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1. INTRODUCTION

The theory of set-valued optimization problems, being an expanding branch of
optimization theory, has attracted the attention of many researchers in the past
few years. A set-valued optimization problem is one that involves set-valued maps
as objective functions and constraints. Many optimization problems in mathe-
matical economics, differential inclusions, image processing, optimal control, and
viability theory are set-valued optimization problems, but there exist various types
of notions of differentiability of set-valued maps. In 1997, Jahn and Rauh [22] in-
troduced the notion of contingent epiderivative of set-valued maps. It has a vital
role for establishment of optimality conditions of set-valued optimization prob-
lems. Borwein [6] introduced the notion of cone convexity of set-valued maps,
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which plays an important role in the theory of set-valued optimization problems.
There are various classes of set-valued optimization problems. An important class
is that of set-valued fractional programming problems. In 1997, Bhatia and Mehra
[4] introduced the notion of cone preinvexity of set-valued maps and established
the Lagrangian duality results for the set-valued fractional programming prob-
lems. They also [5] developed the duality results for Geoffrion efficient solutions
of the set-valued fractional programming problems via cone convexity. Gadhi and
Jawhar [20] established the necessary optimality conditions of the set-valued frac-
tional programming problems without any convex separation approach in 2013.
Many authors like Kaul and Lyall [23], Bhatia and Garg [3], Suneja and Gupta
[27], Suneja and Lalitha [28], and Lee and Ho [24] established the optimality condi-
tions and developed the duality theorems for vector-valued fractional programming
problems under generalized convexity assumptions. Li et al. [25, 26] established
the necessary and sufficient optimality conditions by using higher-order contingent
derivative. They also formulated the higher-order Mond-Weir dual for set-valued
optimization problems and studied the duality theorems under convexity assump-
tions. In 2015, Das and Nahak [11] established the sufficient Karush-Kuhn-Tucker
(KKT) optimality conditions for set-valued fractional programming problems un-
der contingent epiderivative and ρ-cone convexity assumptions. They also studied
the duality results of parametric, Mond-Weir, Wolfe, and mixed types for the
problem. Later, they [9] established the sufficient KKT optimality conditions of
set-valued optimization problems under generalized convexity assumptions and
higher-order contingent derivative assumptions. They also proved weak, strong,
and converse duality theorems of Mond-Weir, Wolfe and mixed types.

In this paper, we establish the second-order sufficient KKT optimality con-
ditions of a set-valued fractional programming problem by using second-order ρ-
cone convexity assumptions. The duality results between the primal problem and
second-order dual problems of parametric, Mond-Weir, Wolfe, and mixed types
are also proved via the notion of second-order contingent epiderivative.

This paper is organized as follows. Section 2 deals with some definitions and
preliminary concepts of set-valued maps. In Section 3, a set-valued fractional
programming problem (FP) is considered and the second-order sufficient KKT
conditions are established for the problem (FP). Various types of duality the-
orems are studied under second-order contingent epiderivative and second-order
generalized cone convexity assumptions.

2. DEFINITIONS AND PRELIMINARIES

Let K be a nonempty subset of the m-dimensional Euclidean space Rm. Then
K is called a cone if λy ∈ K, for all y ∈ K and λ ≥ 0. Furthermore, K is called
non-trivial if K 6= {0Rm}, proper if K 6= Rm, pointed if K ∩ (−K) = {0Rm}, solid
if int(K) 6= ∅, closed if K = K, and convex if λK+(1−λ)K ⊆ K, for all λ ∈ [0, 1],
where int(K) and K denote the interior and closure of K, respectively and 0Rm is
the zero element of Rm.
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Let us define the non-negative orthant Rm+ of Rm by

Rm+ = {y = (y1, ..., ym) ∈ Rm : yi ≥ 0,∀i = 1, 2, ...,m}.

Then Rm+ is a solid pointed closed convex cone and int(Rm+ ) ∪ {0Rm} is a solid
pointed convex cone in Rm.

There are two types of cone-orderings in Rm with respect to the solid pointed
convex cone Rm+ of Rm. For any two elements y1, y2 ∈ Rm, we have

y1 ≤ y2 if y2 − y1 ∈ Rm+

and

y1 < y2 if y2 − y1 ∈ int(Rm+ ).

We say y2 ≥ y1, if y1 ≤ y2 and y2 > y1, if y1 < y2.
The following notions of minimality are mainly used with respect to the solid

pointed convex cone Rm+ of Rm.

Definition 2.1. Let B be a nonempty subset of Rm. Then minimal and weakly
minimal points of B are defined as

(i) y′ ∈ B is a minimal point of B if there is no y ∈ B \ {y′} such that y ≤ y′.

(ii) y′ ∈ B is a weakly minimal point of B if there is no y ∈ B such that y < y′.

The sets of minimal points and weakly minimal points of B are denoted by min(B)
and w-min(B), respectively and characterized as

min(B) = {y′ ∈ B : (y′ − Rm+ ) ∩B = {y′}}

and

w-min(B) = {y′ ∈ B : (y′ − int(Rm+ )) ∩B = ∅}.

Similarly, the sets of maximal points and weakly maximal points of B can be
defined and characterized.

We recall the notions of contingent cone and second-order contingent set in a
real normed space.

Definition 2.2. [1, 2] Let Y be a real normed space, ∅ 6= B ⊆ Y , and y′ ∈ B.
The contingent cone to B at y′ is denoted by T (B, y′) and defined as follows:

An element y ∈ T (B, y′) if there exist sequences {λn} in R, with λn → 0+ and
{yn} in Y , with yn → y such that

y′ + λnyn ∈ B, ∀n ∈ N,

or, there exist sequences {tn} in R, with tn > 0 and {y′n} in B, with y′n → y′ such
that

tn(y′n − y′)→ y.



170 K. DAS / Set-Valued Fractional Programming Problems

The contingent cone T (B, y′) is actually a local approximation of the set B − y′.
If y′ ∈ int(B), then T (B, y′) = Y .

Proposition 2.1. [2] The contingent cone T (B, y′) is a closed cone, but not nec-

essarily convex and T (B, y′) ⊆
⋃
h>0

B − y′

h
.

Definition 2.3. [1, 2, 7] Let Y be a real normed space, ∅ 6= B ⊆ Y , y′ ∈ B, and
u ∈ Y . The second-order contingent set to B at y′ in the direction u is denoted by
T 2(B, y′, u) and defined as

An element y ∈ T 2(B, y′, u) if there exist sequences {λn} in R, with λn → 0+

and {yn} in Y , with yn → y such that

y′ + λnu+
1

2
λn

2yn ∈ B, ∀n ∈ N,

or, there exist sequences {tn}, {t′n} in R, with tn, t
′
n > 0, tn → ∞, t′n → ∞,

t′n
tn
→ 2, and {y′n} in B, with y′n → y′ such that

tn(y′n − y′)→ u and t′n(tn(y′n − y′)− u)→ y.

Proposition 2.2. [29] The second-order contingent set T 2(B, y′, u) is a closed
set, but not necessarily a cone. Even, T 2(B, y′, u) may not be convex, though B is
convex. Also, T 2(B, y′, θY ) = T (T (B, y′), θY ) = T (B, y′).

Let X, Y be real normed spaces, 2Y be the set of all subsets of Y , and K be
a solid pointed convex cone in Y . Let F : X → 2Y be a set-valued map from
X to Y , i.e., F (x) ⊆ Y , for all x ∈ X. The effective domain, image, graph, and
epigraph of F are defined respectively by

dom(F ) = {x ∈ X : F (x) 6= ∅},

F (A) =
⋃
x∈A

F (x), for any A(6= ∅) ⊆ X,

gr(F ) = {(x, y) ∈ X × Y : y ∈ F (x)},
and

epi(F ) = {(x, y) ∈ X × Y : y ∈ F (x) +K}.

Let A be a nonempty subset of X, x′ ∈ A, F : X → 2Y be a set-valued map,
with A ⊆ dom(F ) and y′ ∈ F (x′). Jahn and Rauh [22] introduced the notion
of contingent epiderivative of set-valued maps, which plays an important role in
set-valued optimization problems.

Definition 2.4. [22] A single-valued map D↑F (x′, y′) : X → Y whose epigraph
coincides with the contingent cone to the epigraph of F at (x′, y′), i.e.,

epi(D↑F (x′, y′)) = T (epi(F ), (x′, y′)),

is said to be the contingent epiderivative of F at (x′, y′).
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When f : X → R is a real-valued map, being continuous at x0 ∈ X and convex,

D↑f(x0, f(x0))(u) = f ′(x0)(u),∀u ∈ X,

where f ′(x0)(u) is the directional derivative of f at x0 in the direction u.
Jahn et al. [21] introduced the notion of second-order contingent epiderivative

of set-valued maps which also has a vital role in set-valued optimization problems.

Definition 2.5. [21] A single-valued map D2
↑F (x′, y′, u, v) : X → Y whose epi-

graph coincides with the second-order contingent set to the epigraph of F at (x′, y′) ∈
gr(F ) in a direction (u, v) ∈ X × Y , i.e.,

epi(D2
↑F (x′, y′, u, v)) = T 2(epi(F ), (x′, y′), (u, v)),

is said to be the second-order contingent epiderivative of F at (x′, y′) in the direc-
tion (u, v).

Proposition 2.3. [2] Let ∅ 6= A ⊆ X, x′ ∈ A, u ∈ X, and f : X → Y be a
single-valued map that is twice continuously differentiable around x′. The second-
order contingent epiderivative D2

↑f(x′, f(x′), u, f ′(x′)u) of f at (x′, f(x′)) in the
direction (u, f ′(x′)u) is given by

D2
↑f(x′, f(x′), u, f ′(x′)u)(x) = f ′(x′)x+

1

2
f ′′(x′)(u, u), x ∈ T 2(A, x′, u).

Borwein [6] introduced the notion of cone convexity of set-valued maps.

Definition 2.6. [6] Let A be a nonempty convex subset of a real normed space
X. A set-valued map F : X → 2Y , with A ⊆ dom(F ), is called K-convex on A if
∀x1, x2 ∈ A and λ ∈ [0, 1],

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) +K.

It is clear that if a set-valued map F : X → 2Y is K-convex on A, then epi(F )
is a convex subset of X × Y .

The following lemma represents cone convex set-valued maps in terms of con-
tingent epiderivative.

Lemma 2.1. [22] If F : X → 2Y is K-convex on a nonempty convex subset A of
a real normed space X, then for all x, x′ ∈ A and y′ ∈ F (x′),

F (x)− y′ ⊆ D↑F (x′, y′)(x− x′) +K.

Definition 2.7. [29] Let A be a nonempty subset of a real normed space X and
F : X → 2Y be a set-valued map, with A ⊆ dom(F ). Let x′, u ∈ A, y′ ∈ F (x′), and
v ∈ F (u) + K. Assume that F is second-order contingent epiderivable at (x′, y′)
in the direction (u − x′, v − y′). Then F is said to be second-order K-convex at
(x′, y′) in the direction (u− x′, v − y′) on A if

F (x)− y′ ⊆ D2
↑F (x′, y′, u− x′, v − y′)(x− x′) +K, ∀x ∈ A.
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Let X be a real normed space and A a nonempty subset of X. Let F : X → 2R
m

,

G : X → 2R
m

, and H : X → 2R
k

be set-valued maps, with

A ⊆ dom(F ) ∩ dom(G) ∩ dom(H).

Let F = (F1, F2, ..., Fm), G = (G1, G2, ..., Gm), and H = (H1, H2, ...,Hk), where
the set-valued maps Fi : X → 2R, Gi : X → 2R; i = 1, 2, ...,m, and Hj : X → 2R;
j = 1, 2, ..., k, are defined by

dom(Fi) = dom(F ),dom(Gi) = dom(G), and dom(Hj) = dom(H),

x ∈ A, y = (y1, y2, ..., ym) ∈ F (x) =⇒ yi ∈ Fi(x),∀i = 1, 2, ...,m,

z = (z1, z2, ..., zm) ∈ G(x) =⇒ zi ∈ Gi(x),∀i = 1, 2, ...,m,

and

w = (w1, w2, ..., wk) ∈ H(x) =⇒ wj ∈ Hj(x),∀j = 1, 2, ..., k.

Assume that Fi(x) ⊆ R+ and Gi(x) ⊆ int(R+),∀i = 1, 2, ...,m and x ∈ A. Let
λ′ = (λ′1, λ

′
2, ..., λ

′
m) ∈ Rm+ . Define elements y

z , λ
′z ∈ Rm and a subset λ′G(x) of

Rm by

y

z
=

(
y1
z1
,
y2
z2
, ...,

ym
zm

)
λ′z = (λ′1z1, λ

′
2z2, ..., λ

′
mzm),

and

λ′G(x) = {λ′z : z ∈ G(x)}.

For x ∈ A, define a subset F (x)
G(x) of Rm by

F (x)

G(x)
=
{y
z

=

(
y1
z1
,
y2
z2
, ...,

ym
zm

)
: y = (y1, y2, ..., ym) ∈ F (x),

z = (z1, z2, ..., zm) ∈ G(x)
}
.

We consider a set-valued fractional programming problem (FP).

minimize
x∈A

F (x)

G(x)

subject to H(x) ∩ (−Rk+) 6= ∅.
(FP)

The feasible set of the problem (FP) is given by

S = {x ∈ A : H(x) ∩ (−Rk+) 6= ∅}.
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Definition 2.8. A point (x′, y
′

z′ ) ∈ X × Rm, with x′ ∈ S, y′ ∈ F (x′), and z′ ∈
G(x′), is called a minimizer of the problem (FP) if for all (x, yz ) ∈ X × Rm, with
x ∈ S, y ∈ F (x), and z ∈ G(x),

y
z −

y′

z′ /∈ (−Rm+ ) \ {0Rm}.

Definition 2.9. A point (x′, y
′

z′ ) ∈ X × Rm, with x′ ∈ S, y′ ∈ F (x′), and z′ ∈
G(x′), is called a weak minimizer of the problem (FP) if for all (x, yz ) ∈ X ×Rm,
with x ∈ S, y ∈ F (x), and z ∈ G(x),

y

z
− y′

z′
/∈ (−int(Rm+ )).

Let λ′ ∈ Rm+ . We consider a parametric problem (FPλ′) associated with the
set-valued fractional programming problem (FP).

minimize
x∈A

F (x)− λ′G(x)

subject to H(x) ∩ (−Rk+) 6= ∅.
(FPλ′)

Definition 2.10. A point (x′, y′ − λ′z′) ∈ X × Rm, with x′ ∈ S, y′ ∈ F (x′), and
z′ ∈ G(x′), is called a minimizer of the problem (FPλ′) if for all (x, y − λ′z) ∈
X × Rm, with x ∈ S, y ∈ F (x), and z ∈ G(x),

(y − λ′z)− (y′ − λ′z′) /∈ (−Rm+ ) \ {0Rm}.

Definition 2.11. A point (x′, y′ − λ′z′) ∈ X × Rm, with x′ ∈ S, y′ ∈ F (x′), and
z′ ∈ G(x′), is called a weak minimizer of the problem (FPλ′) if for all (x, y−λ′z) ∈
X × Rm, with x ∈ S, y ∈ F (x), and z ∈ G(x),

(y − λ′z)− (y′ − λ′z′) /∈ (−int(Rm+ )).

Gadhi and Jawhar [20] proved the relationship between the solutions of the
problems (FP) and (FPλ′).

Lemma 2.2. [20] A point (x′, y
′

z′ ) ∈ X × Rm is a weak minimizer of the problem
(FP) if and only if (x′,0Rm) is a weak minimizer of the problem (FPλ′), where

λ′ = y′

z′ .

For the special case, when f : X → Rm, g : X → Rm, and h : X → Rk are
single-valued maps, we have a multiobjective fractional programming problem as

minimize
x∈A

f(x)

g(x)
=

(
f1(x)

g1(x)
,
f2(x)

g2(x)
, ...,

fm(x)

gm(x)

)
subject to h(x) ∈ (−Rk+),

where f = (f1, f2, ..., fm) and g = (g1, g2, ..., gm), by considering F (x) = {f(x)},
G(x) = {g(x)}, and H(x) = {h(x)} in the problem (FP).
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3. MAIN RESULTS

Das and Nahak [8]-[19] introduced the notion of ρ-cone convex set-valued maps.
They established the sufficient KKT conditions and studied the duality results for
various types of set-valued optimization problems under contingent epiderivative
and ρ-cone convexity assumptions. For ρ = 0, we have the usual notion of cone
convexity of set-valued maps introduced by Borwein [6].

Definition 3.1. [8, 11] Let A be a nonempty convex subset of Rn, e ∈ int(Rm+ )

and F : Rn → 2R
m

be a set-valued map, with A ⊆ dom(F ). Then F is said to be
ρ-Rm+ -convex with respect to e on A if there exists ρ ∈ R such that

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) + ρλ(1− λ)‖x1 − x2‖2e+ Rm+ ,
∀x1, x2 ∈ A and ∀λ ∈ [0, 1].

Das and Nahak [11] constructed an example of ρ-cone convex set-valued map,
which is not cone convex. They also characterized ρ-cone convexity of set-valued
maps in terms of contingent epiderivative.

Theorem 3.1. [11] Let A be a nonempty convex subset of Rn, e ∈ int(Rm+ ) and

F : Rn → 2R
m

be ρ-Rm+ -convex with respect to e on A. Let x′ ∈ A and y′ ∈ F (x′).
Then,

F (x)− y′ ⊆ D↑F (x′, y′)(x− x′) + ρ‖x− x′‖2e+ Rm+ ,∀x ∈ A.

Das and Nahak [9] introduced second-order ρ-cone convexity of set-valued maps
via second-order contingent epiderivative.

Definition 3.2. [9] Let A be a nonempty subset of Rn, e ∈ int(Rm+ ), and F :

Rn → 2R
m

be a set-valued map, with A ⊆ dom(F ). Let x′, u ∈ A, y′ ∈ F (x′), and
v ∈ F (u) + Rm+ . Assume that F is second-order contingent epiderivable at (x′, y′)
in the direction (u − x′, v − y′). Then F is said to be second-order ρ-Rm+ -convex
with respect to e at (x′, y′) in the direction (u−x′, v−y′) on A if there exists ρ ∈ R
such that

F (x)− y′ ⊆ D2
↑F (x′, y′, u− x′, v − y′)(x− x′) + ρ‖x− x′‖2e+ Rm+ ,∀x ∈ A.

Remark 3.1. For u = x′ and v = y′, we have

F (x)− y′ ⊆ D↑F (x′, y′)(x− x′) + ρ‖x− x′‖2e+ Rm+ ,∀x ∈ A.

In this case, we have the first order ρ-Rm+ -convexity via contingent epiderivative.
If ρ > 0, then F is said to be strongly second-order ρ-Rm+ -convex, if ρ = 0, we

have the usual notion of second-order Rm+ -convexity, and if ρ < 0, then F is said
to be weakly second-order ρ-Rm+ -convex.
Obviously, strongly second-order ρ-Rm+ -convexity ⇒ second-order Rm+ -convexity ⇒
weakly second-order ρ-Rm+ -convexity.
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Das and Nahak [9] constructed a set-valued map F : R → 2R
2

, which is second-
order ρ-R2

+-convex for some ρ, but is not second-order Rm+ -convex.

Remark 3.2. For the case of single-valued map, Definition 3.2 coincides with the
existing one. Let X,Y be real normed spaces, K be a solid pointed convex cone in
Y , e ∈ int(K), u ∈ X, and v ∈ Y . Let f : X → Y be a second-order continuously
differentiable function at x′ ∈ X. By considering F (x) = {f(x)}, from Definition
3.2 and Proposition 2.3, we can conclude that f is called second-order ρ-K-convex
with respect to e at (x′, f(x′)) in the direction (u − x′, v − f(x′)) if there exists
ρ ∈ R such that

f(x)−f(x′) ∈ f ′(x′)(x−x′)+
1

2
f ′′(x′)(u−x′, u−x′)+ρ‖x−x′‖2e+K,∀x ∈ X,

where v − f(x′) = f ′(x′)(u− x′).
The followings are some special cases.
When Y = Rm, K = Rm+ , f = (f1, f2, ..., fm), and e = (1, 1, ..., 1) = 1Rm , we have

fi(x)− fi(x′) ≥ f ′i(x′)(x− x′) +
1

2
f ′′i (x′)(u− x′, u− x′) + ρ‖x− x′‖2,

∀x ∈ X and i = 1, 2, ...,m.

When Y = R, K = R+, and e = 1, we have

f(x)− f(x′) ≥ f ′(x′)(x− x′) +
1

2
f ′′(x′)(u− x′, u− x′) + ρ‖x− x′‖2,∀x ∈ X.

When X = Rn, Y = R, K = R+, and e = 1, we have

f(x)−f(x′) ≥ (x−x′)T∇f(x′)+
1

2
(u−x′)TH(x′)(u−x′)+ρ‖x−x′)‖2,∀x ∈ X,

where ∇f(x′) and H(x′) are the gradient and Hessain matrix of f at x′, respec-
tively.

3.1. Second-order optimality conditions

Let λ′ ∈ Rm+ and G : X → 2R
m

be a set-valued map. Define a set-valued map

(−λ′G) : X → 2R
m

by

(−λ′G)(x) = −λ′G(x),∀x ∈ dom(G).

We establish the second-order sufficient optimality conditions of the problem
(FP) under second-order contingent epiderivative and second-order ρ-cone convex-
ity assumptions.

Theorem 3.2. (Second-order sufficient optimality conditions) Let A be a nonempty
convex subset of a real normed space X, x′ be an element of the feasible set S

of the problem (FP), y′ ∈ F (x′), z′ ∈ G(x′), λ′ ∈ F (x′)
G(x′) , w′ ∈ H(x′) ∩ (−L),
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and ρ1, ρ2, ρ3 ∈ R. Let u ∈ A, v ∈ F (u) + Rm+ , r ∈ (−λ′G)(u) + Rm+ , and
s ∈ H(u) + Rk+. Assume that F is second-order ρ1-Rm+ -convex at (x′, y′) in the
direction (u− x′, v− y′), −λ′G is second-order ρ2-Rm+ -convex at (x′,−λ′z′) in the
direction (u−x′, r+λ′z′), respectively, with respect to 1Rm and H is second-order
ρ3-Rk+-convex at (x′, w′) in the direction (u − x′, s − w′), with respect to 1Rk , on
A. Suppose that there exists (y∗, z∗) ∈ Rm+ × Rk+, with y∗ 6= 0Rm , and

(ρ1 + ρ2)〈y∗,1Rm〉+ ρ3〈z∗,1Rk〉 ≥ 0, (3.1)

such that〈
y∗,
(
D2
↑F (x′, y′, u− x′, v − y′)

+D2
↑(−λ′G)(x′,−λ′z′, u− x′, r + λ′z′)

)
(x− x′)

〉
+ 〈z∗, D2

↑H(x′, w′, u− x′, s− w′)(x− x′)〉 ≥ 0,∀x ∈ A,

(3.2)

y′ − λ′z′ = 0Rm , (3.3)

and

〈z∗, w′〉 = 0. (3.4)

Then (x′, y
′

z′ ) is a weak minimizer of the problem (FP).

Proof. We prove the theorem by the method of contradiction. Let (x′, y
′

z′ ) not be
a weak minimzer of the problem (FP). Then there exist x ∈ S, y ∈ F (x), and
z ∈ G(x) such that

y

z
<
y′

z′
.

As y′ − λ′z′ = 0Rm , we have

y

z
< λ′.

So,

y − λ′z < 0Rm .

Hence,

〈y∗, y − λ′z〉 < 0, since 0Rm 6= y∗ ∈ Rm+ .

Again, as y′ − λ′z′ = 0Rm , we have

〈y∗, y′ − λ′z′〉 = 0.

Since x ∈ S, there exists an element w ∈ H(x) ∩ (−Rk+). Therefore,

〈z∗, w〉 ≤ 0.

So,
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〈z∗, w − w′〉 ≤ 0, as 〈z∗, w′〉 = 0.

Hence,

〈y∗, y − λ′z − (y′ − λ′z′)〉+ 〈z∗, w − w′〉 < 0. (3.5)

As F is second-order ρ1-Rm+ -convex at (x′, y′) in the direction (u − x′, v − y′),
−λ′G is second-order ρ2-Rm+ -convex at (x′,−λ′z′) in the direction (u−x′, r+λ′z′),
respectively, with respect to 1Rm and H is second-order ρ3-Rk+-convex at (x′, w′)
in the direction (u− x′, s− w′), with respect to 1Rk , on A, we have

F (x)− y′ ⊆ D2
↑F (x′, y′, u− x′, v − y′)(x− x′) + ρ1‖x− x′‖21Rm + Rm+ ,

(−λ′G)(x)+λ′z′ ⊆ D2
↑(−λ′G)(x′,−λ′z′, u−x′, r+λ′z′)(x−x′)+ρ2‖x−x′‖21Rm+Rm+ ,

and

H(x)− w′ ⊆ D2
↑H(x′, w′, u− x′, s− w′)(x− x′) + ρ3‖x− x′‖21Rk + Rk+.

Hence,

y − y′ ∈ D2
↑F (x′, y′, u− x′, v − y′)(x− x′) + ρ1‖x− x′‖21Rm + Rm+ ,

−λ′z+λ′z′ ∈ D2
↑(−λ′G)(x′,−λ′z′, u−x′, r+λ′z′)(x−x′)+ρ2‖x−x′‖21Rm +Rm+ ,

and

w − w′ ∈ D2
↑H(x′, w′, u− x′, s− w′)(x− x′) + ρ3‖x− x′‖21Rk + Rk+.

Hence, from (3.1) and (3.2), we have

〈y∗, y − λ′z − (y′ − λ′z′)〉+ 〈z∗, w − w′〉 ≥ 0,

which contradicts (3.5).
Consequently, (x′, y′) is a weak minimizer of the problem (FP).

Let x ∈ A, x′ ∈ S, y′ = (y′1, y
′
2, ..., y

′
m) ∈ F (x′), and z′ = (z′1, z

′
2, ..., z

′
m) ∈

G(x′). Define subsets z′F (x) and −y′G(x) of Rm by

z′F (x) = {z′y = (z′1y1, z
′
2y2, ..., z

′
mym) : y = (y1, y2, ..., ym) ∈ F (x)}

and

−y′G(x) = {−y′z = (−y′1z1,−y′2z2, ...,−y′mzm) : z = (z1, z2, ..., zm) ∈ G(x)}.

Define set-valued maps z′F, (−y′G) : X → 2R
m

by

(z′F )(x) = z′F (x),∀x ∈ dom(F )

and

(−y′G)(x) = −y′G(x),∀x ∈ dom(G).

We can also prove the following second-order sufficient optimality conditions
through the same approach of Theorem 3.2.
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Theorem 3.3. (Second-order sufficient optimality conditions) Let A be a nonempty
convex subset of a real normed space X, x′ be an element of the feasible set S of the
problem (FP), y′ ∈ F (x′), z′ ∈ G(x′), w′ ∈ H(x′) ∩ (−L), and ρ1, ρ2, ρ3 ∈ R. Let
u ∈ A, v ∈ (z′F )(u)+Rm+ , r ∈ (−y′G)(u)+Rm+ , and s ∈ H(u)+Rk+. Assume that
(z′F ) is second-order ρ1-Rm+ -convex at (x′, z′y′) in the direction (u− x′, v − z′y′),
−y′G is second-order ρ2-Rm+ -convex at (x′,−y′z′) in the direction (u−x′, r+y′z′),
respectively, with respect to 1Rm and H is second-order ρ3-Rk+-convex at (x′, w′) in
the direction (u− x′, s− w′), with respect to 1Rk , on A. Suppose that there exists
(y∗, z∗) ∈ Rm+ × Rk+, with y∗ 6= 0Rm , and (3.1) and (3.4) are satisfied, with〈

y∗,
(
D2
↑(z
′F )(x′, z′y′, u− x′, v − z′y′)

+D2
↑(−y′G)(x′,−y′z′, u− x′, r + y′z′)

)
(x− x′)

〉
+ 〈z∗, D2

↑H(x′, w, u− x′, s− w′)(x− x′)〉 ≥ 0,∀x ∈ A,

(3.6)

Then (x′, y
′

z′ ) is a weak minimizer of the problem (FP).

We formulate second-order parametric (PD), Mond-Weir (MWD), Wolfe (WD),
and mixed types (MD) duals of the problem (FP) and prove the corresponding
duality results.

3.2. Second-order parametric type dual

We consider a second-order parametric type dual (PD) of the problem (FP),
where F , −λ′G, and H are second-order contingent epiderivable set-valued maps
for all λ′ ∈ Rm+ . Let u ∈ A, v ∈ F (u) + Rm+ , and r ∈ (−λ′G)(u) + Rm+ .

maximize λ′ (PD)

subject to 〈
y∗,
(
D2
↑F (x′, y′, u− x′, v − y′)

+D2
↑(−λ′G)(x′,−λ′z′, u− x′, r + λ′z′)

)
(x− x′)

〉
+ 〈z∗, D2

↑H(x′, w′, u− x′, s− w′)(x− x′)〉 ≥ 0,∀x ∈ A,
s ∈ H(u) + Rk+,
y′ − λ′z′ ≥ 0,

x′ ∈ A, y′ ∈ F (x′), z′ ∈ G(x′), λ′ ∈ F (x′)

G(x′)
, w′ ∈ H(x′),

y∗ ∈ Rm+ , z∗ ∈ Rk+, 〈z∗, w′〉 ≥ 0, and 〈y∗,1Rm〉 = 1.

Definition 3.3. A feasible point (x′, y′, z′, λ′, w′, y∗, z∗) of the problem (PD) is
called a weak maximizer of (PD) if for all feasible points (x, y, z, λ, w, y∗1 , z

∗
1) of

(PD),

λ− λ′ /∈ int(Rm+ ).
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Theorem 3.4. (Second-order weak duality) Let A be a nonempty convex subset
of a real normed space X and x be an element of the feasible set S of the problem
(FP). Let (x′, y′, z′, λ′, w′, y∗, z∗) be a feasible point of the problem (PD). Let
u ∈ A, v ∈ F (u) + Rm+ , r ∈ (−λ′G)(u) + Rm+ , and s ∈ H(u) + Rk+. Assume
that F is second-order ρ1-Rm+ -convex at (x′, y′) in the direction (u − x′, v − y′),
−λ′G is second-order ρ2-Rm+ -convex at (x′,−λ′z′) in the direction (u−x′, r+λ′z′),
respectively, with respect to 1Rm and H is second-order ρ3-Rk+-convex at (x′, w′)
in the direction (u− x′, s− w′), with respect to 1Rk , on A such that

(ρ1 + ρ2) + ρ3〈z∗,1Rk〉 ≥ 0. (3.7)

Then,

F (x)

G(x)
− λ′ ⊆ Rm \ (−int(Rm+ )).

Proof. We prove the theorem by the method of contradiction. Suppose that for
some y ∈ F (x) and z ∈ G(x),

y

z
− λ′ ∈ (−int(Rm+ )).

Therefore,

y

z
< λ′.

So,

y − λ′z < 0Rm .

Therefore,

〈y∗, y − λ′z〉 < 0, since 0Rm 6= y∗ ∈ Rm+ .

Again, from the constraints of (PD), we have

y′ − λ′z′ ≥ 0.

Therefore,

〈y∗, y′ − λ′z′〉 ≥ 0.

Since x ∈ S, we have

H(x) ∩ (−Rk+) 6= ∅.

Choose w ∈ H(x) ∩ (−Rk+). So, we have

〈z∗, w〉 ≤ 0.
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From the constraints of (PD), we have

〈z∗, w′〉 ≥ 0.

So,

〈z∗, w − w′〉 = 〈z∗, w〉 − 〈z∗, w′〉 ≤ 0.

Hence,

〈y∗, y − λ′z − (y′ − λ′z′)〉+ 〈z∗, w − w′〉 < 0. (3.8)

As F is second-order ρ1-Rm+ -convex at (x′, y′) in the direction (u − x′, v − y′),
−λ′G is second-order ρ2-Rm+ -convex at (x′,−λ′z′) in the direction (u−x′, r+λ′z′),
respectively, with respect to 1Rm and H is second-order ρ3-Rk+-convex at (x′, w′)
in the direction (u− x′, s− w′), with respect to 1Rk , on A, we have

F (x)− y′ ⊆ D2
↑F (x′, y′, u− x′, v − y′)(x− x′) + ρ1‖x− x′‖21Rm + Rm+ ,

(−λ′G)(x)+λ′z′ ⊆ D2
↑(−λ′G)(x′,−λ′z′, u−x′, r+λ′z′)(x−x′)+ρ2‖x−x′‖21Rm+Rm+ ,

and

H(x)− w′ ⊆ D2
↑H(x′, w′, u− x′, s− w′)(x− x′) + ρ3‖x− x′‖21Rk + Rk+.

Hence,

y − y′ ∈ D2
↑F (x′, y′, u− x′, v − y′)(x− x′) + ρ1‖x− x′‖21Rm + Rm+ ,

−λ′z+λ′z′ ∈ D2
↑(−λ′G)(x′,−λ′z′, u−x′, r+λ′z′)(x−x′)+ρ2‖x−x′‖21Rm +Rm+ ,

and

w − w′ ∈ D2
↑H(x′, w′, u− x′, s− w′)(x− x′) + ρ3‖x− x′‖21Rk + Rk+.

Hence, from the constraints of (PD) and (3.7), we have

〈y∗, y − λ′z − (y′ − λ′z′)〉+ 〈z∗, w − w′〉 ≥ 0,

which contradicts (3.8). Therefore,

y

z
− λ′ /∈ (−int(Rm+ )).

Since y ∈ F (x) is arbitrary, we have

F (x)

G(x)
− λ′ ⊆ Rm \ (−int(Rm+ )),

which completes the proof of the theorem.
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Theorem 3.5. (Second-order strong duality) Let (x′, y
′

z′ ) be a weak minimizer of
the problem (FP) and w′ ∈ H(x′) ∩ (−Rk+). Assume that for some (y∗, z∗) ∈
Rm+ ×Rk+, with 〈y∗,1Rm〉 = 1 and λ′ ∈ F (x′)

G(x′) , (3.2), (3.3), and (3.4) are satisfied at

the point (x′, y′, z′, λ′, w′, y∗, z∗). Then (x′, y′, z′, λ′, w′, y∗, z∗) is a feasible solution
of the problem (PD). Furthermore, if the second-order weak duality Theorem 3.4
holds between the problems (FP) and (PD), then (x′, y′, z′, λ′, w′, y∗, z∗) is a weak
maximizer of (PD).

Proof. As the (3.2), (3.3), and (3.4) are satisfied at (x′, y′, z′, λ′, w′, y∗, z∗), we
have〈
y∗,
(
D2
↑F (x′, y′, u− x′, v − y′) +D2

↑(−λ′G)(x′,−λ′z′, u− x′, r + λ′z′)
)

(x− x′)
〉

+ 〈z∗, D2
↑H(x′, w′, u− x′, s− w′)(x− x′)〉 ≥ 0,∀x ∈ A,

y′ − λ′z′ = 0Rm ,

and

〈z∗, w′〉 = 0.

Hence (x′, y′, z′, λ′, w′, y∗, z∗) is a feasible solution of (PD).
Suppose that the second-order weak duality Theorem 3.4 holds between (FP) and
(PD) and (x′, y′, z′, λ′, w′, y∗, z∗) is not a weak maximizer of (PD).
Then there exists a feasible point (x, y, z, λ, w, y∗1 , z

∗
1) of (PD) such that

λ− λ′ ∈ int(Rm+ ).

As y′ − λ′z′ = 0Rm , we have

λ− y′

z′
∈ int(Rm+ ).

which contradicts the second-order weak duality Theorem 3.4 between (FP) and
(PD).
Consequently, (x′, y′, z′, λ′, w′, y∗, z∗) is a weak maximizer of (PD).

Theorem 3.6. (Second-order converse duality) Let A be a nonempty convex sub-
set of a real normed space X and (x′, y′, z′, λ′, w′, y∗, z∗) be a feasible point of

the problem (PD), where λ′ = y′

z′ . Let (x′, y′, z′, λ′, w′, y∗, z∗) be a feasible point
of the problem (PD). Let u ∈ A, v ∈ F (u) + Rm+ , r ∈ (−λ′G)(u) + Rm+ , and
s ∈ H(u) + Rk+. Assume that F is second-order ρ1-Rm+ -convex at (x′, y′) in the
direction (u− x′, v− y′), −λ′G is second-order ρ2-Rm+ -convex at (x′,−λ′z′) in the
direction (u−x′, r+λ′z′), respectively, with respect to 1Rm and H is second-order
ρ3-Rk+-convex at (x′, w′) in the direction (u − x′, s − w′), with respect to 1Rk , on
A, satisfying (3.7). If x′ is an element of the feasible set S of the problem (FP),

then (x′, y
′

z′ ) is a weak minimizer of the problem (FP).
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Proof. We prove the theorem by the method of contradiction.

Suppose (x′, y
′

z′ ) is not a weak minimzer of the problem (FP).
Therefore there exist x ∈ S, y ∈ F (x), and z ∈ G(x) such that

y

z
<
y′

z′
.

As λ′ = y′

z′ , we have

y

z
< λ′.

So,

y − λ′z < 0Rm .

Hence,

〈y∗, y − λ′z〉 < 0, since 0Rm 6= y∗ ∈ Rm+ .

Again, from the constraints of (PD),

y′ − λ′z′ ≥ 0.

Therefore,

〈y∗, y′ − λ′z′〉 ≥ 0.

Since x ∈ S, there exists an element

w ∈ H(x) ∩ (−Rk+).

Therefore,

〈z∗, w〉 ≤ 0.

We have

〈z∗, w − w′〉 ≤ 0, as 〈z∗, w′〉 ≥ 0.

Hence,

〈y∗, y − λ′z − (y′ − λ′z′)〉+ 〈z∗, w − w′〉 < 0. (3.9)

As F is second-order ρ1-Rm+ -convex at (x′, y′) in the direction (u − x′, v − y′),
−λ′G is second-order ρ2-Rm+ -convex at (x′,−λ′z′) in the direction (u−x′, r+λ′z′),
respectively, with respect to 1Rm and H is second-order ρ3-Rk+-convex at (x′, w′)
in the direction (u− x′, s− w′), with respect to 1Rk , on A, we have

F (x)− y′ ⊆ D2
↑F (x′, y′, u− x′, v − y′)(x− x′) + ρ1‖x− x′‖21Rm + Rm+ ,
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(−λ′G)(x)+λ′z′ ⊆ D2
↑(−λ′G)(x′,−λ′z′, u−x′, r+λ′z′)(x−x′)+ρ2‖x−x′‖21Rm+Rm+ ,

and

H(x)− w′ ⊆ D2
↑H(x′, w′, u− x′, s− w′)(x− x′) + ρ3‖x− x′‖21Rk + Rk+.

Hence,

y − y′ ∈ D2
↑F (x′, y′, u− x′, v − y′)(x− x′) + ρ1‖x− x′‖21Rm + Rm+ ,

−λ′z+λ′z′ ∈ D2
↑(−λ′G)(x′,−λ′z′, u−x′, r+λ′z′)(x−x′)+ρ2‖x−x′‖21Rm +Rm+ ,

and

w − w′ ∈ D2
↑H(x′, w′, u− x′, s− w′)(x− x′) + ρ3‖x− x′‖21Rk + Rk+.

Hence, from the constraints of (PD) and (3.7), we have

〈y∗, y − λ′z − (y′ − λ′z′)〉+ 〈z∗, w − w′〉 ≥ 0,

which contradicts (3.9).

Consequently, (x′, y
′

z′ ) is a weak minimizer of the problem (FP).

3.3. Second-order Mond-Weir type dual

We consider a second-order Mond-Weir type dual (MWD) of the problem
(FP), where z′F , −y′G, and H are second-order contingent epiderivable set-valued
maps for all y′, z′ ∈ Rm+ . Let u ∈ A, v ∈ (z′F )(u) +Rm+ , and r ∈ (−y′G)(u) +Rm+ .

maximize
y′

z′
(MWD)

subject to 〈
y∗,
(
D2
↑(z
′F )(x′, z′y′, u− x′, v − z′y′)

+D2
↑(−y′G)(x′,−y′z′, u− x′, r + y′z′)

)
(x− x′)

〉
+ 〈z∗, D2

↑H(x′, w, u− x′, s− w′)(x− x′)〉 ≥ 0,∀x ∈ A,
s ∈ H(u) + Rk+,
〈z∗, w′〉 ≥ 0,

x′ ∈ A, y′ ∈ F (x′), z′ ∈ G(x′), y∗ ∈ Rm+ , z∗ ∈ Rk+, and 〈y∗,1Rm〉 = 1.

Definition 3.4. A feasible point (x′, y′, z′, w′, y∗, z∗) of the problem (MWD) is
called a weak maximizer of (MWD) if for all feasible points (x, y, z, w, y∗1 , z

∗
1) of

(MWD),

y

z
− y′

z′
/∈ int(Rm+ ).
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We prove the duality results of Mond-Weir type of the problem (FP). The proofs
are very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.7. (Second-order weak duality) Let A be a nonempty convex subset
of a real normed space X and x be an element of the feasible set S of (FP).
Let (x′, y′, z′, w′, y∗, z∗) be a feasible point of the problem (MWD). Let u ∈ A,
v ∈ (z′F )(u) + Rm+ , r ∈ (−y′G)(u) + Rm+ , and s ∈ H(u) + Rk+. Assume that
(z′F ) is second-order ρ1-Rm+ -convex at (x′, z′y′) in the direction (u− x′, v − z′y′),
−y′G is second-order ρ2-Rm+ -convex at (x′,−y′z′) in the direction (u−x′, r+y′z′),
respectively, with respect to 1Rm and H is second-order ρ3-Rk+-convex at (x′, w′)
in the direction (u− x′, s−w′), with respect to 1Rk , on A, satisfying (3.7). Then,

F (x)

G(x)
− y′

z′
⊆ Rm \ (−int(Rm+ )).

Theorem 3.8. (Second-order strong duality) Let (x′, y
′

z′ ) be a weak minimizer of
the problem (FP) and w′ ∈ H(x′)∩(−Rk+). Assume that for some (y∗, z∗) ∈ Rm+ ×
Rk+, with 〈y∗,1Rm〉 = 1, (3.4) and (3.6) are satisfied at (x′, y′, z′, w′, y∗, z∗). Then
(x′, y′, z′, w′, y∗, z∗) is a feasible solution of the problem (MWD). Furthermore,
if the second-order weak duality Theorem 3.7 holds between (FP) and (MWD),
then the point (x′, y′, z′, w′, y∗, z∗) is a weak maximizer of (MWD).

Theorem 3.9. (Second-order converse duality) Let A be a nonempty convex sub-
set of a real normed space X and (x′, y′, z′, w′, y∗, z∗) be a feasible point of the
problem (MWD). Let u ∈ A, v ∈ (z′F )(u) + Rm+ , r ∈ (−y′G)(u) + Rm+ , and
s ∈ H(u) + Rk+. Assume that (z′F ) is second-order ρ1-Rm+ -convex at (x′, z′y′) in
the direction (u − x′, v − z′y′), −y′G is second-order ρ2-Rm+ -convex at (x′,−y′z′)
in the direction (u−x′, r+y′z′), respectively, with respect to 1Rm and H is second-
order ρ3-Rk+-convex at (x′, w′) in the direction (u−x′, s−w′), with respect to 1Rk ,
on A, satisfying (3.7). If x′ is an element of the feasible set S of the problem

(FP), then (x′, y
′

z′ ) is a weak minimizer of the problem (FP).

3.4. Second-order Wolfe type dual
We consider a second-order Wolfe type dual (WD) of the problem (FP), where

z′F , −y′G, and H are second-order contingent epiderivable set-valued maps for
all y′, z′ ∈ Rm+ . Let u ∈ A, v ∈ (z′F )(u) + Rm+ , and r ∈ (−y′G)(u) + Rm+ .

maximize
y′ + 〈z∗, w′〉1Rm

z′
(WD)

subject to 〈
y∗,
(
D2
↑(z
′F )(x′, z′y′, u− x′, v − z′y′)

+D2
↑(−y′G)(x′,−y′z′, u− x′, r + y′z′)

)
(x− x′)

〉
+ 〈z∗, D2

↑H(x′, w, u− x′, s− w′)(x− x′)〉 ≥ 0,∀x ∈ A,
s ∈ H(u) + Rk+,
x′ ∈ A, y′ ∈ F (x′), z′ ∈ G(x′), y∗ ∈ Rm+ , z∗ ∈ Rk+, and 〈y∗,1Rm〉 = 1.
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Definition 3.5. A feasible point (x′, y′, z′, w′, y∗, z∗) of the problem (WD) is called
a weak maximizer of (WD) if for all feasible points (x, y, z, w, y∗1 , z

∗
1) of (WD),

y + 〈z∗1 , w〉1Rm

z
− y′ + 〈z∗, w′〉1Rm

z′
/∈ int(Rm+ ).

We prove the duality results of Wolfe type of the problem (FP). The proofs are
very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.10. (Second-order weak duality) Let A be a nonempty convex subset
of a real normed space X and x be an element of the feasible set S of (FP). Let
the point (x′, y′, z′, w′, y∗, z∗) be a feasible point of the problem (WD). Let u ∈ A,
v ∈ (z′F )(u) + Rm+ , r ∈ (−y′G)(u) + Rm+ , and s ∈ H(u) + Rk+. Assume that
(z′F ) is second-order ρ1-Rm+ -convex at (x′, z′y′) in the direction (u− x′, v − z′y′),
−y′G is second-order ρ2-Rm+ -convex at (x′,−y′z′) in the direction (u−x′, r+y′z′),
respectively, with respect to 1Rm and H is second-order ρ3-Rk+-convex at (x′, w′)
in the direction (u− x′, s−w′), with respect to 1Rk , on A, satisfying (3.7). Then,

F (x)

G(x)
− y′ + 〈z∗, w′〉1Rm

z′
⊆ Rm \ (−int(Rm+ )).

Theorem 3.11. (Second-order strong duality) Let (x′, y
′

z′ ) be a weak minimizer
of the problem (FP) and w′ ∈ H(x′) ∩ (−Rk+). Assume that for some (y∗, z∗) ∈
Rm+ ×Rk+, with 〈y∗,1Rm〉 = 1, (3.4) and (3.6) are satisfied at (x′, y′, z′, w′, y∗, z∗).
Then (x′, y′, z′, w′, y∗, z∗) is a feasible solution of the problem (WD). Furthermore,
if the second-order weak duality Theorem 3.10 holds between the problems (FP) and
(WD), then (x′, y′, z′, w′, y∗, z∗) is a weak maximizer of (WD).

Theorem 3.12. (Second-order converse duality) Let A be a nonempty convex sub-
set of a real normed space X and (x′, y′, z′, w′, y∗, z∗) be a feasible point of the prob-
lem (WD), with 〈z∗, w′〉 ≥ 0. Let u ∈ A, v ∈ (z′F )(u)+Rm+ , r ∈ (−y′G)(u)+Rm+ ,
and s ∈ H(u) +Rk+. Assume that (z′F ) is second-order ρ1-Rm+ -convex at (x′, z′y′)
in the direction (u−x′, v−z′y′), −y′G is second-order ρ2-Rm+ -convex at (x′,−y′z′)
in the direction (u−x′, r+y′z′), respectively, with respect to 1Rm and H is second-
order ρ3-Rk+-convex at (x′, w′) in the direction (u−x′, s−w′), with respect to 1Rk ,
on A, satisfying (3.7). If x′ is an element of the feasible set S of the problem

(FP), then (x′, y
′

z′ ) is a weak minimizer of the problem (FP).

3.5. Second-order mixed type dual

We consider a second-order mixed type dual (MD) of the problem (FP), where
z′F , −y′G, and H are second-order contingent epiderivable set-valued maps for
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all y′, z′ ∈ Rm+ . Let u ∈ A, v ∈ (z′F )(u) + Rm+ , and r ∈ (−y′G)(u) + Rm+ .

maximize
y′ + 〈z∗, w′〉1Rm

z′
(MD)

subject to 〈
y∗,
(
D2
↑(z
′F )(x′, z′y′, u− x′, v − z′y′)

+D2
↑(−y′G)(x′,−y′z′, u− x′, r + y′z′)

)
(x− x′)

〉
+ 〈z∗, D2

↑H(x′, w, u− x′, s− w′)(x− x′)〉 ≥ 0,∀x ∈ A,
s ∈ H(u) + Rk+,
〈z∗, w′〉 ≥ 0,

x′ ∈ A, y′ ∈ F (x′), z′ ∈ G(x′), y∗ ∈ Rm+ , z∗ ∈ Rk+, and 〈y∗,1Rm〉 = 1.

Definition 3.6. A feasible point (x′, y′, z′, w′, y∗, z∗) of the problem (MD) is called
a weak maximizer of (MD) if for all feasible points (x, y, z, w, y∗1 , z

∗
1) of (MD),

y + 〈z∗1 , w〉1Rm

z
− y′ + 〈z∗, w′〉1Rm

z′
/∈ int(Rm+ ).

We prove the duality results of mixed type of the problem (FP). The proofs are
very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.13. (Second-order weak duality) Let A be a nonempty convex subset
of a real normed space X and x be an element of the feasible set S of (FP). Let
the point (x′, y′, z′, w′, y∗, z∗) be a feasible point of the problem (MD). Let u ∈ A,
v ∈ (z′F )(u) + Rm+ , r ∈ (−y′G)(u) + Rm+ , and s ∈ H(u) + Rk+. Assume that
(z′F ) is second-order ρ1-Rm+ -convex at (x′, z′y′) in the direction (u− x′, v − z′y′),
−y′G is second-order ρ2-Rm+ -convex at (x′,−y′z′) in the direction (u−x′, r+y′z′),
respectively, with respect to 1Rm and H is second-order ρ3-Rk+-convex at (x′, w′)
in the direction (u− x′, s−w′), with respect to 1Rk , on A, satisfying (3.7). Then,

F (x)

G(x)
− y′ + 〈z∗, w′〉1Rm

z′
⊆ Rm \ (−int(Rm+ )).

Theorem 3.14. (Second-order strong duality) Let (x′, y
′

z′ ) be a weak minimizer
of the problem (FP) and w′ ∈ H(x′) ∩ (−Rk+). Assume that for some (y∗, z∗) ∈
Rm+ ×Rk+, with 〈y∗,1Rm〉 = 1, (3.4) and (3.6) are satisfied at (x′, y′, z′, w′, y∗, z∗).
Then (x′, y′, z′, w′, y∗, z∗) is a feasible solution of the problem (MD). Furthermore,
if the second-order weak duality Theorem 3.13 holds between the problems (FP) and
(MD), then (x′, y′, z′, w′, y∗, z∗) is a weak maximizer of (MD).

Theorem 3.15. (Second-order converse duality) Let A be a nonempty convex sub-
set of a real normed space X and (x′, y′, z′, w′, y∗, z∗) be a feasible point of the
problem (MD). Let u ∈ A, v ∈ (z′F )(u) + Rm+ , r ∈ (−y′G)(u) + Rm+ , and
s ∈ H(u) + Rk+. Assume that (z′F ) is second-order ρ1-Rm+ -convex at (x′, z′y′) in
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the direction (u − x′, v − z′y′), −y′G is second-order ρ2-Rm+ -convex at (x′,−y′z′)
in the direction (u−x′, r+y′z′), respectively, with respect to 1Rm and H is second-
order ρ3-Rk+-convex at (x′, w′) in the direction (u−x′, s−w′), with respect to 1Rk ,
on A, satisfying (3.7). If x′ is an element of the feasible set S of the problem

(FP), then (x′, y
′

z′ ) is a weak minimizer of the problem (FP).

4. CONCLUSIONS

In this paper, we establish the sufficient KKT conditions of the set-valued frac-
tional programming problem (FP) via contingent epiderivative and ρ-cone convex-
ity assumptions. We also develop the weak, strong, and converse duality theorems
between the primal problem (FP) and the second-order dual problems of paramet-
ric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed (MD) types, respectively.
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