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1. INTRODUCTION

Consider the nonlinear semidefinite semi-infinite multiobjective optimization
problems (NSD-SIMOP)

min f(X) := (f1(X), ..., fp(X)),

subject to gt(x) ≤ 0, t ∈ T, hi(x) = 0 (i = 1, ..., r), x ∈ Sn+, (1)

where the functions fj : Sn → R, j ∈ P := {1, 2, .., p}, gt : Sn → R, t ∈ T, T
present a compact and infinite set, hi : Sn → R, i ∈ R := {1, 2, .., r} are real
valued functions where Sn and Sn+ are sets of n × n symmetric matrices and
positive semidefinite matrices, respectively.

Semidefinite programming is a widely applicable field of optimization [50, 15,
19, 26, 27, 41, 43, 16, 44, 34]. Some recent applications of semidefinite program-
ming are in combinatorial optimization [46], dc microgrids [18], generalized Gauss
inequalities [49], polynomial invariants [39], stochastic block models [1], integer
convex quadratic minimization [35], analysis of Hoek-Brown material [47], power
transmission network expansion planning [17], controlling the renewable microgrid
[37], economic dispatch problems [2] etc.

A semi-infinite optimization problem is the minimization of real valued ob-
jective functions subject to an arbitrary possibly infinite number of constraint
functions. Fundamental theoretical aspects and a wide range of applications of
semi-infinite programming have been studied intensively by many researchers dur-
ing last two decades, a few of them are constraint qualifications [20], optimality
conditions [24], duality results [31], saddle point analysis [12], augmented La-
grangian functions [23], exact penalty functions [29], duality gap [32], algorithms
and applications in social science [21], engineering [36], robotics [51], air pollutions
[52], lapidary cutting [53], and power supply [45].

Multiobjective optimization problems arise in many real world problems [11],
when optimal decisions need to be taken in the presence of two or more conflicting
objectives. Generally, there does not exist a single solution that simultaneously
optimizes each objective. Instead, there exists a set of Pareto optimal solutions.
A solution is called nondominated or Pareto optimal or efficient solutions if none
of the objective functions can be improved in value without degrading one or
more of the other objective values [40]. Without additional subjective preference
information, all Pareto optimal solutions are considered equally good. Multiob-
jective optimization problems are usually solved by scalarization. In scalarization
technique, multiobjective optimization problem is converted into a single (scalar)
objective optimization problem. In this way the new problem has a real-valued
objective function, possibly depending on some parameters. After scalarization,
we use widely developed theory and methods for single objective optimization.

Saddle point optimality conditions basically explained by Mangasarian [30]
for scalar objective optimization problems, where optimality has been discussed
without differentiability under convexity assumption in Euclidean space. Saddle-
point optimality criteria method have attracted the attentions of many authors
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(see, [25, 33, 42, 5, 38, 48]). In 2012, saddle point optimality conditions of scalar
convex constraints optimization problems were discussed in real Banach space [6]
using hyperplane separation theorem technique, in which a refined solution based
on convexity theory was given without differentiability hypothesis. Since in the
derivation of necessary and sufficient optimality conditions for a given feasible
point to be optimal convexity plays a paramount role. Therefore, convexity as-
sumptions and avoiding differentiability of used functions lead towards wide range
of applications. To the best of our knowledge, there are few papers dealing with a
multiobjective semidefinite semi-infinite programming.

Recently, Dorsch et al. [13] established a new genericity result for nonlinear
semidefinite programming (NLSDP) where almost all linear perturbations of a
given NLSDP are shown to be nondegenerate. Further, nondegeneracy for NLSDP
studied under transversality constraint qualification, strict complementarity and
second-order sufficient condition. Semidefinite programming is a powerful frame-
work from convex optimization that has striking potential for data science appli-
cations [54]. Sequential optimality conditions have played a vital role in unifying
and extending global convergence results for several classes of algorithms for gen-
eral nonlinear optimization, Andreani et al. [4] extend these concepts for nonlinear
semidefinite programming. Andreani et al. [3] discuss naive extensions of constant
rank-type constraint qualifications to semidefinite programming, which are based
on the Approximate Karush-Kuhn-Tucker necessary optimality condition and on
the application of the reduction approach.

Motivated by above in this paper, we extend the concept of saddle point opti-
mality conditions for nonlinear semidefinite semi-infinite convex multiobjective op-
timization problems. We established Karush-Kuhn-Tucker optimality conditions
under Slater’s constraint qualification through saddle point optimality criteria ap-
proach.

The organization of this paper is as follows: in Section 2, we recall some pre-
liminary and basic results. In Section 3, we present our results on saddle point
and Karush-Kuhn-Tucker necessary and sufficient optimality conditions for the
semidefinite semi-infinite multiobjective convex optimization problems. We also
state the relationship between the Pareto solutions and the saddle points for La-
grange function using Slater’s constraint qualification. The Last section is dedi-
cated to conclusions.

2. PRELIMINARIES

In this section, we recall some notions and preliminary results that we used in
this paper. For basic notions of matrix analysis [8, 10]. Here, Sn and Sn+ denote
a set of all n× n symmetric and positive semidefinite matrices, respectively. The
inner product between any two A, B ∈ Sn is defined by 〈A,B〉 = tr(ATB) and
the associated Frobenius norm is given by ‖A‖F =

√
tr(ATA). For any set X, |X|

denotes cardinality of the set X. Order relation between two vectors y, z ∈ Rp,
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follow the following conventions

y 5 z ⇐⇒ yi ≤ zi, i = 1, ..., p,

y ≤ z ⇐⇒ y 5 z and y 6= z,

y < z ⇐⇒ yi < zi, i = 1, ..., p.

We denote the feasible region by F and assume that it is nonempty:

F = {X ∈ Sn+ : gt(X) ≤ 0 (t ∈ T ), hi(X) = 0 (i = 1, ..., r)}.

Motivated by Bazaraa et al. [7], we define the convex function on Sn+, as follows:

Definition 2.1. A function f : S ⊂ Sn+ → R is said to be convex on S if the
inequality

f (λX + (1− λ)Y ) ≤ λf(X) + (1− λ)f(Y )

holds for all X, Y ∈ S and for every λ ∈ [0, 1].

Theorem 2.1. [6] If A1 and A2 are two non-empty disjoint convex sets of Rn,
then there exists a non-zero element c := (c1, · · · , cn) ∈ Rn \ {0} such that

n∑
i=1

ciui 5
n∑

i=1

civi, ∀ u = (ui)i=1,2,...,n ∈ A1, ∀ v = (vi)i=1,2,...,n ∈ A2.

The following definition is an extension of Pareto optimal point from Rn to
Sn+, which is extensively studied by Ehrgott [14];

Definition 2.2. � A feasible point X0 ∈ F is said to be a weak Pareto optimal
solution of the NSD-SIMOP (1), iff there is no feasible point X ∈ F , such
that

f(X) < f(X0).

� A feasible point X0 ∈ F is said to be a Pareto optimal solution of the NSD-
SIMOP (1), iff there is no feasible point X ∈ F , such that

f(X) ≤ f(X0).

� A feasible point X0 ∈ F is said to be a locally Pareto optimal solution of the
NSD-SIMOP (1), iff there exists a neighbourhood U of X0 and there is no
other feasible point X ∈ F ∩ U , such that

f(X) ≤ f(X0).

Let X0 ∈ F be an arbitrary feasible point for (SDP −SIMOP ). Consider the
following problem:

(Hybrid method) min

p∑
i=1

ηifi(X), ∀ ηi > 0, (2)

subject to f(X) 5 f(X0), X ∈ F.
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Theorem 2.2. [14, Theorem 4.7] A feasible solution X0 ∈ F is an optimal solu-
tion of (2) if and only if X0 is a Pareto optimal solution of (SDP − SIMOP ).

Consider the following optimization problem

(SIP) min f(X), (3)

subject to gt(X) ≤ 0, t ∈ T, hi(X) = 0, i = 1, 2, ..., r.

where the function f : Sn → R, remaining notions are defined as the previous ones.

Definition 2.3. (Slater’s condition) [9, 22, 28] In the (SIP ) Slater’s condition

holds if for every set of [n(n+1)
2 ] + 1 points t0, ..., tn(n+1)/2 ∈ T, there exists a point

X ∈ F such that gtj (X) < 0, j = 0, ..., n(n+ 1)/2.

Theorem 2.3. [9, 22, 28] If Slater’s condition holds in (SIP ), X0 is a feasible
solution of (SIP ) and T (X0) = {tj ∈ T : gtj (X0) = 0}. Then, X0 is an optimal
solution of (SIP ) if and only if there exists a finite set T 0 ⊂ T containing at most
n(n+ 1)/2 elements such that X0 is an optimal solution of finite (SIP ),

(finite-SIP) min f(X), (4)

subject to gtj (X) ≤ 0, ∀ tj ∈ T 0 ∩ T (X0), hi(X) = 0, i = 1, 2, ..., r.

Inspired by Bazaraa et al. [7], we extend following results from Rn to Sn+, as
follows:

Theorem 2.4. If f is a differentiable convex function on Sn+, then the minimum
(global) of f over Sn+ is attained at point X0 ∈ Sn+ if and only if 0 = ∇f(X0).

Theorem 2.5. If the functions f1 and f2 are continuously differentiable, then

∇(f1 + f2)(X) = ∇f1(X) +∇f2(X) ∀ X ∈ Sn+.

3. SADDLE POINT AND KARUSH-KUHN-TUCKER
OPTIMALITY CONDITIONS

In this section, we establish saddle point and Karush-Kuhn-Tucker type opti-
mality conditions for considered (SDP − SIMOP ) in Sn+.

Lemma 3.1. If the functions f and g are convex over X, then the set

A = {(f(x) + α, g(x) + β) : x ∈ X and α, β ∈ R+}

is also convex.

Proof. Let us choose two points arbitrarily in A say

P = (f(x1) + α1, g(x1) + β1),

Q = (f(x2) + α2, g(x2) + β2).
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Now, let t ∈ [0, 1] be arbitrary fixed and consider

tP + (1− t)Q =(tf(x1) + (1− t)f(x2) + tα1 + (1− t)α2,

tg(x1) + (1− t)g(x2) + tβ1 + (1− t)β2).

Then, it is sufficient to prove that tP + (1 − t)Q ∈ A. Since f and g are convex
functions and X is a convex set, therefore tx1 + (1− t)x2 ∈ X and

f(tx1 + (1− t)x2) 5 tf(x1) + (1− t)f(x2),

g(tx1 + (1− t)x2) 5 tg(x1) + (1− t)g(x2).

So we may write

tf(x1) + (1− t)f(x2) = f(tx1 + (1− t)x2) + h1(t),

tg(x1) + (1− t)g(x2) = g(tx1 + (1− t)x2) + h2(t).

where h1(t), h2(t) are non-negative real numbers depending on t. Now,

tP + (1− t)Q = (f(tx1 + (1− t)x2) + (tα1 + (1− t)α2) + h1(t),

g(tx1 + (1− t)x2) + (tβ1 + (1− t)β2) + h2(t)),

= (f(tx1 + (1− t)x2) +m(t), g(tx1 + (1− t)x2) + n(t)).

where m(t) = (tα1 +(1− t)α2)+h1(t) > 0 and n(t) = (tβ1 +(1− t)β2)+h2(t) > 0.
So, we have

tP + (1− t)Q = (f(tx1 + (1− t)x2) +m(t), g(tx1 + (1− t)x2) + n(t)) ∈ A
as tx1 + (1− t)x2 ∈ X.

Hence, the set A is convex.

Theorem 3.2. Let fi (i = 1, ..., p), gtj , tj ∈ T, be convex and let hi (i =
1, ..., r) be affine functions. If X0 is an efficient solution where Slater condi-

tion holds in (NSD-SIMOP). Then, there exist real numbers ηf1 , ..., η
f
p , η

g
tj (tj ∈

T 0 ∩ T (X0)), ηh1 , ..., η
h
r , not all zero, having the properties:

p∑
i=1

ηfi fi(X
0) ≤

p∑
i=1

ηfi fi(X) +
∑

tj∈T 0∩T (X0)

ηgtjgtj (X) +

r∑
i=1

ηhi hi(X), (5)

∀ X ∈ (Sn+)0, η
f
i ≥ 0, ηgtj ≥ 0, ηgtjgtj (X0) = 0 (tj ∈ T 0 ∩ T (X0)),

where (Sn+)0 = ∩pi=1Domfi ∩
⋂

tj∈T 0∩T (X0)

Dom(gtj ).

Proof. Let X0 be an efficient solution of (NSD−SIMOP ). Then, from Theorem
2.2, X0 is an optimal solution of problem (2). Since Slater condition holds, then



V. Laha, et al. / Saddle Point Criteria for Semidefinite Semi-Infinite Convex 289

from Theorem 2.3, problem (2) reduces to the following problem

min

p∑
i=1

ηifi(X), ∀ ηi > 0, subject to f(X) 5 f(X0), (6)

and X ∈ F := {X ∈ Sn+ : gtj (X) ≤ 0, tj ∈ T 0 ∩ T (X0), hi(X) = 0}.

Now, we proceed with the method of [6, Theorem 3.1] which is as follows: consider
the following set

B =

{( p∑
i=1

ηifi(X)−
p∑

i=1

ηifi(X
0)+αf

0 , f1(X)−f1(X0)+αf
1 , ..., fp(X)−fp(X0)+αf

p ,

gt1(X)+αg
t1 , ..., gtj (X)+αg

tj (tj ∈ T 0∩T (X0)), h1(X), ..., hr(X)

)
; X ∈ (Sn+)0,

αf
i > 0, αg

tj > 0 ∀ i

}
. (7)

Since X0 is an optimal solution of (2) and αf
0 > 0, then first component in the set B

is always
p∑

i=1

ηifi(X)−
p∑

i=1

ηifi(X
0)+αf

0 > 0. Due to this the set B does not contain

the origin and from Lemma 3.1, B is a convex set, also. Non-emptiness of the set
B is obvious from the definition by noting that X0 is in (Sn+)0. Since each singleton
set is a convex set so the set containing the origin only is also a convex set. Then,
from Theorem 2.1, there exists a homogeneous hyperplane, that is, there exist real
numbers, not all zero, ηf0 , η

f
i (i = 1, ..., p), ηgtj (tj ∈ T 0 ∩ T (x0)), ηhi (i = 1, ..., r)

such that

ηf0 (

p∑
i=1

ηifi(X)−
p∑

i=1

ηifi(X
0) + αf

0 ) +

p∑
i=1

ηfi (fi(X)− fi(X0) + αf
i )

+
∑

tj∈T 0∩T (X0)

ηgtj (gtj (X) + αg
tj ) +

r∑
i=1

ηhi hi(X) ≥ 0, (8)

∀ X ∈ (Sn+)0, α
f
i > 0 (i = 0, 1, ..., p), αg

tj > 0 (tj ∈ T 0∩T (X0)). Now, taking X =

X0, one αg
tj ↑ ∞ remaining all αg

tj ↓ 0, and αf
i ↓ 0. Then, we get corresponding to

that tj , η
g
tj ≥ 0. Continuing this process, we get

ηf0 ≥ 0, ηfi ≥ 0 and ηgtj ≥ 0.

Thus, relation (8) becomes

ηf0 (

p∑
i=1

ηifi(X)−
p∑

i=1

ηifi(X
0)) +

p∑
i=1

ηfi (fi(X)− fi(X0))

+
∑

tj∈T 0∩T (X0)

ηgtj (gtj (X)) +

r∑
i=1

ηhi hi(X) ≥ 0,
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=⇒
p∑

i=1

fi(X)(ηf0 ηi + ηfi ) +
∑

tj∈T 0∩T (X0)

ηgtjgtj (X) +

r∑
i=1

ηhi hi(X)

≥
p∑

i=1

fi(X
0)(ηf0 ηi + ηfi ),

=⇒
p∑

i=1

ηfi fi(X) +
∑

tj∈T 0∩T (X0)

ηgtjgtj (X) +

r∑
i=1

ηhi hi(X) ≥
p∑

i=1

ηfi fi(X
0), (9)

where we again write ηf0 ηi + ηfi by η
f
i . Since X0 is feasible, therefore

ηgtjgtj (X0) ≤ 0, ∀ tj ∈ T 0 ∩ T (X0), (10)

substituting X = X0 in inequality (9), we get∑
tj∈T 0∩T (X0)

ηgtjgtj (X0) ≥ 0. (11)

Now, from (10) and (11), we have ηgtjgtj (X0) = 0, ∀ tj ∈ T 0 ∩ T (X0), which
completes the proof.

Example 3.3. Consider the problem

min f(X) = (f1(X), f2(X), f3(X)), subject to gt(X) ≤ 0,

where f1(X) = x21, f2(X) = x22, f3(X) = x23, and gt(X) = (x1−1)2 + (x2−1)2 +
(x3 − 1)2 − 2 + t, t ∈ T = { 1n : n ∈ N} ∪ {0}, N is set of all natural numbers.

Clearly the feasible region is given by F :=

{
X =

[
x1 x2
x2 x3

]
∈ S2+ : gt(X) =

(x1−1)2 +(x2−1)2 +(x3−1)2−2+ t ≤ 0, t ∈ T = { 1n : n ∈ N}

}
and the common

domain is

(S2+)0 =

3⋂
i=1

Dom fi(X)
⋂

tj∈T 0∩T (X0)

Dom gtj (X)

Since, X0 =

[
1 0
0 1

]
is a Pareto optimal solution, so T 0 ∩T (X0) = {1}. Then, for

ηf1 = 0, ηf2 > 0, ηf3 = 0, and ηg1 = 0, the following inequality satisfies

ηf1 f1(X0) + ηf2 f2(X0) + ηf3 f3(X0)

= 0 ≤ ηf1X2
1 + ηf2X

2
2 + ηf3X

2
3 + ηg1 [(X1 − 1)2 + (X2 − 1)2 + (X3 − 1)2 − 2]

= ηf1 f1(X) + ηf2 f2(X) + ηf3 f3(X) + ηg1g1(X),∀ X ∈ (Sn+)0.

Hence, the result is verified.
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Now, we construct a function with respect to X0

LX0(X, ηf , ηg, ηh) =

p∑
i=1

ηfi fi(X) +
∑

tj∈T 0∩T (X0)

ηgtjgtj (X) +

r∑
i=1

ηhi hi(X), (12)

ηf = (ηfi ) ∈ Rp, ηg = (ηgtj ) ∈ R|T 0∩T (X0)| and ηh = (ηhi ) ∈ Rr, which is called
Lagrangian function.

Remark 3.1. The necessary conditions (5) with X0 ∈ F are equivalent to the
fact that the point (X0, ηf , ηg, ηh) is a saddle point for the Lagrange function

(12) on (Sn+)0 × Rp
+ × R|T

0∩T (X0)|
+ × Rr , with respect to minimization on (Sn+)0

and maximization on Rp
+ × R|T

0∩T (X0)|
+ × Rr, that is,

p∑
i=1

η̄fi fi(X
0) +

∑
tj∈T 0∩T (X0)

η̄gtjgtj (X0) +
r∑

i=1

η̄hi hi(X
0)

≤
p∑

i=1

ηfi fi(X) +
∑

tj∈T 0∩T (X0)

ηgtjgtj (X) +

r∑
i=1

ηhi hi(X)

=⇒ LX0(X0, η̄f , η̄g, η̄h) ≤ LX0(X, ηf , ηg, ηh),∀ X ∈ (Sn+)0, (13)

and for every (X, η̄f , η̄g, η̄h) ∈ (Sn+)0 × Rp
+ × R|T

0∩T (X0)|
+ × Rr.

Remark 3.2. The necessary optimality conditions (5) with ηf 6= 0, and X0 ∈ F
are also sufficient for X0 to be a Pareto optimal solution to (NSD-SIMOP). If
ηf = 0, then the optimality conditions concern only the constraint functions,
without providing any information about the function which has to be minimized.
So, there is a natural requirement of certain additional conditions called constraint
qualifications which ensure that ηf 6= 0.

Definition 3.1. (Slater’s constraint qualification) The Slater’s constraint quali-
fication is an instance of a constraint qualification which is easily verifiable in
several particular applications. We say Slater’s constraint qualification holds if
the following two conditions are satisfied. The second condition is optional and is
due to presence of equality constraints.

� There exist a point X∗ ∈ F such that gtj (X∗) < 0, ∀ tj ∈ T 0 ∩ T (X0).

� Condition called interiority condition, if

0 ∈ int
{

(h1(X), h2(X), · · · , hr(X)); X ∈ (Sn+)0
}
.

Now, we get to a useful new result using Slater’s constraint qualification as
follows:
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Theorem 3.4. Let fi (i = 1, ..., p), gt (t ∈ T ) be convex and let hi (i =
1, ..., r), be affine functions such that Slater’s condition as well as Slater’s con-
straint qualification are satisfied. Then, the point X0 is a Pareto optimal solution
for (NSD-SIMOP) if and only if there exist p + |T 0 ∩ T (X0)| + r real numbers

ηf1 , · · · , ηfp , η
g
tj (tj ∈ T 0 ∩ T (X0)), ηh1 , · · · , ηhr , such that

p∑
i=1

ηfi fi(X
0) ≤

p∑
i=1

ηfi fi(X) +
∑

tj∈T 0∩T (X0)

ηgtjgtj (X) +

r∑
i=1

ηhi hi(X), (14)

and ηf = 0, ηf 6= 0, ηg = 0, ηgi gi(X
0) = 0 ∀ i ∈ T 0 ∩ T (X0),∀ X ∈ (Sn+)0.

Proof Let X0 be a Pareto optimal solution of (NSD-SIMOP). Then, from Theorem

3.2, there exist ηf1 , · · · , ηfp , η
g
tj (tj ∈ T 0 ∩ T (X0)), ηh1 , · · · , ηhr , not all zero, such

that (5) holds. If we suppose ηf = 0, then from Slater’s constraint qualification,
there exists X∗ ∈ F, such that gtj (X∗) < 0 (∀ tj ∈ T 0∩T (X0)), then substituting
X = X∗ in (5), we get

∑
tj∈T 0∩T (X0)

ηgtjgi(X
∗) ≥ 0. Since ηgtj ≥ 0, so we must have

ηgtj = 0 (∀ tj ∈ T 0 ∩ T (X0)), therefore (5) takes the form

r∑
i=1

ηhi hi(X) ≥ 0 ∀ X ∈ (Sn+)0,

and all components of ηh are not zero, which is a contradiction of the interior-
ity conditions of Slater’s constraint qualification. Hence, ηf 6= 0, that is, some
components of ηf are greater than zero.

Conversely, suppose X0 is not a Pareto optimal solution of (NSD-SIMOP),
then there exists X̂( 6= X0) ∈ F, such that

f(X̂) ≤ f(X0). (15)

Now, from relation (14) for X̂ ∈ F, we have

p∑
i=1

ηfi fi(X
0) ≤

p∑
i=1

ηfi fi(X̂),

which is a contradiction of inequality (15). Hence, X0 is a Pareto optimal solution
for (NSD-SIMOP).

Theorem 3.5. Under the hypothesis of Theorem 3.4, an element X0 ∈ Sn+ is a

Pareto optimal solution of (NSD-SIMOP) if and only if there exist ηf = (ηf1 , · · · , ηfp ) ∈
Rp, ηg ∈ R|T 0∩T (X0)| and ηh = (ηh1 , · · · , ηhr ) ∈ Rr such that (X0, ηf , ηg, ηh) is a
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saddle point for the Lagrange function on (Sn+)0 ×Rp
+ ×R|T

0∩T (X0)|
+ ×Rr, that is

p∑
i=1

ηfi fi(X
0) +

∑
tj∈T 0∩T (X0)

ηgtjgtj (X0) +

r∑
i=1

ηhi hi(X
0)

≤
p∑

i=1

ηfi fi(X) +
∑

tj∈T 0∩T (X0)

ηgtjgtj (X) +

r∑
i=1

ηhi hi(X)

for all (X, ηf , ηg, ηh) ∈ (Sn+)0 × Rp
+ × R|T

0∩T (X0)|
+ × Rr.

Proof The proof is obvious from Theorem 3.4.
Now, we establish traditional optimality conditions where the differentiability

of all the functions are required.

Theorem 3.6. (Karush-Kuhn-Tucker Conditions) Under the hypotheses of The-
orem 3.4, if we assume that the functions fi, gt, hi are continuously differentiable
real valued functions, then the optimality conditions for X0 ∈ F are equivalent to
the conditions

0 =

p∑
i=1

ηfi ∇fi(X
0) +

∑
tj∈T 0∩T (X0)

ηgtj∇gtj (X0) +

r∑
i=1

ηhi ∇hi(X0). (16)

Proof. From equation (9) if X0 ∈ F is the minimum point of the function, then

p∑
i=1

ηfi fi(X
0) ≤

p∑
i=1

ηfi fi(X) +
∑

tj∈T 0∩T (X0)

ηgtjgtj (X) +

r∑
i=1

ηhi hi(X). (17)

Since gtj (X0) ≤ 0 (tj ∈ T 0 ∩ T (X0)), hi(X
0) = 0(i = 1, 2, ..., r). Therefore,

inequality (17) takes the form

p∑
i=1

ηfi fi(X
0) +

∑
tj∈T 0∩T (X0)

ηgtjgtj (X0) +

r∑
i=1

ηhi hi(X
0)

≤
p∑

i=1

ηfi fi(X) +
∑

tj∈T 0∩T (X0)

ηgrigtj (X) +

r∑
i=1

ηhi hi(X).

Now, from Theorem 2.4 at the minimum point of the Lagrangian function, we
must have

0 = ∇

 p∑
i=1

ηfi fi +
∑

tj∈T 0∩T (X0)

ηgtjgtj +

r∑
i=1

ηhi hi

 (X0).

From the previous results and additive property of the gradients, we get

0 =

p∑
i=1

ηfi ∇fi(X
0) +

∑
tj∈T 0∩T (X0)

ηgtj∇gtj (X0) +

r∑
i=1

ηhi ∇hi(X0).

Hence, we get the required result.
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Example 3.7. Consider the following problem

min f(X) = (f1(X), f2(X), f3(X)), subject to

gt(X) ≤ 0, h(X) = 0, at a feasible point X0 =

[
0 0
0 0

]
,

where, f1(X) = x1, f2(X) = x2, f3(X) = x3, and gt(X) = x1 + x2 + x3 − 1 +
t (t ∈ T = { 1n : n ∈ N} ∪ {0}), where N is the set of all natural numbers, and

h(X) = −2x1 − 3x2 − x3, withX :=

[
x1 x2
x2 x3

]
∈ S2+.

Since X0 is a Pareto optimal solution for the considered problem as well as
satisfying Slater’s condition and Slater’s constraint qualification also T 0∩T (X0) =

{1}. ηf = (ηf1 , η
f
2 , η

f
3 ) 6= 0, ηf = 0 and ηg1g1(X0) = 0. Now, taking ηf1 = 2ηh, ηf2 =

3ηh, ηf3 = ηh, ηg1 = 0 and ηh > 0, we have

ηf1∇f1(X0) + ηf2∇f2(X0) + ηf3∇f3(X0) + ηg1∇g1(X0) + ηh∇h(X0)

= ηf1

[
1 0
0 0

]
+ ηf2

[
0 1
1 0

]
+ ηf3

[
0 0
0 1

]
+ ηg1

[
1 1
1 1

]
+ ηh

[
−2 − 3
−3 − 1

]
=

[
0 0
0 0

]
.

Hence, the result is verified.
Now, we consider the case in which constraints are given by inequalities only,

that is,

F1 = {X ∈ Sn+ : gt(X) ≤ 0, ∀ t ∈ T}.

Remark 3.3. Slater’s constraint qualification in the absence of equality constraints
is as follows: There exists a feasible point X∗ such that gtj (X∗) < 0, ∀ tj ∈
T 0 ∩ T (X0).

Corollary 3.8. Let f1, ..., fp, gt (t ∈ T ), be real, convex and differentiable func-
tions on Sn. Further, assume that Slater’s constraint qualification in the absence of
equality constraints holds. Then, a feasible point X0 is a Pareto optimal solution
of the problem (1) with inequality constraints only if and only if there exist real

numbers ηf1 , ..., η
f
p , η

g
t (tj ∈ T 0 ∩ T (X0)), such that

p∑
i=1

ηfi ∇fi(X̄) +
∑

tj∈T 0∩T (X0)

ηgtj∇gtj (X0) = 0, (18)

ηf = 0, ηf 6= 0, ηgtj ≥ 0, ηgtjgtj (X0) = 0, ∀ tj ∈ T 0 ∩ T (X0).

4. CONCLUSIONS

In this article, we have established saddle point optimality conditions for
nonlinear semidefinite semi-infinite multiobjective convex optimization problems
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(NSD-SIMOP). We used Slater’s condition as well as Slater’s constraint qualifica-
tion from [6] and derived saddle point necessary and sufficient Pareto optimality
conditions for the considered problem where multipliers of the objective functions
do not vanish simultaneously. We established Karush-Kuhn-Tucker optimality
conditions from saddle point optimality conditions for the differentiable case and
presented some examples to verify our results.
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