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Abstract: This study proposes a novel way to deal with uncertainty in a two-person
zero-sum matrix game with payoffs expressed as fuzzy rough numbers. Complete and
reasonable solutions to these types of games are obtained. In this research we develop two
linear programming models with upper and lower approximation intervals of fuzzy rough
numbers and handle multi-objective crisp linear programming models by incorporating
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numerical examples demonstrate the matrix game outcomes using Wolfram Cloud.
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1. INTRODUCTION

Game theory is a mathematical concept that can be used to simulate the strate-
gic interactions of two or more players because it combines science, engineering,
and logic. It has a wide range of applications, including the analysis of diverse
industries, firms, and sectors. The concept of game theory arises with the idea of
equilibrium strategies in two-person zero-sum games which was invented by [35].
Afterwards, [33] expanded the concept to cooperative and non-cooperative games.
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But in the study of traditional game theory, all the data of game have precise
values which are known exactly by the players of the game. However, in recent
time not all the data known by the players have the precise values. Fuzzy sets refer
the imprecise and ambiguous nature and were introduced in [56], [57]. Further [9],
[3] and [4] extended the concept of game theory for modelling the conflict situa-
tions with vagueness information. By applying the theory of fuzzy games many
researchers [7, 10, 22, 29, 34, 25] contributed to develop mathematical program-
ming, ranking approaches, defuzzification techniques etc. These results played
a significant role to handle the fuzzy decision-making problems. In recent years
fuzzy games have become an interesting theory to analyze the real-life competi-
tive problems. [58] used FLP approach to solve crisp LPPs with several objective
functions. [37] outlined a procedure to solve a majority voting game. Succeed-
ing this fuzzy linear programming approach [11] defined such models to solve the
two-person zero-sum fuzzy matrix games. Fuzzy multi-objective matrix games
were studied in [46] using max-min solution procedure. [36] analyzed the multi-
objective conflict resolution problems of games . [28] characterized the equilibrium
strategy for two-person zero-sum fuzzy games. A mathematical approach based
on defuzzification technique was described in [5]. Further, the concept of duality
in linear programming was used in [51] and [42] applying possibility and necessity
relations. In [12] was proposed a new approach to analyze two-person zero-sum
matrix games (TPZSMG). Several researchers [27, 45, 47] examined the concept
of defuzzification to solve TPZSMG. In [39, 40] were extended the interval-valued
fuzzy numbers to rough fuzzy sets. [21] investigated rough fuzzy sets. In [53]
new approaches for the study of these sets were used. Using the concept of fuzzy
rough sets, interval-valued FMG was proposed in [13]. [54] studied TPZSMG
with rough payoffs. Also, an FMG in rough scenario using genetic algorithm
was explained in [44]. Later [43] investigated a procedure to solve interval-valued
FMG. [38] studied transportation problems with RFNs. Two-person zero sum
stochastic linear quadratic differential games with deterministic coefficients were
explored in [49], and the required condition for the finiteness of open-loop lower
and higher values, as well as the presence of an open-loop saddle point, were de-
rived. A new technique for solving multi-objective linear programming problems
in neutrosophic environments was developed in [52] by utilising linear membership
function (LMF). Multi-objective linear fractional programming problems under a
hesitant fuzzy environment can be solved using a solution approach proposed in
[23]. To solve the two-person zero-sum matrix games in a fuzzy environment,
[24] used the signed distance ranking approach. In [6] were introduced two novel
methods for studying fuzzy linear programming problems with triangular fuzzy
numbers as uncertainties, based on fuzzy centre, core, and radius. In [41] alpha
cut and goal programming approaches were used to create a new fuzzy multi-
period multi-objective portfolio optimization issue in an uncertain environment,
taking three practical limitations into account: wealth, risk, and liquidity. In [16]
was explored a two-person zero sum matrix game with fuzzy payoffs in credibility
space and created an expected value model for it. In [15] a new strategy based on
lexicographic order rather than the ranking approach was proposed to solve the
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neutrosophic linear programming problem with trapezoidal neutrosophic numbers
as payoffs for greater decision-making flexibility. Some similarity measures for
rough interval Pythagorean fuzzy sets with properties like as Cosine, Jaccard, and
Dice and built multi attribute decision making algorithms based on these simi-
larity measures were created in [48]. In [1] was developed a mathematical model
based on a fuzzy method for a multicriteria decision making problem using the
concept of a two-person zero sum matrix game with asymmetrical triangular distri-
bution. A novel technique for tackling the linear programming problem in the Diet
problem in a Pythagorean fuzzy environment to deal with managing permeability
and insufficient information was presented in [14]. In [30] was used a two-person
zero-sum matrix game with probabilistic language information to answer a multi-
criteria decision-making problem. For solving the two-person zero-sum matrix
game with intuitionistic fuzzy goals and payoffs as symmetric triangular intuition-
istic fuzzy numbers in [32] was provided a new method. In [50] were developed
three distinct duality models to investigate a class of multi-objective fractional
programming problems with non-differentiability in terms of higher-order support
functions. Wolfe type second-order multi-objective symmetric programming prob-
lems with various duality relations along with relevant duality theorems under
(F,Gf )-convexity assumptions were investigated in[19]. Later, [20] investigated
a second-order non-differentiable symmetric dual model over arbitrary cone con-
straints and some relevant duality theorems under strongly K-pseudo-convexity
assumptions. Some relevant duality theorems under high order K-convexity and
K-pseudo-convexity assumptions and introduced a pair of non-differentiable multi-
objective Mond-Weir type higher-order symmetric fractional programming prob-
lems over arbitrary cone constraints were proved in [17]. In [18] was investigated
a class of new type unified non-differentiable higher-order symmetric duality in
scalar objective programming over arbitrary cone constraints under generalized
assumptions and derived some appropriate duality theorems over arbitrary cones
underη-pseudo-convexity/ η-invexity/ C-pseudo-convexity/ C-convexity. More re-
cently, constrained MG with fuzzy rough payoffs were analyzed in [8]. In [2] was
proposed a mathematical model for solving fuzzy integer LPP using triangular
FRNs.

The present study includes the following novelties:

• In a two-person zero-sum matrix game with payoffs as rough numbers, a novel
technique is established to address perception and ambiguity concerns.

• Complete and relatively reasonable solutions are achieved.

• Two linear programming models with upper and lower approximation inter-
vals of fuzzy rough numbers are solved in form of multi-objective crisp linear
programming models.

• Introducing the trapezoidal fuzzy rough numbers as payoffs in games.
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• New class of games TPZSFRMG are solved by standard simplex method.

The remaining part of this paper is organized as follows: Section 2, presents def-
initions and preliminaries. In Section 3, fuzzy rough linear programming models
are presented. Section 4, gives the proposed solution procedure and is the main
part of the paper. In Section 5, numerical examples are provided to justify the
solution procedure. Finally, Section 6 concludes the paper.

2. Definitions and Preliminaries

This section deals with certain fundamental definitions and notions of rough
and fuzzy theory to be used in this document.

2.1. Trapezoidal Fuzzy Number(TFN)

A fuzzy number defined on the real line as universal set X denoted by the
quadruplet Ã = (ξl, ξ, ξ, ξr) is said to be a TFN if µÃ : X → [0, 1] is defined as

µÃ(x) =


x−ξl
ξ−ξl ; ξl ≤ x ≤ ξ

1 ; ξ ≤ x ≤ ξ
ξr−x
ξr−ξ

; ξ ≤ x ≤ ξr
0 ; elsewhere

The α-cut of a TFN Ã = (ξl, ξ, ξ, ξr) is a closed crisp interval Ãα = [ξl + α(ξ −
ξl), ξr − α(ξr − ξ)] ≡ [ALα, A

U
α ] for α ∈ [0, 1].

2.2. Fuzzy Rough Number

A fuzzy rough number is denoted by ÃR = [ÃL, ÃU ], where µÃL : X → R and
µÃU : X → R are piecewise continuous functions and satisfy the condition that
µÃL(x) ≤ µÃU (x) ∀x ∈ X.

The α-cut of FRN ÃR is ÃRα = [(Aα
LL, Aα

UL) : (Aα
LU , Aα

UU )] with (Aα
LL, Aα

UL)
⊆ (Aα

LU , Aα
UU ).

2.3. Trapezoidal Fuzzy Rough Number(TFRN)

A fuzzy rough number ÃR is said to be a TFRN denoted by ÃR = [ÃL, ÃU ] ≡
[(ξl

LL, ξM , ξ
M
, ξr

UL) : (ξl
LU , ξM , ξ

M
, ξr

UU )] such that the real values ξl
LU , ξl

LL,

ξM , ξ
M

, ξr
UL, ξr

UU satisfies the condition ξl
LU ≤ ξl

LL ≤ ξM ≤ ξ
M ≤ ξr

UL ≤
ξr
UU and
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µÃR(x) =



µÃL(x) =


x−ξlLL

ξM−ξlLL ; ξl
LL ≤ x ≤ ξM

1 ; ξM ≤ x ≤ ξM

ξr
UL−x

ξrUL−ξM
; ξ
M ≤ x ≤ ξrUL

0 ; elsewhere

µÃU (x) =


x−ξlLU

ξM−ξlLU ; ξl
LU ≤ x ≤ ξM

1 ; ξM ≤ x ≤ ξM

ξr
UU−x

ξrUU−ξM
; ξ
M ≤ x ≤ ξrUU

0 ; elsewhere

where ÃL = (ξl
LL, ξM , ξ

M
, ξr

UL) and ÃU = (ξl
LU , ξM , ξ

M
, ξr

UU ) are lower and
upper TFNs respectively.

2.4. Arithmetic Operations of TFRNs

Let ÃR = [(ξl
LL, ξM , ξ

M
, ξr

UL) : (ξl
LU , ξM , ξ

M
, ξr

UU )] and B̃R = [(ηl
LL, ηM , ηM ,

ηr
UL) : (ηl

LU , ηM , ηM , ηr
UU )] be two TFRNs such that ÃR, B̃R ≥ 0 then some

relevant arithmetic operations on TFRNs are defined as
(i) Addition:

ÃR(+)B̃R = [(ξl
LL + ηl

LL, ξM + ηM , ξ
M

+ ηM , ξr
UL + ηr

UL) : (ξl
LU + ηl

LU , ξM +

ηM , ξ
M

+ ηM , ξr
UU + ηr

UU )]

(ii) Symmetric Image:

−ÃR = [(−ξruL,−ξ
M
,−ξM ,−ξlLL) : (−ξrUU ,−ξ

M
,−ξM ,−ξlLU )]

(iii) Subtraction:

ÃR(−)B̃R = [(ξl
LL− ηrUL, ξM − ηM , ξ

M − ηM , ξrUL− ηlLL) : (ξl
LU − ηrUU , ξM −

ηM , ξ
M − ηM , ξrUU − ηlLU )]

(iv) Multiplication:

ÃR(∗)B̃R = [(ξl
LL ·ηlLL, ξM ·ηM , ξ

M ·ηM , ξrUL ·ηrUL) : (ξl
LU ·ηlLU , ξM ·ηM , ξ

M ·
ηM , ξr

UU · ηrUU )]

(v) Division:
ÃR

B̃R
= [( ξl

LL

ηrUL ,
ξM

ηM
, ξ

M

ηM
, ξr

UL

ηlLL ) : ( ξl
LU

ηrUU ,
ξM

ηM
, ξ

M

ηM
, ξr

UU

ηlLU )]

3. Fuzzy Rough Linear Programming Models for Matrix Games

Let a fuzzy rough payoff matrix be given as [ãRij ]m×n having the mixed strate-

gies η = (β̃R1 , β̃
R
2 , . . . β̃

R
m)T and γ = (γ̃R1 , γ̃

R
2 , . . . γ̃

R
n )T respectively. Then according

to maximin and minimax principle player I choose such a strategy that maximizes
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his minimum expected gain i.e.
maxβ̃R

i

[
min{

m∑
i=1

ãRi1β̃
R
i ,

m∑
i=1

ãRi2β̃
R
i , . . .

m∑
i=1

ãRinβ̃
R
i }

]
such that β̃R1 + β̃R2 + . . .+ β̃Rm ≈ 1̃R

and β̃Ri ≥ 0; ∀ i = 1, 2, . . .m

(1)

Now if min{
∑m
i=1 ã

R
i1β̃

R
i ,
∑m
i=1 ã

R
i2β̃

R
i , . . .

∑m
i=1 ã

R
inβ̃

R
i } ≈ ũR is the expected mini-

mum gain for player I, then the problem (1) can be written as

max ũR

s.t.

m∑
i=1

ãRi1β̃
R
i � ũR

m∑
i=1

ãRi2β̃
R
i � ũR

· · ·
m∑
i=1

ãRinβ̃
R
i � ũR

β̃R1 + β̃R2 + . . .+ β̃Rm ≈ 1̃R

and β̃Ri , ũ
R ≥ 0; ∀ i = 1, 2, . . .m

(2)

Similarly the player II chooses that strategy which minimizes his maximum ex-
pected loss i.e.

minγ̃R
j

max{
n∑
j=1

ãR1j γ̃
R
j ,

n∑
j=1

ãR2j γ̃
R
j , . . .

n∑
j=1

ãRmj γ̃
R
j }


such that γ̃R1 + γ̃R2 + . . .+ γ̃Rn ≈ 1̃R

and γ̃Rj ≥ 0; ∀ j = 1, 2, . . . n

(3)
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Also if max{
∑n
j=1 ã

R
1j γ̃

R
j ,
∑n
j=1 ã

R
2j γ̃

R
j , . . .

∑n
j=1 ã

R
mj γ̃

R
j } ≈ ṽR is the expected max-

imum loss for player II, then the problem (3) can be written as

min ṽR

s.t.

n∑
j=1

ãR1j γ̃
R
j � ṽR

n∑
j=1

ãR2j γ̃
R
j � ṽR

· · ·
n∑
j=1

ãRmj γ̃
R
j � ṽR

γ̃R1 + γ̃R2 + . . .+ γ̃Rn ≈ 1̃R

and γ̃Rj , ṽ
R ≥ 0; ∀ j = 1, 2, . . . n

(4)

4. Proposed Procedure

To solve the FRLP models of matrix game as explained above by the problems
(2),(4) we apply the following algorithm as.

Step 1 Using the principle of indifference when both the players adopt their opti-
mal strategies of expected extreme payoffs as game value, irrespective of what the
other player chooses from any row or column. The fuzzy rough linear programming
problems (2) and (4) become

max ũR

subject to the double fuzzy constraints

(β̃R)T ÃRγ̃R �p̃R ũR ∀ γ̃R ∈ γ
eT β̃R ≈ 1̃R

and β̃R, ũR ≥ 0

where eT = (1, 1, . . . 1)m times.

(5)

And 

min ṽR

subject to the double fuzzy constraints

(β̃R)T ÃRγ̃R �q̃R ṽR ∀ β̃R ∈ β
eT γ̃R ≈ 1̃R

and γ̃R, ṽR ≥ 0

where eT = (1, 1, . . . 1)n times.

(6)
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Here FR values ũR, ṽR ∈ N(R) (set of all fuzzy rough numbers) and p̃R, q̃R are
FR adequacies corresponding to players.

Step 2 Consider the extreme row or column strategy from the fuzzy rough strat-
egy sets β and γ to extract the double fuzzy constraints of problems (5) and (6)
for the player I and II respectively.

max ũR

subject to the double fuzzy constraints

(β̃R)T ÃRj �p̃R ũR ∀ j = 1, 2, . . . n

eT β̃R ≈ 1̃R

and β̃R, ũR ≥ 0

where eT = (1, 1, . . . 1)m times.

(7)

And 

min ṽR

subject to the double fuzzy constraints

ÃRi γ̃
R �q̃R ṽR ∀ i = 1, 2, . . .m

eT γ̃R ≈ 1̃R

and γ̃R, ṽR ≥ 0

where eT = (1, 1, . . . 1)n times.

(8)

Where the symbols ÃRi and ÃRj stands for the ith row and jth column of FR payoff

matrix [ãRij ]m×n for i = 1, 2, . . .m and j = 1, 2, . . . n.

Step 3 Express the double fuzzy constraints as fuzzy inequalities of the prob-
lems (7) and (8) to the linear combination of expected gain or loss of the players I
and II respectively and the fuzzy rough adequacies by using the Yager′s resolution
method for the parameters λ, µ ∈ [0, 1]. Then the improved fuzzy rough linear
programming problem takes the form as

max ũR

subject to the constraints
m∑
i=1

ãRij β̃
R
i ≥ ũR − p̃R(1− λ) ∀ j = 1, 2, . . . , n

m∑
i=1

β̃Ri = 1̃R

λ ≤ 1

and β̃Ri , ũ
R, λ ≥ 0 ∀ i = 1, 2, . . .m.

(9)
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And 

min ṽR

subject to the constraints
n∑
j=1

ãRij γ̃
R
j ≤ ṽR + q̃R(1− µ) ∀ i = 1, 2, . . . ,m

n∑
j=1

γ̃Rj = 1̃R

µ ≤ 1

and γ̃Rj , ṽ
R, µ ≥ 0 ∀ j = 1, 2, . . . n.

(10)

Step 4 Determine upper and lower problems (FLPP−I)UAI and (FLPP−I)LAI

from the problem (9) for the player I using upper approximation interval (UAI)
and lower approximation interval (LAI) of the TFRNs, which provides solutions
to (FLPP − I)UAI and (FLPP − I)LAI as

(FLPP-I)
UAI



max
(
ul
LU , uM , uM , ur

UU
)

subject to the constraints
m∑
i=1

(
(aij)l

LU
, aij

M , aij
M , (aij)r

UU
)
∗
(

(βi)l
LU
, βi

M , βi
M
, (βi)r

UU
)
≥(

ul
LU , uM , uM , ur

UU
)
−
(
pl
LU , pM , pM , pr

UU
)

(1− λ) ∀ j = 1, 2, . . . , n
m∑
i=1

(
(βi)l

LU
, βi

M , βi
M
, (βi)r

UU
)

= 1̃U

λ ≤ 1

and (βi)l
LU
, βi

M , βi
M
, (βi)r

UU
, λ, ul

LU , uM , uM , ur
UU ≥ 0 ∀ i = 1, 2, . . . ,m

where 1̃U =
(

1l
LU , 1M , 1

M
, 1r

UU
)

(11)
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And (FLPP-I)
LAI



max
(
ul
LL, uM , uM , ur

UL
)

subject to the constraints
m∑
i=1

(
(aij)l

LL
, aij

M , aij
M , (aij)r

UL
)
∗
(

(βi)l
LL
, βi

M , βi
M
, (βi)r

UL
)
≥(

ul
LL, uM , uM , ur

UL
)
−
(
pl
LL, pM , pM , pr

UL
)

(1− λ) ∀ j = 1, 2, . . . , n
m∑
i=1

(
(βi)l

LL
, βi

M , βi
M
, (βi)r

UL
)

= 1̃L

λ ≤ 1

and (βi)l
LL
, βi

M , βi
M
, (βi)r

UL
, λ, ul

LL, uM , uM , ur
UL ≥ 0 ∀ i = 1, 2, . . . ,m

where 1̃L =
(

1l
LL, 1M , 1

M
, 1r

UL
)

(12)

Step 5 Also determine upper and lower fuzzy linear programming problems (FLPP−
II)UAI and (FLPP − II)LAI from the problem (10) for the player II as explained
in step 4 to provide rather and complete satisfactory solutions respectively.
(FLPP-II)

UAI



min
(
vl
LU , vM , vM , vr

UU
)

subject to the constraints
n∑
j=1

(
(aij)l

LU
, aij

M , aij
M , (aij)r

UU
)
∗
(

(γj)l
LU
, γj

M , γj
M , (γj)r

UU
)
≤

(
vl
LU , vM , vM , vr

UU
)

+
(
ql
LU , qM , qM , qr

UU
)

(1− µ) ∀ i = 1, 2, . . . ,m
n∑
j=1

(
(γj)l

LU
, γj

M , γj
M , (γj)r

UU
)

= 1̃U

µ ≤ 1

and (γj)l
LU
, γj

M , γj
M , (γj)r

UU
, µ, vl

LU , vM , vM , vr
UU ≥ 0 ∀ j = 1, 2, . . . , n

where 1̃U =
(

1l
LU , 1M , 1

M
, 1r

UU
)

(13)
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And (FLPP-II)
LAI



min
(
vl
LL, vM , vM , vr

UL
)

subject to the constraints
n∑
j=1

(
(aij)l

LL
, aij

M , aij
M , (aij)r

UL
)
∗
(

(γj)l
LL
, γj

M , γj
M , (γj)r

UL
)
≤

(
vl
LL, vM , vM , vr

UL
)

+
(
ql
LL, qM , qM , qr

UL
)

(1− µ) ∀ i = 1, 2, . . . ,m
n∑
j=1

(
(γj)l

LL
, γj

M , γj
M , (γj)r

UL
)

= 1̃L

µ ≤ 1

and (γj)l
LL
, γj

M , γj
M , (γj)r

UL
, µ, vl

LL, vM , vM , vr
UL ≥ 0 ∀ j = 1, 2, . . . , n

where 1̃L =
(

1l
LL, 1M , 1

M
, 1r

UL
)

(14)

Step 6 Disunite the fuzzy linear programming problems (11) and (12) into six sub
CLPPs namely lower-upper (LU), lower-lower (LL), lower-medium (LM), upper-
medium (UM), upper-lower (UL) and upper-upper (UU) respectively as

(CLPP-I)
LU



max ul
LU

subject to the constraints
m∑
i=1

(aij)l
LU

(βi)l
LU ≥ ulLU − prUU (1− λ) ∀ j = 1, 2, . . . , n

m∑
i=1

(βi)l
LU

= 1l
LU

λ ≤ 1

and (βi)l
LU
, λ, ul

LU ≥ 0 ∀ i = 1, 2, . . . ,m

(15)
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(CLPP-I)
LL



max ul
LL

subject to the constraints
m∑
i=1

(aij)l
LL

(βi)l
LL ≥ ulLL − prUL(1− λ) ∀ j = 1, 2, . . . , n

m∑
i=1

(βi)l
LL

= 1l
LL

λ ≤ 1

and (βi)l
LL
, λ, ul

LL ≥ 0 ∀ i = 1, 2, . . . ,m

(16)

(CLPP-I)
LM



max uM

subject to the constraints
m∑
i=1

aij
Mβi

M ≥ uM − pM (1− λ) ∀ j = 1, 2, . . . , n

m∑
i=1

βi
M = 1M

λ ≤ 1

and βi
M , λ, uM ≥ 0 ∀ i = 1, 2, . . . ,m

(17)

(CLPP-I)
UM



max uM

subject to the constraints
m∑
i=1

aij
Mβi

M ≥ uM − pM (1− λ) ∀ j = 1, 2, . . . , n

m∑
i=1

βi
M

= 1
M

λ ≤ 1

and βi
M
, λ, uM ≥ 0 ∀ i = 1, 2, . . . ,m

(18)
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(CLPP-I)
UL



max ur
UL

subject to the constraints
m∑
i=1

(aij)r
UL

(βi)r
UL ≥ urUL − plLL(1− λ) ∀ j = 1, 2, . . . , n

m∑
i=1

(βi)r
UL

= 1r
UL

λ ≤ 1

and (βi)r
UL
, λ, ur

UL ≥ 0 ∀ i = 1, 2, . . . ,m

(19)

(CLPP-I)
UU



max ur
UU

subject to the constraints
m∑
i=1

(aij)r
UU

(βi)r
UU ≥ urUU − plLU (1− λ) ∀ j = 1, 2, . . . , n

m∑
i=1

(βi)r
UU

= 1r
UU

λ ≤ 1

and (βi)r
UU
, λ, ur

UU ≥ 0 ∀ i = 1, 2, . . . ,m

(20)

Step 7 Also disunite the fuzzy linear programming problems (13) and (14) into
six sub CLPPs namely according as explained in step 6.

(CLPP-II)
LU



min vl
LU

subject to the constraints
n∑
j=1

(aij)l
LU

(γj)l
LU ≤ vlLU + ql

LU (1− µ) ∀ i = 1, 2, . . . ,m

n∑
j=1

(γj)l
LU

= 1l
LU

µ ≤ 1

and (γj)l
LU
, µ, vl

LU ≥ 0 ∀ j = 1, 2, . . . , n

(21)



264 V. Jangid and G. Kumar / A Novel Technique for Solving Two-Person

(CLPP-II)
LL



min vl
LL

subject to the constraints
n∑
j=1

(aij)l
LL

(γj)l
LL ≤ vlLL + ql

LL(1− µ) ∀ i = 1, 2, . . . ,m

n∑
j=1

(γj)l
LL

= 1l
LL

µ ≤ 1

and (γj)l
LL
, µ, vl

LL ≥ 0 ∀ j = 1, 2, . . . , n

(22)

(CLPP-II)
LM



min vM

subject to the constraints
n∑
j=1

aij
Mγj

M ≤ vM + qM (1− µ) ∀ i = 1, 2, . . . ,m

n∑
j=1

γj
M = 1M

µ ≤ 1

and γj
M , µ, vM ≥ 0 ∀ j = 1, 2, . . . , n

(23)

(CLPP-II)
UM



min vM

subject to the constraints
n∑
j=1

aij
Mγj

M ≤ vM + qM (1− µ) ∀ i = 1, 2, . . . ,m

n∑
j=1

γj
M = 1

M

µ ≤ 1

and γj
M , µ, vM ≥ 0 ∀ j = 1, 2, . . . , n

(24)
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(CLPP-II)
UL



min vr
UL

subject to the constraints
n∑
j=1

(aij)r
UL

(γj)r
UL ≤ vrUL + qr

UL(1− µ) ∀ i = 1, 2, . . . ,m

n∑
j=1

(γj)r
UL

= 1r
UL

µ ≤ 1

and (γj)r
UL
, µ, vr

UL ≥ 0 ∀ j = 1, 2, . . . , n

(25)

(CLPP-II)
UU



min vr
UU

subject to the constraints
n∑
j=1

(aij)r
UU

(γj)r
UU ≤ vrUU + qr

UU (1− µ) ∀ i = 1, 2, . . . ,m

n∑
j=1

(γj)r
UU

= 1r
UU

µ ≤ 1

and (γj)r
UU
, µ, vr

UU ≥ 0 ∀ j = 1, 2, . . . , n

(26)

Step 8 Solve the obtained CLPPs as explained in steps 6 and 7 by the standard
simplex method for the players.
Step 9 The obtained optimal solution of CLPPs in step 8 provides the complete
and satisfactory solutions for players. We also get the best strategies and game
value for both players.

5. Numerical Examples

5.1. Example

Taking a zero sum FMG ÃR =
[
ãRij
]
m×n with two players whose payoffs are

TFRNs is given as follows

ÃR=

[
ãR11 ãR12
ãR21 ãR22

]
Where ãR11 = [(175, 180, 185, 190) : (170, 180, 185, 195)];
ãR12 = [(150, 155, 157, 158) : (145, 155, 157, 160)];
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ãR21 = [(80, 87, 92, 100) : (75, 87, 92, 105)];
ãR22 = [(175, 180, 185, 190) : (170, 180, 185, 195)]; Assuming that the margins for
both the players are p̃R and q̃R, which are given as
p̃R = [(0.06, 0.08, 0.10, 0.12) : (0.04, 0.08, 0.10, 0.14)];
q̃R = [(0.10, 0.12, 0.16, 0.18) : (0.07, 0.12, 0.16, 0.19)];
Having 1̃R = [(0.5, 0.8, 1.0, 1.2) : (0.3, 0.8, 1.0, 1.5)], then using equations (11)-(14)
as explained in steps 4 and 5 and equations (15)-(26) as explained in steps 6 and
7, the given TPZSMG with TFRNs as payoffs can be split into CLPPs for both
the players as follows

(CLPP-I)
LU



max ul
LU

subject to the constraints

170(β1)l
LU

+ 75(β2)l
LU ≥ ulLU − 0.14(1− λ)

145(β1)l
LU

+ 170(β2)l
LU ≥ ulLU − 0.14(1− λ)

(β1)l
LU

+ (β2)l
LU

= 0.3

λ ≤ 1

and (β1)l
LU
, (β2)l

LU
, λ, ul

LU ≥ 0

(27)

(CLPP-I)
LL



max ul
LL

subject to the constraints

175(β1)l
LL

+ 80(β2)l
LL ≥ ulLL − 0.12(1− λ)

150(β1)l
LL

+ 175(β2)l
LL ≥ ulLL − 0.12(1− λ)

(β1)l
LL

+ (β2)l
LL

= 0.5

λ ≤ 1

and (β1)l
LL
, (β2)l

LL
, λ, ul

LL ≥ 0

(28)

(CLPP-I)
LM



max uM

subject to the constraints

180β1
M + 87β2

M ≥ uM − 0.10(1− λ)

155β1
M + 180β2

M ≥ uM − 0.10(1− λ)

β1
M + β2

M = 0.8

λ ≤ 1

and β1
M , β2

Mλ, uM ≥ 0

(29)
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(CLPP-I)
UM



max uM

subject to the constraints

185β1
M

+ 92β2
M ≥ uM − 0.08(1− λ)

157β1
M

+ 185β2
M ≥ uM − 0.08(1− λ)

β1
M

+ β2
M

= 1

λ ≤ 1

and β1
M
, β2

M
λ, uM ≥ 0

(30)

(CLPP-I)
UL



max ur
UL

subject to the constraints

190(β1)r
UL

+ 100(β2)r
UL ≥ urUL − 0.06(1− λ)

158(β1)r
UL

+ 190(β2)r
UL ≥ urUL − 0.06(1− λ)

(β1)r
UL

+ (β2)r
UL

= 1.2

λ ≤ 1

and (β1)r
UL
, (β2)r

UL
, λ, ur

UL ≥ 0

(31)

(CLPP-I)
UU



max ur
UU

subject to the constraints

195(β1)r
UU

+ 105(β2)r
UU ≥ urUU − 0.04(1− λ)

160(β1)r
UU

+ 195(β2)r
UU ≥ urUU − 0.04(1− λ)

(β1)r
UU

+ (β2)r
UU

= 1.5

λ ≤ 1

and (β1)r
UU
, (β2)r

UU
, λ, ur

UU ≥ 0

(32)
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And (CLPP-II)
LU



min vl
LU

subject to the constraints

170(γ1)l
LU

+ 145(γ2)l
LU ≤ vlLU + 0.07(1− µ)

75(γ1)l
LU

+ 170(γ2)l
LU ≤ vlLU + 0.07(1− µ)

(γ1)l
LU

+ (γ2)l
LU

= 0.3

µ ≤ 1

and (γ1)l
LU
, (γ2)l

LU
, µ, vl

LU ≥ 0

(33)

(CLPP-II)
LL



min vl
LL

subject to the constraints

175(γ1)l
LL

+ 150(γ2)l
LL ≤ vlLL + 0.10(1− µ)

80(γ1)l
LL

+ 175(γ2)l
LL ≤ vlLL + 0.10(1− µ)

(γ1)l
LL

+ (γ2)l
LL

= 0.5

µ ≤ 1

and (γ1)l
LL
, (γ2)l

LL
, µ, vl

LL ≥ 0

(34)

(CLPP-I)
LM



min vM

subject to the constraints

180γ1
M + 155γ2

M ≤ vM + 0.12(1− µ)

87γ1
M + 180γ2

M ≤ vM + 0.12(1− µ)

γ1
M + γ2

M = 0.8

µ ≤ 1

and γ1
M , γ2

Mµ, vM ≥ 0

(35)
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(CLPP-II)
UM



min vM

subject to the constraints

185γ1
M + 157γ2

M ≤ vM + 0.16(1− µ)

92γ1
M + 185γ2

M ≤ vM + 0.16(1− µ)

γ1
M + γ2

M = 1

µ ≤ 1

and γ1
M , γ2

Mµ, vM ≥ 0

(36)

(CLPP-II)
UL



min vr
UL

subject to the constraints

190(γ1)r
UL

+ 158(γ2)r
UL ≤ vrUL + 0.18(1− µ)

100(γ1)r
UL

+ 190(γ2)r
UL ≤ vrUL + 0.18(1− µ)

(γ1)r
UL

+ (γ2)r
UL

= 1.2

µ ≤ 1

and (γ1)r
UL
, (γ2)r

UL
, µ, vr

UL ≥ 0

(37)

(CLPP-II)
UU



min vr
UU

subject to the constraints

195(γ1)r
UU

+ 160(γ2)r
UU ≤ vrUU + 0.19(1− µ)

105(γ1)r
UU

+ 195(γ2)r
UU ≤ vrUU + 0.19(1− µ)

(γ1)r
UU

+ (γ2)r
UU

= 1.5

µ ≤ 1

and (γ1)r
UU
, (γ2)r

UU
, µ, vr

UU ≥ 0

(38)
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Table 1: Value of game
(
ũR

)
for player I

Problem λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

(CLPP-I)
LU

45.2025 45.1675 45.1325 45.0975 45.0625

(CLPP-I)
LL

77.7242 77.6942 77.6642 77.6342 77.6042

(CLPP-I)
LM

128.3373 128.3123 128.2873 128.2623 128.2373

(CLPP-I)
UM

163.5593 163.5393 163.5193 163.4993 163.4793

(CLPP-I)
UL

199.7321 199.7171 199.7021 199.6871 199.6721

(CLPP-I)
UU

254.7400 254.7300 254.7200 254.7100 254.7000

Table 2: Value of game
(
ṽR

)
for player II

Problem µ = 0 µ = 0.25 µ = 0.5 µ = 0.75 µ = 1

(CLPP-II)
LU

44.9925 45.0100 45.0275 45.0450 45.0625

(CLPP-II)
LL

77.5042 77.5292 77.5542 77.5792 77.6042

(CLPP-II)
LM

128.1173 128.1473 128.1773 128.2073 128.2373

(CLPP-II)
UM

163.3193 163.3593 163.3993 163.4393 163.4793

(CLPP-II)
UL

199.4921 199.5371 199.5821 199.6271 199.6721

(CLPP-II)
UU

254.5100 254. 5575 254. 6050 254.6525 254.7000

Tables 1 and 2 illustrate the sensitivity analysis of game value for players I and
II with different values of parameter λ. We have used Wolfram Cloud to solve the
problem.

5.2. Example

Taking payoff in FMG with TFRNs as follows

ÃR=

[
ãR11 ãR12
ãR21 ãR22

]
Where ãR11 = [(1, 2, 3, 4) : (0.5, 2, 3, 4.5)];
ãR12 = [(2.5, 5, 7.5, 10) : (1, 5, 7.5, 11.5)];
ãR21 = [(3.5, 7, 10.5, 14) : (2, 7, 10.5, 15)];
ãR22 = [(1.5, 3, 4.5, 6) : (1, 3, 4.5, 8)]; Assuming that the margins for both the players
are p̃R and q̃R , which are given by
p̃R = [(0.06, 0.08, 0.10, 0.12) : (0.04, 0.08, 0.10, 0.14)];
q̃R = [(0.10, 0.12, 0.16, 0.18) : (0.07, 0.12, 0.16, 0.19)];
Having 1̃R = [(0.5, 0.8, 1.0, 1.2) : (0.3, 0.8, 1.0, 1.5)], then using equations (11)-(14)
as explained in steps 4 and 5 and equations (15)-(26) as explained in steps 6 and
7, the given TPZSMG with TFRNs as payoffs can be split into CLPPs for both
the players as follows
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(CLPP-I)
LU



max ul
LU

subject to the constraints

0.5(β1)l
LU

+ 2(β2)l
LU ≥ ulLU − 0.14(1− λ)

1(β1)l
LU

+ 1(β2)l
LU ≥ ulLU − 0.14(1− λ)

(β1)l
LU

+ (β2)l
LU

= 0.3

λ ≤ 1

and (β1)l
LU
, (β2)l

LU
, λ, ul

LU ≥ 0

(39)

(CLPP-I)
LL



max ul
LL

subject to the constraints

1(β1)l
LL

+ 3.5(β2)l
LL ≥ ulLL − 0.12(1− λ)

2.5(β1)l
LL

+ 1.5(β2)l
LL ≥ ulLL − 0.12(1− λ)

(β1)l
LL

+ (β2)l
LL

= 0.5

λ ≤ 1

and (β1)l
LL
, (β2)l

LL
, λ, ul

LL ≥ 0

(40)

(CLPP-I)
LM



max uM

subject to the constraints

2β1
M + 7β2

M ≥ uM − 0.10(1− λ)

5β1
M + 3β2

M ≥ uM − 0.10(1− λ)

β1
M + β2

M = 0.8

λ ≤ 1

and β1
M , β2

Mλ, uM ≥ 0

(41)
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(CLPP-I)
UM



max uM

subject to the constraints

3β1
M

+ 10.5β2
M ≥ uM − 0.08(1− λ)

7.5β1
M

+ 4.5β2
M ≥ uM − 0.08(1− λ)

β1
M

+ β2
M

= 1

λ ≤ 1

and β1
M
, β2

M
λ, uM ≥ 0

(42)

(CLPP-I)
UL



max ur
UL

subject to the constraints

4(β1)r
UL

+ 14(β2)r
UL ≥ urUL − 0.06(1− λ)

10(β1)r
UL

+ 6(β2)r
UL ≥ urUL − 0.06(1− λ)

(β1)r
UL

+ (β2)r
UL

= 1.2

λ ≤ 1

and (β1)r
UL
, (β2)r

UL
, λ, ur

UL ≥ 0

(43)

(CLPP-I)
UU



max ur
UU

subject to the constraints

4.5(β1)r
UU

+ 15(β2)r
UU ≥ urUU − 0.04(1− λ)

11.5(β1)r
UU

+ 8(β2)r
UU ≥ urUU − 0.04(1− λ)

(β1)r
UU

+ (β2)r
UU

= 1.5

λ ≤ 1

and (β1)r
UU
, (β2)r

UU
, λ, ur

UU ≥ 0

(44)
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And (CLPP-II)
LU



min vl
LU

subject to the constraints

0.5(γ1)l
LU

+ 1(γ2)l
LU ≤ vlLU + 0.07(1− µ)

2(γ1)l
LU

+ 1(γ2)l
LU ≤ vlLU + 0.07(1− µ)

(γ1)l
LU

+ (γ2)l
LU

= 0.3

µ ≤ 1

and (γ1)l
LU
, (γ2)l

LU
, µ, vl

LU ≥ 0

(45)

(CLPP-II)
LL



min vl
LL

subject to the constraints

1(γ1)l
LL

+ 2.5(γ2)l
LL ≤ vlLL + 0.10(1− µ)

3.5(γ1)l
LL

+ 1.5(γ2)l
LL ≤ vlLL + 0.10(1− µ)

(γ1)l
LL

+ (γ2)l
LL

= 0.5

µ ≤ 1

and (γ1)l
LL
, (γ2)l

LL
, µ, vl

LL ≥ 0

(46)

(CLPP-I)
LM



min vM

subject to the constraints

2γ1
M + 5γ2

M ≤ vM + 0.12(1− µ)

7γ1
M + 3γ2

M ≤ vM + 0.12(1− µ)

γ1
M + γ2

M = 0.8

µ ≤ 1

and γ1
M , γ2

Mµ, vM ≥ 0

(47)
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(CLPP-II)
UM



min vM

subject to the constraints

3γ1
M + 7.5γ2

M ≤ vM + 0.16(1− µ)

10.5γ1
M + 4.5γ2

M ≤ vM + 0.16(1− µ)

γ1
M + γ2

M = 1

µ ≤ 1

and γ1
M , γ2

Mµ, vM ≥ 0

(48)

(CLPP-II)
UL



min vr
UL

subject to the constraints

4(γ1)r
UL

+ 10(γ2)r
UL ≤ vrUL + 0.18(1− µ)

14(γ1)r
UL

+ 6(γ2)r
UL ≤ vrUL + 0.18(1− µ)

(γ1)r
UL

+ (γ2)r
UL

= 1.2

µ ≤ 1

and (γ1)r
UL
, (γ2)r

UL
, µ, vr

UL ≥ 0

(49)

(CLPP-II)
UU



min vr
UU

subject to the constraints

4.5(γ1)r
UU

+ 11.5(γ2)r
UU ≤ vrUU + 0.19(1− µ)

15(γ1)r
UU

+ 8(γ2)r
UU ≤ vrUU + 0.19(1− µ)

(γ1)r
UU

+ (γ2)r
UU

= 1.5

µ ≤ 1

and (γ1)r
UU
, (γ2)r

UU
, µ, vr

UU ≥ 0

(50)
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Table 3: Value of game
(
ũR

)
for player I

Problem λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

(CLPP-I)
LU

0.4400 0.4050 0.3700 0.3350 0.3000

(CLPP-I)
LL

1.1557 1.1257 1.0957 1.0657 1.0357

(CLPP-I)
LM

3.4143 3.3893 3.3643 3.3393 3.3143

(CLPP-I)
UM

6.2943 6.2743 6.2543 6.2343 6.2143

(CLPP-I)
UL

10.0029 9.9879 9.9729 9.9579 9.9429

(CLPP-I)
UU

14.6650 14.6550 14.6450 14.6350 14.6250

Table 4: Value of game
(
ṽR

)
for player II

Problem µ = 0 µ = 0.25 µ = 0.5 µ = 0.75 µ = 1

(CLPP-II)
LU

0.2300 0.2475 0.2650 0.2825 0.3000

(CLPP-II)
LL

0.9357 0.9607 0.9857 1.0107 1.0357

(CLPP-II)
LM

3.1943 3.2243 3.2543 3.2843 3.3143

(CLPP-II)
UM

6.0543 6.0943 6.1343 6.1743 6.2143

(CLPP-II)
UL

9.7629 9.8079 9.8529 9.8979 9.9429

(CLPP-II)
UU

14.4350 14.4825 14.5300 14.5775 14.6250

Tables 3 and 4 illustrate the sensitivity analysis of game value for players I and
II with different values of parameter λ. We have used Wolfram Cloud to solve the
problem.

6. Conclusion

This study is about framing models to solve TPZSFMG with TFRNs as payoffs.
To discover an optimal solution, a pair of FRLPPs is explored. The TPZSMG’s
max-min optimality criteria are transformed into upper and lower approximation
intervals FLPPs and CLPPs for each player in the game. Using the proposed
methodology, it is solved for various values of the parameters λ and µ in [0,1].
The proposed model is found to be suitable for solving TPZSFMG. Finally, the
model is established using numerical examples. These numerical examples show
that increasing the parameters λ and µ diminishes the value of the game for player
I and increases it for player II. Future research can be expanded to neutrosophic
and picture fuzzy sets.
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