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1. INTRODUCTION

Andreani et al. [1], observed that some scalar optimization problems do not
satisfy Karush-Kuhn-Tucker optimality conditions at an optimal point. Therefore,
to resolve the problem, Andreani et al.[1] developed sequential optimality condi-
tions, so-called approximate Karush-Kuhn-Tucker (AKKT) optimality conditions
using mixed penalty method of Fiacco and McCormick [2, Section 4.3]. Although
AKKT conditions are satisfied at that point without any constraint qualifications,
which is an additional benefit of this method, but Andreani et al. [3] present some
examples satisfying AKKT conditions but the founded point is not an optimal so-
lution. As a remedy to this situations Andreani et al. [3] proposed complementary
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approximate Karush-Kuhn-Tucker (CAKKT) optimality conditions using exter-
nal penalty method [2, Section 4.2]. Birgin and Martinez [4, Theorem 6.1] noticed
that constraint qualifications play an important role in implementation of sequen-
tial optimality conditions for stopping criteria of several practical optimization
algorithms. In addition to that, Andreani et al. [5] introduced several constraint
qualifications for various sequential optimality conditions in the support of stop-
ping criteria.

Recently, Giorgi et al. [6] extended the concept of AKKT conditions of scalar
optimization problems to multiobjective optimization problems and obtained nec-
essary and sufficient optimality conditions where multipliers of gradient of objec-
tive functions are in small range and AKKT conditions coincide on KKT (see,
Miettinen [7, Theorem 3.1.5]) conditions under Mangasarian Fromovitz constraint
qualification (see, [8]). On the other hand, Feng and Li [9] established approximate
strong Karush-Kuhn-Tucker (ASKKT) conditions using the techniques of Wendell
and Lee [10], in which multipliers of gradient of objective functions are in wide
range and also extended cone continuity property (CCP) for scalar optimization
problems (see, Andreani et al. [11]) to cone continuity regularity (CCR) condi-
tion for multiobjective optimization problems, which guarantee that the ASKKT
coincide with strong Karush-Kuhn-Tucker (SKKT [15]) conditions.

Motivated by the works of Andreani et al. [5], Feng and Li [9], and Wen-
dell and Lee [10], we establish a new sequential optimality conditions, so-called
strong complementary approximate Karush-Kuhn-Tucker (SCAKKT) conditions
for multiobjective optimization problems using Hybrid approach from Chankong
and Haimes [12, Section 4.6.3], in which domain of multipliers cover that of Giorgi
et al. [6] as well as Feng and Li [9]. Further, we propose SCAKKT-regularity
condition which is a constraint qualification weaker than CCR, condition.

The outline of this paper is as follows: In Section 2, we recall some prelimi-
naries. In Section 3, we define strong complementary approximate Karush-Kuhn-
Tucker (SCAKKT) conditions and establish necessary and sufficient optimality
conditions for multiobjective optimization problems. In Section 4, SCAKKT-
regularity condition and related consequences are discussed.

2. PRELIMINARIES

In this section, we recall some notations and definitions which will be used
throughout the paper. Let R™ denotes n-dimensional Euclidean space and open
(closed) ball B(z°,8) = {z € R"; ||z — z°|| < 6}(B(2°,6) = {z € R™; ||z — 2°|| <
d}), centered at z° € R™, radius ¢ > 0, notation ||-|| denotes Euclidean norm in
R™ except otherwise specified. For z = (z1,...,2,) € R", z;(i = 1,...,n) are
its components. R’ denote non-negative orthant of R™ and for ¢ € R, ¢y =
max{0, ¢}, ¢i = (c4)?. Following inequalities for y, z € R",

y§Z<:>Zh§Zu 7::17"'7”5

y<z<=y<z and y # z,
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Y<z<=y; <z, t=1,...,n.
Consider the multiobjective optimization problem:
(MOP) min (fl(x)va(x)vafp(x))a (1>
subject to z € Q={x eR":g(x) L0, h(z) =0},

where f : R" — RP g : R® — R™, h: R®™ — R"” be continuously differentiable
function. A point 2° € Q is an efficient (weak efficient, respectively) solution for
(MOP) if there is no € Q such that f(x) < f(z°) (f(x) < f(x°), respectively).
A point z° € Q is said to be a local efficient (local weak efficient, respectively)
solution for (MOP) if there exists an open ball B(z°,d) around the point z° such
that 2° is an efficient (weak efficient, respectively) solution on Q N B(z°,d). We
will use the following index sets further

I={1,..,p},J(z°)={j:9;(z°) =0}, L ={1,...,r}.

We recall some already existing approximate optimality conditions for multi-
objective optimization problems, where differences can be observed easily.

Definition 1. (AKKT Conditions [6]) We say that AKKT conditions are satisfied
for (MOP) at a feasible point x° if and only if there exist sequences (z¥) C R™
and (\*, pF, 78) C RE x RT x R” such that

(C1) z* — 2°,

(C2) Z)\’“sz +Zu§v9j +ZTZ Vh(z 0,

=1 j=1

p
(C3) > M =1,
i=1

(C4) gj(z°) <0 = p; =0 for sufficiently large k, j=1,....m
Definition 2. (ASKKT Conditions[9]) We say that ASKKT conditions are sat-
isfied for (MOP)

(MOP)  min (fy(x). fo(®). ... fy(@)).
subject to =€ Q={reR":g(zx) <0},

at a feasible point z° if and only if there exist sequences (z¥) C R™ and (\F, u*)
RL x R such that

(C1) a* — 2°,

(C2) ZA’“VfZ +Zujvgj -0,

i=1
(C3) N =1i=1,..,p,
(C4) gj(z°) <0 = p; =0 for sufficiently large k, j=1,....m
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3. SCAKKT CONDITIONS FOR MULTIOBJECTIVE
OPTIMIZATION PROBLEMS

In this section, we extend the concept of complementary approximate Karush-
Kuhn-Tucker (CAKKT) necessary conditions for single objective optimization
problems given by Andreani et al. [3] to multiobjective optimization problems
(MOP).

Definition 3. (SCAKKT Conditions) We say that SCAKKT conditions are sat-
isfied for (MOP) at a feasible point x° if and only if there exist sequences (z*) C R™
and (\*, pF, 78) C RE. x RT x R” such that

(C1) 2% — 2°,
P m r
(C2) DMV +> ubvgi(a®) + ) 7f V() — o,
i=1 j=1 =1
(C3) N >0,i=1,..,p,
(C4) lim XF(fi(@®) = fi(2°)) = 0 ¥i, lim_pfg;(2*) = 0¥j, lim 7hi(a") =0V

Theorem 4. (Necessary conditions) If z° € Q is a local efficient solution of
(MOP), then x° satisfies the SCAKKT conditions.

Proof. Since z° is a local efficient solution to (MOP). Then, from Miettinen [7,

Theorem 3.3.1] and Chankong and Haimes [12, Section 4.6.3], z° is a local solution
to the problem,

P
. 1 0
min E w; fi(z) + §||m —2°|%

i=1

subject to fi(z) < fi(z°), i=1,...,p, * € QN B(2°,0), w € R, w > 0.

(2)

We can suppose z° is a unique solution of (2). Now, we define an unconstrained
optimization problem corresponding to constrained optimization problem (2), with
the help of penalty function [13, p. 255] as follows:

or(a) = Y wifile) + glle — o+ L (i) — i@+ D g
=1 =1 Tj:l (3)
+Zhl(x)2}a
=1

for all k € N. Let z* be a global solution to the problem

min @ (z), subject to ||z — z°|| £ 4. (4)
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In (42, x¥ exists corresponding to large enough py, because ¢y (x) is continuous
and B(z°,6) is compact. Let z be a limit point of sequence 2*. We may suppose
that ¥ — 2. From (3), we have

p
S wifi(a) < oulat),
=1
because
or(a) = Y wifilah) = Ll — a4 2L Sl — i)
i=1 i=1

+ 3053+ D (et} 2 0
j=1 =1

Since z* is the solution of (4) and x° is a feasible point, then we have

@k(zk szfz . (5)

=1

We claim that z is a feasible point of the problem (4), for this suppose if possible
b T
> (filz) = fil +Zg] )+ 3 B(2) >0
i=1 1=1
for sufficiently large k, then there exists ¢ > 0, such that
p m T
D o(fila) = fil@)i + D) gi @) + ) hi
i=1 Jj=1 =1
Therefore, from continuity of all functions and ¥ — 2z, we have

D w4 gliet =l G{ ) - 5+ L,

i=1
+Zhl(x } szfz + PkC
=1

Taking the hmlt P —> 00, we obtaln o1 (z%) —> 00, which contradicts (5).

Consequently, Z(fl( ) — filz®))d + E g3 (2)4 + Z h#(z) = 0, which implies z is
: =

i=1

a feasible point. From (4), we have

) = S i) + Lt -0t 2L S () - )2
=1

i=1

+ 30053+ D (et} £ D wifile)
j=1 I=1 i=1
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Since, Pk{é( (%) — fi(a®))2 + i:jlgj(x)i 4 é hy(x)2} = 0, then from (6), we

have
p 1 P
leifi(zk) + §H$k —z°|? < Z;wifi(xo),

taking the limit, we get

p p
S wifi() + glle 2 £ 3 wifi(a?)
i=1 =1

As 2° is the unique solution to the problem (2), we conclude that z = z°. Then,
% — 2° and ||z¥ — 2°|| < § for all k sufficiently large. Since z* is a solution to
problem (3) and it is an interior point of the feasible set for sufficiently large k,
then from optimality conditions Vi (2¥) = 0, that is

Z WiV fi(a®) + (2" = 2°) + Y pr(fila") = fil@®))+ V fila®)

i=1

+ Z prgj(x +Vg] )+ Z prhi(x Vhl ) =0.

If we suppose A} = w; + pp(fi(z®) — fi(z®))4 > 0, i = 1,2,...,p, and as pu} =
prg; (%), TF = prhi(z*), then from (7), we get

ZA’“Vf, +Zuvg] +ervm ) =a° — 2% =0,

as xF — 2°. Now, from [13, p. 257, Theorem 2.1], we have

m

o wafiah) + et — a2+ 2L () — e+ D g

= : ®)
+Zhl(1‘k)2} < Zwifi(xo)a
=1 i=1

taking limit, we get
1 P
: k o 2
fim l2||x -a P g { e +Zgj
NI }] <0
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Since Af —w; = pi(fi(z¥) — fi(2®)) 4, pf = prgi(@®)s > 0 and 7 = pphy(a”),
then

P m r
| D08 w0 (h) = A)el + Dlufs(a)el+ Lt (et =0
(10)
Thus, we get
klgrolo N (fi(@®) = fi(2®)) =0, kli_)n;() u?gj(a:k) =0, and kli_)ngo T h(2F) = 0.
Hence the conditions are satisfied. [

Remark 5. If we consider a scalar optimization problem, then Theorem 3.1 re-
duces to Theorem 3.3 of Andreani et al. [3]

Remark 6. ASKKT implies SCAKKT, but converse implication may not be
true,

Example 7. Consider the following problem
min (fi(x1,22), fa(z1,22)), subject to g(x1,22) = —x1 =0,

where fi(x1,22) = 1, fa(x1,12) = x9. For 2° = (0,0), choose \¥ = 1,\§ =
%aﬂk = ]_’g;k = (7%a %)

MV f1(2F) + AV fo(2F) + pFVg(2F) — 0, as 2% — 2° = (0,0).

AP (fila®) = fi(2°)) = 0, i = 1,2, pFg(z*) — 0.

Hence, x° is SCAKKT point but can not be ASKKT point. Moreover, x° also
AKKT point.

Theorem 8. (Sufficient conditions) Assume that f;(i =1,...,p), g;(j =1, ...,m)
are convex functions and hy(l =1, ...,1) are affine. If x° € Q satisfies the SCAKKT
conditions with the sequences () C R™, (\*, u¥,7%) C R x RT x R" and \* —
A° > 0. Then, x° is an efficient solution of (MOP).

Proof. Suppose that z° is not an efficient solution then, there exists Z € S such
that

f(@) < f(z°). (11)
Since f;, g; are convex and h; are affine, then for all k£ we have
fi(@) 2 fi(aF) + (Vfi(aF), 2 — "), Vi=1,..,p. (12)

9;(z) 2 gj(osk) + (ng(xk),j —zM)Vi=1,..,m. (13)
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hi(z) = hy(x®) + (Vi (2F), 7 — %), Vi (14)

For  we can write

m

P P T
SN fi(z) 2 Z KR+ pbei@) + > (@)
3 =1 Jj=1 =1

(15)

then from (12) to (15), we get

) (16)
+<Z)\§Vfi(xk) Z ng —l—ZleVhl ), T—x >

From (C1) — (C4) and (16), we get

P
ZA fiw) 2 ) N
as o¥ — x°, which contradicts (11). 0O

Remark 9. If we take scalar optimization problem, then Theorem 3.2 reduces to
Theorem 4.2 of Andreani et al. [3]

4. SCAKKT-REGULARITY CONDITION

We propose some sets to define SCAKKT-regularity condition, which are given
as: For x° € ), linearized cone at z° is

Pa®) = {d € B" : (V/;(").d) £ 0.¥i € I, (Vg;(a°).d)  0.¥] € (")

(Vhi(z°),d) = 0,¥] € L}, (17)

{ZAVJCZ +Zﬂjv91 )+ZT1V’11($)
> Nilfilw)—fulw

+\+Z|ujgz +|+Z|nm S A 20,1520, € R},
=1

(18)
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and

D(z) = { Zp: )\¢Vfi(a:)+i ujvgi(zwi TVhi(): A 20,5 20,7 € R}.
- . - (19)
From (17) and (19), we have
Q(2°,0) = D(z°).

For basic properties of set-valued mapping, tangent cone Tq(x°), normal cone
Nq(z°) at z° € Q, and dual cone K° of K C R" see, Rockafellar and Wets [14].

Definition 10. Feasible point x° satisfies the SCAKK T-reqularity condition if the
set-valued mapping
(x,r) e R" x Ry =2 Q(x, 1),

is outer semicontinuous at (z°,0), in other words, the following inclusion holds:

limsup Q(z,r) C Q(z°,0).

(z,r)—=(z°,0)

An extended form of CCR-condition and Abadie’s constraint qualification [9] are
defined as follows:

Definition 11. (CCR condition) Feasible point x° satisfies the cone continuity
regularity (CCR) condition if the set-valued mapping

z € R" =2 D(z)
is outer semicontinuous at x°. In other words, the following inclusion holds,

limsup D(z) C D(z°).

r—x°

Definition 12. Abadie’s constraint qualification holds at a feasible point x°, if
P(z°) C Ta(z®).
Proposition 13. CCR implies SCAKK T-regularity, but converse may not be true

Proof. The first implication is a direct consequence from Definition 10 and Defi-
nition 11, and for converse part, we consider the following problem.

Min (f1(z), f2(x)), subject to g(x) = x9e™ £ 0, h(z) =22 =0,
where f1(2) = 229, fo(x) = —29, x € R Consider at point z° = (0,0).

Q(x°,0) ={ MV f1(x°) + MoV fa(x®) + uVg(z®) + 7Vh(z®) : A; 2 0,u =2 0,7 € R},

:{)\1(0,2) + )\1(0, —1) + /14(07 ].) + 7'(0, ].) : )\1 z 0,/1 z 0,’7' € R},
={0} x R.
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Let w® = (wf,w3) € Imsup(, .y (z0,0) Q(,7), then there exist sequences zk —

o

z°, w* — w° in R? and r* | 0, where
WP =XV £ (2F) + MV fo () + 1PV g (a ’“) + 7FVh(2"),
=AF(0,2) + A5(0, —1) + pF (ahe™  e™) + 77(0, 1),
and multipliers satisfying the conditions
IAT(f1(2%) = fr(@®) ] + NS (fa(2®) = fa(@)) 4] + 1" g(2®) 4|
+ |7 (aF) £ PPN 20,0 20,7 € R (20)

Then, from (20), we have

12\F k| 4 |\E J;2|+\,ukx§em1|+|7'kxk|< FXi20, u=20 7R

Since wf = |u ker¥| < r% then wh — 0, which implies that w® € Q(z°,0) =
{0} x R, but z° does not satlsfy cone continuity regularity condition, choose z¥ =
Lok =1, M\ = ,,u = —1 . and 7% = —k, then we have

rke 1

Wk = AF(0,2) + AE(0, 1) + pF(zhe”t, e*t) + 75(0,1) = (1,0) ¢ D(z°), V k.
O

In the following lemma we establish relationship between strong Karush-Kuhn-
Tucker (SKKT) optimality conditions for (MOP) and feasible points of (MOP).

Lemma 14. Let x° be a feasible point. Then, z° satisfies the SKKT conditions
of (MOP) if and only if —\;V fi(z°) € Q(x°,0) for \; >0, Vi=1,...p

Proof. Suppose that there exists vector A € RP, with A > 0,y € R"* and 7 € R”

such that
ZA Vfi(x +Zu]v9z +vam =

It follows that, for each i € I = {1, wos D}y

ANV = > MVfilx +Zu3v91 +vam ) € Q(z°,0).
teI\{i}

For converse part, let —\;V f;(z°) € Q(z°,0) for A; > 0, i € I. Then, for each
i € I, there exist \' € R, u* € R and 7* € R” such that

—\Vfilz Z/\”fo +ZMJVgJ +vam ) € O(2°,0).
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which implies that,
AV fila +wat Jrz,u]VgJ +ZTthl )=0,¥iel (21)

If we add all equations included in (23) from i = 1 to p and put

P i -
NN N = L = > = 3
t=1 J=1 =1

then we get

P m T
ZX Vhia®) + > V() + Y 7 Vhi(a®) = 0.
t=1 J=1 =1

This completes the proof. [

Theorem 15. If 2° € Q is a limit point of an SCAKKT sequence (z¥) C R" and
SCAKK T-reqularity holds, then x° is an SKKT point.

Proof. Let z° be a SCAKKT point. To show that the SKKT conditions hold at
x°, it is sufficient to prove —AV f;(x°) € Q(z°,0) for A >0, Vie I ={1,...,p},
as in Lemma 14. Since z° satisfies SCAKKT conditions, then there exist sequences
:;’f C R™ and {(Ak,uk,rk)} C RE x RT x R, such that \¥ > 0,i € I, u¥ = 0 for
j ¢ J(x°)={j:g;(z°) =0} and
wh = Z MV fi(2%) + Zufv% ) + Z V(%) — 0, (22)
1=1 j=1

under the conditions

P ,
Z|/\§(fi($ fi( +|+Z\M]gz +|+Z|Tzkhl(33k)| <7k rrlo.
i=1 =1

It follows that, for each i € I,
W= NV LR = Y MV +Zu§v9] Zrﬁvm - (23)
teI\{i} j=1
Thus, for each 7, we have
W = NV £ (aF) € 9k R, (24)
From (23) to (25), we get
— AV fi(2°) € limsup Q(zF,r*) ¢ limsup  Q(z*,7F) C Q(z°,0),

k—oo (zh,rF) = (2°,0)

as SCAKKT-regularity holds at z°. O
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Corollary 16. If z° € Q is a local efficient solution to (MOP) and verifies the
SCAKKT-regularity conditions, then x° is a SKKT point.

The following lemma is extension of [11, Lemma 4.3] to (MOP), which is required to
establish relationship between SCAKKT-regularity conditions and Abadie’s con-
straint qualification.

Lemma 17. For all z° € Q and v € T§(x®), there exist sequences {x*} C
R™ {wF} C R™ {\*} Cc RE, {p*} c R, {r*} C R",w € RP,p; > 0, and r* C
R with conditions % — x°, \F — X° vk | 0,w > 0, pp — 00 and ¥ >0V E,
such that

(1) vF = Z\:{}/\fot( k) Zu Vg;(z )+lz T*Vh(z%) = v, Vi=1,..,p,
teI\{i -1

(2) f:l A (fi(ae®) = fi(x®)) ]+ 21 |5 gi(F) 4] + lil [T ha(2¥)] < 7,
i= j= —
(3) N = wi + pi(fi(z®) — fi(x®)) s, pf = prg;(@®) 1 and 7 = prhy(2F).

Proof. Let v € T§(x°), then from [14, Theorem 6.11], there exist smooth functions
A fi(z), for each i € I = {1, ..., p}, such that

N Vfi(z®) =wv (25)

and A{ f;(x°) attains its global minimum uniquely at z° € Q. Consider, for each
k € N, the following optimization problem as in Theorem4:

Min Fj(z), subject to z € B(2°,0), (26)
where
szfl {Z(ﬁ( )= FENE 4D g @3+ Y @)
=1 j=1 =1

Since B(z°, ) is compact and FJ,(z) is continuous, then from Weierstrass theorem
there exists a solution, for (26). Let ¥ be the solution, then

szvfz )+ Z,ok fil@®) = fi(2°))+ V fula®) + Zpkgg )+Vg;(a")
(27)
+ Z prhi(x Vhl ) =0.

Let \¥ = w; + pr(fi(2®) — fi(2°))4, ,u? = prg;(z®); and 77 = prhy(z*). Then,
(27) implies that

VFi(x ZA’“WZ +ZMJVgJ +Zﬁ@vm ) =0. (28)
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Now, from [13, Theorem 2.1] we get

> wifi(z*) < Z {Z +Zgg R hu(at
i=1 i=1 =1

i=1
< Fp(z°) = Zwifi(:vo). (29)
i=1
Fy(2%) is bounded in B(z°, ), then from (29), we have
p T
DN (fila®) = fil +|+Z|ujgz )+l 4+ i hu(a®)| < 7*, for some r* L 0.
i=1 =1
Since,
= Y ANVAEN + Z#’“ng )+ ZTZ Vh(x (30)
teI\{i}
therefore from (25), (28) and (30), we get
= NV fi(ah) = v
Hence the theorem. [J

Theorem 18. SCAKKT-reqularity implies Abadie’s constraint qualification.

Proof. We have to show that P(z°) C Tq(x°), for this, first we show Nq(z°) C
P°(x°), which is equivalent to Nq(z°) C Q(z°,0). Let v € Nq(z°), then from
property of normal cone[14], there are sequences {z*} and {v*} such that

zF = 2° o = v, and v* € TS(2").

kL

Now, from Lemma (13), for each v* € Tg(z") there exist sequences z** and vf ot

satisfying the Lemma 17. Therefore, for all k£, ¢ € N, we have

ke kit
elglolov hm{ Z AV fi(x JrZu Vg;(z
tel\{i}

+ Zle’ZVhl(xk’Z)} =" (31)

=1

where AP = w; + po(fi(a™) = fi(2°)) 4.0 = 1,oop, pb" = pug;(a™) V) =
1,...,m, and le,e = pehy(z%*), VI = 1,...,r. Thus, for all k € N, there exist £(k)
such that

")
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1. |jzk — zktR)|| < %;
k,0(k 0k k(K T ke(k
o D MRV L R DI e DR CA L)
te\{it j=1 I=1
3. [Jok — o )| < &
k,L(k o . ke (k .
D Poey (fi(@F N = fi(2°)) 4,0 = 1, .0, p, o ) — Pe(iy 95 (xR V=
1,...,m, and le’e(k) = pg(k)hl(.’)s‘k’z(k)), Vi=1,..r.

Clearly,
lim %) = 2° lim v
k— o0 k—o0

k,e(k)

f = .

Also for sufficiently large k, we have

p m
>IN (il W) — £ )l + Y Pgalat ). |
i=1 J=1

n Z|le,e(k)hl(xk,é(k))| < phot(kR) - pkot(R) |, (32)
=1

Therefore,
Ufyé(k) c Q(xk,é(k)vrk,é(k)%

that is, we have sequences
ahtF) y go Uf’z(k) — v with vf’e(k) € Q(xk’e(k),rk’é(k)).
From SCAKKT-regularity condition and definition of outer limit we have

v e limsup Q(x,r) C Q(z°,0).

(z,r)—(x°,0)

Then,
No(a°) € Q(°,0) = P°(a°),

which implies
P(z°) = Q°(z°,0) C N§(z°).

From [14, Theorem 6.28], we have
No(z°) C Ta(x®).

Hence,
P(z°) C Ta(x°),
as we wanted to show. []

In the following example we show that Abadie’s CQ is strictly weaker than
SCAKKT-regularity condition.
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Example 19. Consider the problem
min (fi(z1,22), fo(21,22)), s.t. gi(x1,22) =0, i =1,2,3,

at point x° = (0,0), where

f1($1,$2) = *$1,f2($173¢2) = *$2791(5E1,$2) = —,

92(x1,22) = —22€"? and g3(x1,22) = —x1 0.

Feasible set Q; = {(x1,72) € R? : 21 >0, x1 > 0}. Then, P(z°) = {(21,72) €
R%: 21 >0, 21 > 0} = T, (z°), Abadie’s constraint qualification holds at point
x°. Now, we prove that Q(xz,r) is not outer semicontinuous at x°, for this choose
b = (f%,%),)\’f = %,)\’2“ = %,u’f =0,k =0,u5 = k. Then,

r* = (1) = fu@®)] + N5 (fa(a) = fo(2))] + [1F g1 ()]
2 1

+ (5 g2 (a")| + |5 g3(a)| = Ztz 0

and
of = AV fo(2%) + i Vi (2%) + phV e (2F) + 15 Vgs(2*) — (=1, 1).

vf = (=1,1) € Q(z*,7%) for all k € N, means (—1,1) € lmsup(, ;) (z0,0) L, 7),
but (—1,1) ¢ Q(z°,0) = {(x1,22) € R™ : 27 £ 0,29 £ 0}. Thus, SCAKKT-
reqularity is mot satisfied.

5. CONCLUSIONS

In this paper, we have established SCAKKT sequential optimality conditions,

which are different from ASKKT and AKKT optimality conditions. We have intro-
duced a constraint qualification that is weaker constraint qualification than CCR
condition for multiobjective sequential optimality conditions and strong constraint
qualification to Abadie’s constraint qualification. Since sequential optimality con-
ditions are useful for algorithmic consequences, therefore algorithmic development
is still open for future research in this direction.
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and Industrial Research New Delhi, Ministry of Human Resources Development,
Government of India through the grant no: 09/013(0583)/2015-EMR-I. The sec-
ond author is supported by DST-SERB-MTR/2018/000121.

REFERENCES

(1] Andreani, R., Haeser, G., and Martinez, J.M.,“On sequential optimality conditions for
smooth constrained optimization”, Optimization, 60 (5) (2011) 627-641.

[2] Fiacco, A.V., and McCormick, G.P., “Nonlinear Programming: Sequential Unconstrained
Minimization Techniques”, SIAM Philadelphia, USA, 1990.



234

3]

7]

(8]

(10]

(11]

(12]

[13]
[14]
(15]

J. K. Maurya and S. K. Mishra / SCAKKT in MOP

Andreani, R., Martinez, J.M., and Svaiter,B.F., “A new sequential optimality condition for
constrained optimization and algorithmic consequences”, SIAM Journal on Optimization,
20 (6) (2010) 3533-3554.

Birgin, E.G., and Martinez, J.M., “Practical Augmented Lagrangian Methods for Con-
strained Optimization”, SIAM, USA, 2014.

Andreani, R., Martinez, J.M., Ramos, A., and Silva, P.J.S., “Strict constraint qualifications
and sequential optimality conditions for constrained optimization”, Mathematical Methods
of Operations Research, 43 (3) (2018) 693-717.

Giorgi, G., Jiménez, B., and Novo, V., “Approximate Karush-Kuhn-Tucker condition in
multiobjective optimization”, Journal of Optimization Theory and Applications, 171 (1)
(2016) 70-89.

Miettinen, K., “Nonlinear Multiobjective Optimization”, Kluwer Academic Publishers,
Boston, 1999.

Mangasarian, O.L., and Fromovitz, S., “The Fritz-John necessary optimality conditions
in presence of equality and inequality constraints”, Journal of Mathematical Analysis and
Applications, 17 (1967) 37-47.

Feng, M., and Li, S., “An approximate strong KKT condition for multiobjective optimiza-
tion”, TOP, 26 (3) (2018) 489-509.

Wendell, R.E., Lee, D.N., “Efficiency in multiple objective optimization problems”, Mathe-
matical Programming, 12 (1977) 406-414.

Andreani, R., Martinez, J.M., Ramos, A., and Silva, P.J.S., “A cone-continuity constraint
qualification and algorithmic consequences”, SIAM Journal on Optimization 26 (1) (2016)
96-110.

Chankong, V., and Haimes, Y.Y., “Multiobjective decision making: Theory and methodol-
ogy”, Dover Publications, Mineola, New York, 2008.

Hestenes, M., “Optimization theory: the finite dimensional case”, Wiley, New York, 1975.
Rockafellar, R.T., and Wets, R., “Variational analysis”, Springer, Berlin, (1998) 108-192.
Maeda, T., “Constraint qualifications in multiobjective optimization problems: differen-
tiable case”, Journal of Optimization Theory and Applications, 80 (3) (1994) 483-500.



