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Abstract: We consider the following 2-clustering problem. GivenN points in Euclidean
space, partition it into two subsets (clusters) so that the sum of squared distances between
the elements of the clusters and their centers would be minimum. The center of the first
cluster coincides with its centroid (mean) while the center of the second cluster should
be chosen from the set of the initial points (medoid). It is known that this problem is
NP-hard if the cardinalities of the clusters are given as a part of the input. In this paper
we prove that the problem remains NP-hard in the case of arbitrary clusters sizes and
suggest a 2-approximation polynomial-time algorithm for this problem.
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1. INTRODUCTION

The object of study in this paper is 2-clustering, i. e. partition a set of points
in Euclidean space into two non-empty clusters according to some similarity cri-
teria. The aim of the paper is to prove NP-hardness of one particular 2-clustering
problem in the case of non-fixed cardinalities of the clusters and to suggest a
polynomial-time algorithm with a guaranteed performance for this problem. The
research is motivated by the fact that the computaional complexity of the problem
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and issues of its approximation remained unknown up to date. Note that this pa-
per is a full version of the author’s conference paper [1] where only the complexity
issues of the problem were studied.

Clustering (partitioning a set of some objects into non-empty subsets contain-
ing similar objects) is one of the most actual problems in data analysis, data
mining, computational geometry, mathematical statistics and discrete optimiza-
tion [2, 3, 4]. It includes a wide class of problems differing by the number of
clusters, similarity criteria, cluster cardinalities constraints, etc.

One of the most usual similarity criteria is the minimum of the squared dis-
tances from the elements of the cluster to some point called a center of the cluster.
There could be following constraints on the choice of the center:

- An arbitrary point (no restrictions)

- A point from the given set

- A given (fixed) point of the space

This choice of centers types can be motivated by the following problem. Ass-
sume that several sensors should be placed for monitoring the situation in towns of
a given area. Some sensors are autonomous and could be placed anywhere; others
need regular service and so they should be put in towns. There could be also
sensors that had been put earlier and cannot be moved (fixed). Since the energy
consumption is proportional to the square of the distances, the clustering problem
with different centers types can be interpreted as location problem for the sensors
of two types taking into account existing sensors and minimizing the total energy
consumption.

If all points of a cluster C are known and the center can be chosen arbitrar-
ily then it is easy to prove by taking partial derivations that the optimal center
coincides with the so-called centroid defined as

y(C) =
∑

y∈C y

|C|
.

If this constraint must hold for all cluster centers then one gets a classical problem
MSSC (minimum sum-squared clustering) [5, 6] also known as k-means where k is
the number of clusters. So, we call such centers means. If the center of the cluster
must coincide with one of the points from the initial set then we call it medoid1.
Finally, the third type of centers (a fixed point) is called given.

In 2-clustering, if both clusters have the same requirement on the center (mean,
medoid or given) then we denote the problem, respectively, 2-mean, 2-medoid or 2-
given. Note that 2-mean 2-clustering problem is the same as the classical 2-means.
However, it is possible that different clusters have different constraints on their

1The term medoid was introduced in [7] as a representative object of a cluster within a
data set whose average dissimilarity to all the objects in the cluster is minimal. Although by
dissimilarity usually the distance is meant, applying it for the square of the distance does not
contradict the initial definition.
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centers. In this case, the corresponding problems are denoted, respectively, 1-mean
and 1-medoid, 1-mean and 1-given, or 1-medoid and 1-given. Also, we distinguish
whether the cluster cardinalities are fixed (given as a part of input) or can be chosen
arbitrarily. Clearly, if a problem with fixed clusters cardinalities is polynomially
solvable then the problem with arbitrary clusters sizes is polynomially solvable as
well — just consider all N − 1 possible sizes of the first cluster (where N is the
number of points) and choose the best solution. And vice versa, the NP-hardness
of a probem with arbitrary clusters cardinalities implies the NP-hardness of the
one with fixed sizes of the clusters.

It is easy to see that 2-given 2-clustering problem is polynomially solvable. If
the cardinalities of the clusters are not fixed then, clearly, we put each point to
the cluster whose center is closer to this point (in fact, we use this procedure in
Algorithm A below). In case of fixed cardinalities, if the size of the first cluster isM
then just consider for each point the difference between the squared distances from
the first and the second center, and choose among them M minimal ones. This
implies the polynomial solvability (both for fixed or arbitrary clusters cardinalities)
of 1-medoid and 1-given 2-clustering problem that can be reduced to N instances
of 2-given 2-clustering problems, and of 2-medoid 2-clustering problem that can
be reduced to N2 instances of 2-given 2-clustering problems.

If at least one cluster center must be a mean then the problem becomes much
harder. It is known [8] that the problem k-means in the case of the arbitrary
cluster sizes is NP-hard even for k = 2. Then by the remark above, the fixed
cardinalities version of 2-mean 2-clustering problem is also NP-hard. If both the
space dimension d and the number of clusters k are fixed then k-means is polyno-
mially solvable [9]; however, if k is a part of the input, then it remains NP-hard
even in the planar case [10], i. e. for d = 2. Note also that a PTAS is known [11]

for 2-means finding an (1 + ε)-approximate solution in time O(dN2(1/ε)
O(1)

).
The 2-clustering problem 1-mean and 1-given was proved to be NP-hard both

for the cases of fixed [12, 13] and arbitrary [14, 15] cardinalities. Note that
both these variants admit polynomial 2-approximation algorithms of complexity
O(dN2); for the fixed cardinalities such algorithm can be found in [16], while for
the arbitrary arbitrary cardinalities — in [17]. For any fixed space dimension d
this problem is polynomially solvable in case of fixed cluster cardinalities. The
first algorithm of complexity O(dN2d+2) was suggested in [18]; the best known
algorithm of complexity O(dNd+1) can be found in [19].

Finally, the fixed cardinalities vertion of 1-mean and 1-medoid problem was
studied in [20] where its NP-hardness was proved (medoid was erraneously called
median there).

So, the only case of unknown computation complexity up to date was the
1-mean and 1-medoid 2-clustering problem in the case of arbitrary cluster car-
dinalities. The conference paper [1] closed this final open case by showing that
it was NP-hard. Note that the reduction used in the proof is similar to the one
used in [21] for a subset choice problem. The current paper is a journal version
of the conference paper [1]; it contains also a 2-approximation polynomial-time
algorithm for 1-mean and 1-medoid 2-clustering problem in the case of arbitrary
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cluster cardinalities.
For the convenience, the review of all cases is given in Table 1, where the

contribution of the current paper is shown in bold.

Table 1: Complexity of various 2-clustering problems

Clusters cardinalitiesCenters types
Fixed Arbitrary

2-given Polynomially solvable Polynomially solvable
2-medoid Polynomially solvable Polynomially solvable
2-mean NP-hard [8] NP-hard [8]

1-medoid and 1-given Polynomially solvable Polynomially solvable
1-mean and 1-given NP-hard [12, 13] NP-hard [14, 15]
1-mean and 1-medoid NP-hard [20] NP-hard ([1] and this paper)

The paper is organized as follows. In the next section the strict formulation
of the considered problem is given and some preliminary results are proved. In
section 3 the main complexity result from [1] is presented. Section 4 contains the
main contribution of a journal version, namely, a 2-approximation polynomial-time
algorithm. The last section gives some concluding remarks.

2. PRELIMINARIES

Call a cluster trivial if it contains only one element. Clearly, for a trivial
cluster both mean and medoid center coincide with the only cluster element, and
the contribution of such cluster into the objective function is zero. Therefore, it
looks reasonable to require in 1-mean and 1-medoid 2-clustering problem that the
clusters are non-trivial because, otherwise, the specifics of the cluster can be lost.
Note also that there are only n possible trivial clusters, so their excludance does
not narrow the problem much.

We make use of the following well-known folklore identity (the proof can be
found, for instance, in [15]):

∑
y∈C

∥y − y(C)∥2 =

∑
y∈C

∑
z∈C ∥y − z∥2

2|C|
. (1)

Using (1), we may formulate 1-mean and 1-medoid 2-clustering problem as
follows:

Problem 1. Given a set of points Y = {y1, . . . , yN} in Euclidean space Rd, find
a subset C ⊂ Y of cardinality t ∈ [2, N − 2] and a point x ∈ Y minimizing the
objective function

f(C, x) = 1

2|C|
∑
y∈C

∑
z∈C

∥y − z∥2 +
∑

y∈Y\C

∥y − x∥2.
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The following property of the optimal solution is quite useful.

Proposition 2. If t ∈ [3, N − 2] then there exists an optimal solution, such that
the center x of the second cluster does not lie in C.

Proof. If t ∈ [3, N − 2] and x ∈ C then consider the cluster C′ = C \ {x}. Clearly,
the second addend in f(C, x) does not change, and we have

f(C, x)− f(C′, x) =

∑
y,z∈C′ ∥z − y∥2 + 2

∑
y∈C′ ∥y − x∥2

2t
−

∑
y,z∈C′ ∥z − y∥2

2(t− 1)

=

∑
y∈C′ ∥y − x∥2

t
−

∑
y,z∈C′ ∥z − y∥2

2t(t− 1)

=

∑
y∈C′ ∥y − x∥2 −

∑
y∈C′ ∥y − y(C′)∥2

t
≥ 0.

The last inequality follows from the well-known fact that the function g(x) =∑
y∈C′ ∥y − x∥2 reaches its global minimum at the centroid of the cluster C′, i. e.

at x = y(C′).

Remark 3. Proposition 2 also works for the version of Problem 1 without the
restriction on the clusters cardinalities (see Problem 8 below): it may be assumed
there that in the optimal solution the center x of the second cluster does not lie in
C unless C = {x} (otherwise, just move x to another cluster).

We also need the following lemma proved in [16]:

Lemma 4 ([16]). Let y(C) be a centorid or a cluster C. If a point x satisfies the
inequality

∥x− y(C)∥ ≤ ∥y − y(C)∥ (2)

for all y ∈ C then∑
y∈C

∥y − x∥2 ≤ 2
∑
y∈C

∥y − y(C)∥2.

3. COMPLEXITY RESULT

Reformulate Problem 1 as a decision problem:

Problem 5. Given a set of points Y = {y1, . . . , yN} in Eulidean space Rd and a
number K > 0, are there a subset C ⊂ Y of cardinality t ∈ [2, N − 2] and a point
x ∈ Y so that f(C, x) ≤ K?

We need the following known NP-complete variant of the exact cover by 3-sets
problem [22] where each vertex belongs to at most three subsets:
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Problem 6 (X3C3). Given a 3-uniform hypergraph of maximum degree 3 on
n = 3q vertices, is there a subset of q edges covering all its vertices? In other
words, there is a set of vertices V = {v1, . . . , vn} where n = 3q and a collection
of edges (subsets) E = {e1, . . . , em} such that each ei ⊆ V, |ei| = 3 and every vj
lies in at most three edges; the question is whether there is a subset E0 ⊆ E of
cardinality q such that ∪e∈E0

e = V ?

Note that we may assume m > q+2 since otherwise the problem X3C3 can be
solved by brute force in time O(m2).

Theorem 7. Problem 5 is NP-complete in a strong sense.

Proof. Consider an arbitrary instance of X3C3 problem and reduce it to an in-
stance of Problem 5 in a following way. Put d = 3n+ 1 = 9q + 1 and N = m+ 1.
Choose an integer a so that a2 > max{(m− q − 1)(m− 1)/6,m/18} and let K =
18a2(m−1)+m−q. Each hyperedge ei corresponds to a point yi ∈ Y, i = 1, . . . ,m
and each vertex vj corresponds to three coordinates 3j, 3j − 1, 3j − 2 that are
referred to as j-th coordinate triple, j = 1, . . . , n. Denote by yi(k) the k-th coor-
dinate of the point yi. If vj ̸∈ ei then put yi(3j − 2) = yi(3j − 1) = yi(3j) = 0.
Otherwise, one of these three coordinates is 2a and other two are −a. To deter-
mine which one is 2a, define a parameter sij as the number of hyperedges with
lesser indices than i, containing the vertex vj , i. e. sij = |{l < i | vj ∈ el}|. Note
that sij ∈ {0, 1, 2} since the maximum degree of the hypergraph is 3. Put

yi(3j − 2) = 2a, yi(3j − 1) = yi(3j) = −a, if sij = 0;
yi(3j − 1) = 2a, yi(3j − 2) = yi(3j) = −a, if sij = 1;
yi(3j) = 2a, yi(3j − 2) = yi(3j − 1) = −a, if sij = 2.

Also, put yi(d) = 1 for all i ∈ {1, . . . ,m} and yN (k) = 0 for all k ∈ {1, . . . , d}.
Since the hypergraph is 3-uniform, we have ∥yi∥2 = ∥yi− yN∥2 = 18a2+1 and

∥yi − yj∥2 ≥ 36a2 for all i, j ∈ {1, . . . , N − 1}, i ̸= j. Note also that the equality
∥yi − yj∥2 = 36a2 holds if and only if ei ∩ ej = ∅.

If a subset E0 of cardinality q covering all vertices of the hypergraph exists
then let C = {yi | ei ∈ E0} and x = yN . Clearly,

f(C, x) = (q2 − q)36a2

2q
+ (m− q)(18a2 + 1) = 18a2(m− 1) +m− q = K,

as required.
Suppose now that there is a cluster C ⊂ Y of cardinality t ∈ [2, N − 2] and a

point x such that f(C, x) ≤ K. Consider two cases.
Case 1. Assume yN ∈ Y \ C. In this case, clearly, x = yN . So, the second

addend in f(C, x) is

(m− t)(18a2 + 1). (3)

To calculate the first addend, consider several types of coordinate triples. Note
that each coordinate triple may be non-zero in 0, 1, 2, or 3 points from C. So,
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denote by ai the number of coordinate triples that are non-zero in exactly i points
from C, where i = 0, 1, 2, 3. Since the total number of coordinate triples is n
and each point from C has exactly three non-zero coordinate triples, we have
a0 + a1 + a2 + a3 = n = 3q and a1 + 2a2 + 3a3 = 3t. The contribution of
the a0 zero coordinate triples into the first addend of the objective function is 0.
Each of the a1 coordinate triples that is non-zero in one point from C contirbutes
(t− 1)6a2/t; so, their total contribution is

6(t− 1)a2a1
t

. (4)

If a coordinate triple is non-zero in two points from C, it contributes (18a2+2(t−
2)6a2)/t = 6(2t− 1)a2/t. The total contribution of such triples is

6(2t− 1)a2a2
t

. (5)

Finally, the total contribution of the triples that are non-zero in three points from
C equals

(3 · 18a2 + 3(t− 3)6a2)a3
t

= 18a2a3. (6)

Summing (3)–(6) we get

f(C, x) = 6(t− 1)a2a1 + 6(2t− 1)a2a2
t

+ 18a2a3 + (m− t)(18a2 + 1)

= 6(a1 + 2a2 + 3a3)a
2 + 18(m− t)a2 − 6(a1 + a2)a

2

t
+m− t

= 18ma2 − 6(a1 + a2)a
2

t
+m− t = K + 18a2 − 6(a1 + a2)a

2

t
+ q − t.

Note that a1 + a2 = 3t− a2 − 3a3 ≤ 3t; hence f(C, x) > K if q > t. Therefore,
q ≤ t. If a1 + a2 ≤ 3t− 1 then using t ≤ m− 1 we have

f(C, x) ≥ K + 18a2 − 6(3t− 1)a2

t
+ q − t ≥ K +

6a2

m− 1
+ q −m+ 1 > K

by the choice of a. So, a1 + a2 = 3t = a1 + 2a2 + 3a3, i. e., a2 = a3 = 0 and
a1 = 3t. On the other hand, a0 + a1 = 3q ≤ 3t, giving a0 = 0 and q = t. But then
the set E0 = {ei | yi ∈ C} induces a cover of cardinality q in the hypergraph.

Case 2. Assume yN ∈ C. If x = yN then
∑

y∈Y\C ∥x− y∥2 = (18a2 +1)(N − t)

while if x = yi for some yi ∈ Y \ C then
∑

y∈Y\C ∥x − y∥2 ≥ 36a2(N − t − 1).

Clearly, (18a2+1)(N − t) < 36a2(N − t−1) whenever N − t ≥ 3. So, two subcases
are available: either x ̸= yN and t = N−2 or, by Proposition 2, x = yN and t = 2.
Consider them separately.

Subcase 2a. Let t = N − 2 = m − 1 and x ̸= yN . Then the second addend
in the objective function is at least 36a2. Introduce a0, a1, a2, a3 in the same way
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as in the Case 1. Note, however, that now a1 + 2a2 + 3a3 = 3t − 3 = 3m − 6
since yN ∈ C. Note also that the last coordinate contributes (m − 2)/(m − 1)
into the first addend of the objective function. Using (3)–(5) with t = m− 1 and
a1 + a2 ≤ 3q, we have

f(C, x) ≥ 6(m− 2)a2a1 + 6(2m− 3)a2a2
m− 1

+ 18a2a3 +
m− 2

m− 1
+ 36a2

= 6(a1 + 2a2 + 3a3)a
2 + 36a2 + 1− 6(a1 + a2)a

2 + 1

m− 1

≥ 18ma2 + 1− 18qa2 + 1

m− 1
= K + 18a2 −m+ q + 1− 18qa2 + 1

m− 1

= K + q + 1 +
18a2(m− q − 1)−m2 +m− 1

m− 1

> K + q + 1− mq + 1

m− 1
= K +

m− q − 2

m− 1
> K

because a2 > m/18 and m > q + 2. A contradiction.
Subcase 2b. Let t = 2 and x = yN . Then C = {yi, yN} for some i. So,

f(C, x) = (18a2 + 1)/2 + (m− 1)(18a2 + 1) = 9a2 + 1/2 +K + q − 1 > K.

Since in both subcases we have a contradiction, Case 2 is impossible.
Note that K and all coordinates of points from Y are bounded by a polynomial

of m and q. Hence, Problem 5 is NP-complete in a strong sense.

4. 2-APPROXIMATION ALGORITHM

In this section we provide an approximate solution for a non-restricted version
of Problem 1 (without the restriction on the clusters cardinalities):

Problem 8. Given a set of points Y = {y1, . . . , yN} in Eulidean space Rd, find
a non-empty subset C ⊂ Y and a point x ∈ Y minimizing the objective function
f(C, x).

The idea of the algorithm is as follows: we first solve a 2-medoid 2-clustering
problem and then substitute the center of one of the found clusters by its mean.
Here is the formal description of the algorithm.

Algorithm A: Finding an Approximate Solution to Problem 8

Step 0: For all i, j = 1, . . . , N calculate aij = ∥yi − yj∥2.

Step 1: Consider all possible pairs yi, yj where i = 1, . . . , N − 1 and j = i +
1, . . . , N and fulfil Steps 2–4 for each of these pairs.

Step 2: For a fixed pair yi, yj put C1 = {yi}, C2 = {yj} and do Steps 3 and 4.
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Step 3: For each yk ∈ Y \ {yi, yj}, if aik ≤ ajk let C1 := C1 ∪ {yk} else let
C2 := C2 ∪ {yk}

Step 4: Calculate fij = min{f(C1, yj), f(C2, yi)}.

Step 5: Output fA = min{fij | i = 1, . . . , N − 1, j = i+ 1, . . . , N}.

Theorem 9. Algorithm A finds a 2-approximate solution to Problem 8 in O(dN2+
N3) time.

Proof. Clearly, on Steps 2–4 Algorithm A finds an optimum solution to 2-fixed
2-clustering problem with the clusters centers yi, yj since moving any point from
one cluster to another could only increase the objective function. Hence,∑

y∈C
∥y − yi∥2 +

∑
y∈Y\C

∥y − yj∥2 ≥
∑
y∈C1

∥y − yi∥2 +
∑
y∈C2

∥y − yj∥2 (7)

for every non-empty subset C ⊂ Y. Since the function g(x) =
∑

y∈C ∥y − x∥2
reaches its global minimum at the centroid of the cluster C, we also have∑

y∈C2

∥y − yi∥2 +
∑
y∈C1

∥y − yj∥2 ≥ fij (8)

Let f∗ be an optimum solution to Problem 8. Then f∗ = f(C∗, x∗) for some
C∗ ⊂ Y and x∗ ∈ Y. Note that if |C∗| = 1 then Algorithm A finds an optimum so-
lution to Problem 8 because the contribution of the first addend into the objective
function is zero. So, assume |C∗| ≥ 2. By Remark 3, we may assume that x∗ ̸∈ C∗.

Denote by y∗ = y(C∗) the centroid of the cluster C∗ and let x1 and x2 be the
closest and second closest to y∗ points of Y, respectively. Put yi = x∗. If x1 ̸= x∗

then put yj = x1; otherwise, put yj = x2. Since x∗ ̸∈ C∗, the point yj satisfies (2)
anyway. Applying Lemma 4 and (1), we have

2f∗ = 2
∑
y∈C∗

∥y−y∗∥2+2
∑

y∈Y\C∗

∥y−x∗∥2 ≥
∑
y∈C∗

∥y−yj∥2+2
∑

y∈Y\C∗

∥y−yi∥2

≥
∑
y∈C1

∥y − yj∥2 +
∑
y∈C2

∥y − yi∥2 +
∑

y∈Y\C∗

∥y − yi∥2 ≥ fij ≥ fA

by (7) and (8). So, Algorithm A finds a 2-approximate solution to Problem 8.
Step 0 requires calculations of O(N2) norms, each of which taking O(d) oper-

ations. Steps 2–4 are fulfiled O(N2) times (once for each of O(N2) pairs chosen
at Step 1). Among them Step 3 is the most time-consuming: it requires O(N)
comparisons. So, the total time complexity of Algorithm A is O(dN2 +N3).
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5. CONCLUSIONS

In this paper we have proved that 1-mean and 1-medoid 2-clustering problem
remains NP-hard in the case of arbitrary clusters cardinalities. This finishes the
classification of the complexity of 2-clustering problems where the centers of the
clusters can be either means, or medoids or given points. We have also presented
a 2-approximation polynomial-time algorithm for this problem.

The question of existence of an approximation scheme for 1-mean and 1-medoid
2-clustering problem remains open.
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