set-valued
maps for all ', 2" € R. Let u € A,v € (2/F)(u) + R, and r € (=y'G)(u) +R7.

/

maximize % (MW D)
subject to

<y*, (D%(Z'F)(x', 2y u—a' v — 2"y

+ D%(—y’G)(x’, ' u—ar+ y’z’)) (x — x’)>

+(z*, DIH(z' ,w,u— 2, s —w')(x —2)) >0,z € A,

s € H(u)+RY,

(=%, w') 2 0,

'€ Ay € F(2'),7 € G(2'),y* € RT,z* € R% | and (y*,1gm) = 1.

Definition 3.4. A feasible point (a',y', 2", w',y*, 2*) of the problem (MW D) is

called a weak mazimizer of (MW D) if for all feasible points (z,y,z,w,y7,27) of
(MWD),

/

y . m
- ¢ int(R7").

SRS
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We prove the duality results of Mond-Weir type of the problem (FP). The proofs
are very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.7. (Second-order weak duality) Let A be a nonempty conver subset
of a real normed space X and T be an element of the feasible set S of (FP).
Let (2',y,2",w',y*, 2*) be a feasible point of the problem (MWD). Letu € A,
v e (ZF)(u) +RY, r € (—yG)(u) + RY, and s € H(u) +RE. Assume that
(2'F) is second-order p1-RY-convex at (x',2"y") in the direction (u —z',v —2'y’),
—y'G is second-order pa-R7'-convex at (x', —y'2") in the direction (u—x',r+y'2"),
respectively, with respect to Igm and H 1is second-order p3-Ri-convea: at (', w")
in the direction (u— ', s —w'), with respect to Igx, on A, satisfying (3.7). Then,

F(z !

G - & SR (ine(®D).

Theorem 3.8. (Second-order strong duality) Let («, Z—:) be a weak minimizer of
the problem (FP) and w' € H(z')N(—RY). Assume that for some (y*,z*) € R x
R’j_, with (y*, Igm) = 1, (3.4) and (8.6) are satisfied at (x',y’, 2", w',y*, 2*). Then
(@',y, 2w y*, 2*) is a feasible solution of the problem (MW D). Furthermore,
if the second-order weak duality Theorem 3.7 holds between (FP) and (MW D),
then the point (x',y', 2/, w',y*, 2*) is a weak mazimizer of (MW D).

Theorem 3.9. (Second-order converse duality) Let A be a nonempty convex sub-
set of a real normed space X and (2',y’, 2", w',y*, z*) be a feasible point of the
problem (MWD). Letu € A, v € (2'F)(u) + R}, r € (=y'G)(u) + R}, and
s € H(u) + RY. Assume that (2'F) is second-order p,-R7'-convez at (2',2'y') in
the direction (v — x',v — 2'y"), —y'G is second-order pa-R7-convex at (z', —y'2")
in the direction (u—1a',r+y'z"), respectively, with respect to Igm and H is second-
order p3-RE -convez at (z',w') in the direction (u—2a',s—w'), with respect to gk,
on A, satisfying (3.7). If ©' is an element of the feasible set S of the problem
(FP), then (a, Z—:) is a weak minimizer of the problem (FP).

3.4. Second-order Wolfe type dual

We consider a second-order Wolfe type dual (WD) of the problem (FP), where
Z'F, —y'G, and H are second-order contingent epiderivable set-valued maps for
all y/, 2/ e R Let u € A,v € (2/F)(u) + R, and r € (—y'G)(u) + R}

y 4 (2", w)1gm
Z/

maximize (WD)
subject to

<y*, (D%(Z/F)({L‘l7 2y u—a' v —2"y)

+ D?r(fy'G)(x', ' u—a r+ y'z’)) (x — x’)>

+ (z*,D?rH(x’,w,u —2,s—w')(z—2a')) >0,Vr € A,

s € H(u)+RY,

o€ Ay € F(2), 2 € G(z'),y* € R, z* € RY | and (y*, 1zm) = 1.
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Definition 3.5. A feasible point (z',y', 2',w', y*, z*) of the problem (W D) is called
a weak mazimizer of (WD) if for all feasible points (z,y, z,w,y3,2}) of (WD),

pt{d wilen gt ’,w> B™ ¢ int(RT).

z z

We prove the duality results of Wolfe type of the problem (FP). The proofs are
very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.10. (Second-order weak duality) Let A be a nonempty convexr subset
of a real normed space X and T be an element of the feasible set S of (FP). Let
the point (z',y/, 2", w', y*, z*) be a feasible point of the problem (W D). Let u € A,
v E (ZF)(u)+R7, r € (—yG)(u) + R7, and s € H(u) +RE. Assume that
(2'F) is second-order p1-RY'-convex at (x',2"y") in the direction (u —z',v — 2'y’),
—y'G is second-order pa-R'!'-convex at (', —y'2") in the direction (u—2',r+y'2"),
respectively, with respect to Igm and H is second-order p3-R¥ -convez at (2',w)
in the direction (u— ', s —w'), with respect to Igr, on A, satisfying (3.7). Then,

F@) y + (" w)Ign
G(T) 2!

C R™\ (=int(R")).

Theorem 3.11. (Second-order strong duality) Let (', Z—:) be a weak minimizer
of the problem (FP) and w' € H(z') N (—=Rk). Assume that for some (y*,z*) €
R™ x RE with (y*, Igm) = 1, (3.4) and (5.6) are satisfied at (z',y', 2, w',y*, 2*).
Then (2, y', 2", w', y*, 2*) is a feasible solution of the problem (W D). Furthermore,
if the second-order weak duality Theorem 3.10 holds between the problems (FP) and
(WD), then (2',y/, 2/, w',y*, z*) is a weak mazimizer of (W D).

Theorem 3.12. (Second-order converse duality) Let A be a nonempty convex sub-
set of a real normed space X and (x',y', 2, w', y*, 2*) be a feasible point of the prob-
lem (WD), with (z*,w') > 0. Letu € A, v e (ZF)(u)+R7, r € (—y'G)(u)+R7,
and s € H(u) +RY. Assume that (2'F) is second-order py-R7*-convez at (2, 2'y’)
in the direction (u—x',v—2"y"), —y'G is second-order ps-R']'-convex at (z', —y'2")
in the direction (u—1a',r+y'z"), respectively, with respect to Igm and H is second-
order pg-Ri-convex at (z',w') in the direction (u— ', s —w'), with respect to Iy,
on A, satisfying (3.7). If 2’ is an element of the feasible set S of the problem
(FP), then (a, z—:) is a weak minimizer of the problem (FP).

3.5. Second-order mized type dual

We consider a second-order mixed type dual (M D) of the problem (FP), where
Z'F, —y'G, and H are second-order contingent epiderivable set-valued maps for
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all ',z e RT. Let u € A,v € (2/F)(u) + R}, and r € (—y'G)(u) + R

Yy + (z*,w ) 1gm

maximize
Z/

subject to
<y*, (D%(z’F)(m', 2y u—a' v —2"y)
+ D?r(fy'G)(x’, —y' 2 u—a r+ y'z')) (z — m’)>
+ (z*,D?rH(J:’,w,u —2,s—w')(z—2a')) >0,Vr € A,
s € H(u)+RY,
(z*,w'y >0,
o€ Ay € F(2'), 7 € G(z'),y* € R, z* € RY | and (y*, 1zm) = 1.

Definition 3.6. A feasible point (z',y', 2", w’, y*, z*) of the problem (M D) is called
a weak mazimizer of (M D) if for all feasible points (z,y, z,w,y3,2}) of (MD),

S Tmm (2w Tam
ptled wplen 4 G W o gy gy,

z z

We prove the duality results of mixed type of the problem (FP). The proofs are
very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.13. (Second-order weak duality) Let A be a nonempty convex subset
of a real normed space X and T be an element of the feasible set S of (FP). Let
the point (z',y', 2", w’, y*, z*) be a feasible point of the problem (MD). Let u € A,
v E (ZF)(u)+R7, r € (—yG)(u) + R7, and s € H(u) +RE. Assume that
(2'F) is second-order pi-R7-convex at (x',2'y") in the direction (u —z',v —2'y’),
—y'G is second-order pa-R'!'-convex at (', —y'2") in the direction (u—a',r+y'2"),
respectively, with respect to Igm and H is second-order pg—Ri-convem at (z',w")
in the direction (u — ', s —w'), with respect to Igr, on A, satisfying (3.7). Then,

F@) ¢+ w) R oy o om
G@) 7 C R™\ (—int(RT")).

Theorem 3.14. (Second-order strong duality) Let (', Z—:) be a weak minimizer
of the problem (FP) and w' € H(z') N (—=Rk). Assume that for some (y*,z*) €
R™ x RE with (y*, Igm) = 1, (3.4) and (5.6) are satisfied at (z',y', 2, w',y*, 2*).
Then (2, y, 2", w', y*, z*) is a feasible solution of the problem (M D). Furthermore,
if the second-order weak duality Theorem 3.13 holds between the problems (FP) and
(MD), then (2',y', 2", w',y*, z*) is a weak mazimizer of (MD).

Theorem 3.15. (Second-order converse duality) Let A be a nonempty convex sub-
set of a real normed space X and (z',y’,z',w',y*, z*) be a feasible point of the
problem (MD). Letu € A, v € (ZF)(u) + R, r € (=y/'G)(u) + R, and
s € H(u) + RY. Assume that (2'F) is second-order py-R7'-convez at (2',2'y') in
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the direction (u — x',v — 2'y"), —y'G is second-order pa-R7'-convex at (z', —y'2")
in the direction (u—x',r+vy'2"), respectively, with respect to 1gm and H is second-
order pg—Rﬁ_—com}em at (', w') in the direction (u—2a', s —w'), with respect to Iy,
on A, satisfying (3.7). If 2’ is an element of the feasible set S of the problem
(FP), then (a' Z—;) is a weak minimizer of the problem (FP).

3

4. CONCLUSIONS

In this paper, we establish the sufficient KKT conditions of the set-valued frac-
tional programming problem (FP) via contingent epiderivative and p-cone convex-
ity assumptions. We also develop the weak, strong, and converse duality theorems
between the primal problem (FP) and the second-order dual problems of paramet-
ric (PD), Mond-Weir (MW D), Wolfe (W D), and mixed (M D) types, respectively.

Acknowledgement: The author is very thankful to the Editors and Referees
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