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1. INTRODUCTION

Molodtsov in 1999 introduced the concept of soft set theory [1] which has been
proved as a generic mathematical tool to deal with problems involving uncertain-
ties. Due to the inadequacy of parametrization in the theory of fuzzy sets [2],
rough sets [3], vague sets [4], probability theory etc. we become handicapped to
use them successfully. Consequently Molodtsov has proved that soft set theory
has a potential to use in different fields. Recently, the works on soft set theory is
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growing very rapidly with all its potentiality and is being used in different fields
[5, 6]. Neutrosophic soft sets [7] were introduced and later on other researchers
presented some studied taking into account these notions [8]. In the last few years,
some applications on decision making have been carried out by using neutrosophic
soft sets and multi sets. Riaz et al. [9] introduced some operations on neutrosophic
N-soft sets along with their fundamental properties and for multi-attribute deci-
sionmaking (MADM) problems with neutrosophic N-soft sets, they proposed an
extended TOPSIS (technique based on order preference by similarity to ideal solu-
tion) method. Saqlain et al. [10] presented a new approach to select smart phone,
in which environment of decision-making is MCDM. They defined and algorithm
in which problem was formulated in the form of neutrosophic soft set and then
solved with generalized fuzzy TOPSIS (GFT), thus rankings were compared with
other well-known proposed method. Riaz et al. [11] introduced the notion of soft
multi-set topology (SMS-topology) defined on a soft multi-set (SMS). Soft multi-
set and soft multi-set topology were fundamental tools in computational intelli-
gence, which have a large number of applications in soft computing, fuzzy modeling
and decision-making under uncertainty. The idea of power whole multi-subsets of
a SMS was defined to explore various rudimentary properties of SMS-topology.
Certain properties of SMS-topology like SMS-basis, SMS-subspace, SMS-interior,
SMS-closure and boundary of SMS are explored. Furthermore, the multicriteria
decision-making (MCDM) algorithms with aggregation operators based on SMS-
topology were established by them. For more notions related to the topic, we refer
the reader to [12, 13].

It is well known that the world is immersed in some uncertainties that cannot
be controlled or determined, however in some situations we have more than one
degree of uncertainty. Smarandache [14] defines the n-refined and mentions that
the degree of truth, falsity and indeterminacy can have bifurcations (depending on
the study). If the literature is reviewed, there are very few studies that show situa-
tions where indeterminacy is bifurcated into two or more aspects and applications
in decision making. This is why, in this paper we present the thought of weighted
neutrosophic soft multiset (WNSMS) and WNSMS-part, besides proposed an ad-
justable approach to WNSMS based on decision-making, which is another new nu-
merical device for managing instabilities and more possible for some genuine uses
of decision making in an uncertainty situation. Some illustrative case is employed
to demonstrate the attainability of our methodology in pragmatic applications.

2. PRELIMINARIES

In this section, we remain some well-known notions which will be useful for the
development of this paper.

Definition 1 ([1]). Let U be a universe, E be a set of parameters and P(U) means
the power set of U with A ⊂ E. Then, a couple (P,U) is known as soft set on U,
where F : A → P(U) is a mapping.
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Remark 2. For any e ∈ A, F(e) is referred to as the collection of fuzzy approx-
imate value set of the parameter e and it is actually a collection of fuzzy set on
U.

Definition 3 ([14]). Let U be a universe of discourse, then the neutrosophic set
(NS) A is an object having the form A = {⟨x : TA(x), IA(x),FA(x)⟩} where the
functions T, I,F : U → [0, 1], fine respectively the degree of membership, the degree
of indeterminacy, and the degree of non-membership (falsity) of the element x ∈ X.

Definition 4 ([8]). Let {Ui : i ∈ Ω} be a collection of universes such that
⋂
i∈Ω

Ui =

∅ and let {EUi
: i ∈ Ω} be a collection of sets of parameters. Let U =

∏
i∈Ω

NS(Ui)

where NS(Ui) denotes the set of all NS-subsets of Ui and E =
∏
i∈Ω

(EUi
) and A ⊆ E.

A neutrosophic sof multiset (NSMS) over U is a pair (NA,A) and will be denoted
by NA where NA is a mapping given by NA : A → U. Thus, NSMS NA over U
can be represented by the set of ordered pairs NA = {(x1,NA(x1)) : x1 ∈ A ⊆ U}.

Definition 5 ([8]). A NSMS NA over U is said to be null, if all NSMs-parts of
NA are equal to (0, 0, 1).

Definition 6 ([8]). A NSMS NA over U is said to be absolute, if all NSMs-parts
of NA are equal to (1, 0, 0).

3. WEIGHTED NEUTROSOPHIC SOFT MULTISET

Deli et al. in 2014 [8] presented the idea of neutrosophic soft multiset and
showed some important properties. In this section, we make a generalization for
mentioned notion and we present the idea of weighted neutrosophic soft multiset
(WNSMS) and show some of its principal properties.

Definition 7. Let {Ui : i ∈ Ω} be a collection of universes such that
⋂
i∈Ω

Ui = ∅

and let {EUi
: i ∈ Ω} be a collection of sets of parameters. Let U =

∏
i∈Ω

NS(Ui)

where NS(Ui) denotes the set of all NS-subsets of Ui and E =
∏
i∈Ω

(EUi) and A ⊆ E.

A WNSMS is a triple (NA,A, ω) and will be denoted by NAω
where (NA,A) is a

NSMS over U and ω is a weighted for the NSMS (NA,A) where ω : A → [0, 1] is
a weighted function indicating the weighted wi = ω(ei), ei ∈ E.

To illustrate this, let’s consider the following example:

Example 8. Let’s consider three universe U1 = {a1, a2, a3}, U2 = {b1, b2, b3} and
U3 = {c1, c2, c3, c4} which are the arrangements of university, food and transporta-
tion, respectively. Assume that Mr. Y has a financial plan to pay the university
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semester, food during the semester and transportation during the semester. Con-
sider a NSMS (NA,A) which depicts university, food and transportation that Mr.
Y is considering. Let {EU1 ,EU2 ,EU3} be a collection of sets of choice parameters
identified with the above universes, where

EU1 = {eU1 , 1 = Loan, eU1 , 2 = Scholarship, eU1 , 3 = Cashpayment}
EU2 = {eU2 , 1 = Restaurant, eU2 , 2 = Cooking, eU2 , 3 = Junkfood}
EU3 = {eU3 , 1 = Bus, eU3 , 2 = Taxi, eU3 , 3 = Walking, eU3 , 4 = Bike}.

Let U =

3∏
i=1

NS(Ui), E =

3∏
i=1

Ei and A ⊆ E, such that

A ={x1 = (eU1 , 1, eU2 , 2, eU3 , 4), x2 = (eU1 , 2, eU2 , 1, eU3 , 3),

x3 = (eU1 , 3, eU2 , 2, eU3 , 1), x4 = (eU1 , 3, eU2 , 3, eU3 , 2)}

Assume Mr. XY needs to pick objects from the sets of given objects regarding
the sets of decision parameters. Let the resultant NSMS in Table 1.

Table 1: The NSMS (NA,A)

Ui x1 x2 x3 x4

U1

a1 (0.1,0.3.0.9) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.8,0.3,0.2)
a2 (0.8,0.7,0.2) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.1,0.7,0.9)
a3 (0.25,0.5,0.75) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9)

U2

b1 (0.1,1,0.9) (0,0.5,1) (0.3,0.5,0.7) (0.2,0.7,0.8)
b2 (0.9,0.7,0.1) (0.2,0.6,0.8) (0.2,.0.9,0.8) (0.34,0.7,0.64)
b3 (0.1,.0.9,0.2) (0.2,0.1,0.8) (0.25,0.1,0.75) (0.11,0.2,0.89)

U3

c1 (0.9,0.1,0.1) (0.2,0.8,0.8) (1,0.2,0) (0.23,0.5.,0.77)
c2 (0.1,0.8.0.9) (0.5,0.25,0.5) (0.3,0.17,0.7) (0.8,0.37,0.2)
c3 (0.1,0,0.9) (0,0.6,1) (0.3,0.1,0.7) (0.2,0.24,0.8)
c4 (0.1,1,0.2) (0.2,0,0.8) (0.25,0.6,0.75) (0.11,0.24,0.89)

Consider that Mr. Y has forced the accompanying weights for the parameters
in A for the parameters

x1 = (Loan,Cooking,Bike), ω1 = 0.3;

x2 = (Scholarship,Restaurant,Walking), ω2 = 0.5;

x3 = (Bus,Cooking,Bus), ω3 = 0.7;

x4 = (Cashpayment, Junkfood, Taxi), ω4 = 0.4.

Then, we have a weighted ω on NSMS (NA,A) where ω : A → [0, 1] and the
NSMS (NA,A) is changed into a WNSMS (NA,A, ω) as can be seen in Table 2.
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Table 2: The WNSMS (NA,A, ω)

Ui x10.3 x20.5 x30.7 x40.4

U1

a1 (0.1,0.3.0.9) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.8,0.3,0.2)
a2 (0.8,0.7,0.2) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.1,0.7,0.9)
a3 (0.25,0.5,0.75) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9)

U2

b1 (0.1,1,0.9) (0,0.5,1) (0.3,0.5,0.7) (0.2,0.7,0.8)
b2 (0.9,0.7,0.1) (0.2,0.6,0.8) (0.2,.0.9,0.8) (0.34,0.7,0.64)
b3 (0.1,.0.9,0.2) (0.2,0.1,0.8) (0.25,0.1,0.75) (0.11,0.2,0.89)

U3

c1 (0.9,0.1,0.1) (0.2,0.8,0.8) (1,0.2,0) (0.23,0.5.,0.77)
c2 (0.1,0.8.0.9) (0.5,0.25,0.5) (0.3,0.17,0.7) (0.8,0.37,0.2)
c3 (0.1,0,0.9) (0,0.6,1) (0.3,0.1,0.7) (0.2,0.24,0.8)
c4 (0.1,1,0.2) (0.2,0,0.8) (0.25,0.6,0.75) (0.11,0.24,0.89)

Definition 9. Let (NA,A, ω) be WNSMS over U. Then, the pair (eUi,j ,NA(eUi,j), ω)
is said to be Ui-WNSMS-part of (NA,A, ω) over U, where (eUi,j ,NA(eUi,j)) is a
Ui-NSMS-part of (NA,A).

Example 10. Let (NA,A, ω) be a WNSMS in the Table 2, the U1-WNSMS-part,
U2-WNSMS-part and U3-WNSMS-part are represented in Table 3, Table 4 and
Table 5, respectively.

Table 3: U1-WNSMS-part of (NA,A, ω)

U1 x10.3 x20.5 x30.7 x40.4

a1 (0.1,0.3.0.9) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.8,0.3,0.2)
a2 (0.8,0.7,0.2) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.1,0.7,0.9)
a3 (0.25,0.5,0.75) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9)

Table 4: U2-WNSMS-part of (NA,A, ω)

U2 x10.3 x20.5 x30.7 x40.4

b1 (0.1,1,0.9) (0,0.5,1) (0.3,0.5,0.7) (0.2,0.7,0.8)
b2 (0.9,0.7,0.1) (0.2,0.6,0.8) (0.2,.0.9,0.8) (0.34,0.7,0.64)
b3 (0.1,.0.9,0.2) (0.2,0.1,0.8) (0.25,0.1,0.75) (0.11,0.2,0.89)

Table 5: U3-WNSMS-part of (NA,A, ω)

U2 x10.3 x20.5 x30.7 x40.4

c1 (0.9,0.1,0.1) (0.2,0.8,0.8) (1,0.2,0) (0.23,0.5.,0.77)
c2 (0.1,0.8.0.9) (0.5,0.25,0.5) (0.3,0.17,0.7) (0.8,0.37,0.2)
c3 (0.1,0,0.9) (0,0.6,1) (0.3,0.1,0.7) (0.2,0.24,0.8)
c4 (0.1,1,0.2) (0.2,0,0.8) (0.25,0.6,0.75) (0.11,0.24,0.89)

Next, we study and show some basic properties on WNSMSs.

Definition 11. A WNSMS (NA,A, ω) over U is said to be a null WNSMS, de-
noted by (NA,A, ω)∅, if (NA,A) is a null NSMS and for all e ∈ A, ω(e) = 0.



298 C. Granados et al. / WNSM and Its Application to Decision Making

Example 12. Let’s consider the values presented in Table 2, then the (NA,A, ω)∅
is given by Table 6.

Table 6: The null WNSMS (NA,A, ω)∅
Ui x10 x20 x30 x40

U1

a1 (0,0.1) (0,0,1) (0,0,01) (0,0,1)
a2 (0,0,1) (0,0,1) (0,0,1) (0,0,1)
a3 (0,0,1) (0,0,01) (0,0,1) (0,0,1)

U2

b1 (0,0,1) (0,0,1) (0,0,1) (0,0,1)
b2 (0,0,1) (0,0,1) (0,0,1) (0,0,1)
b3 (0,0,1) (0,0,1) (0,0,1) (0,0,1)

U3

c1 (0,0,1) (0,0,1) (0,0,1) (0,0,1)
c2 (0,0,1) (0,0,1) (0,0,1) (0,0,1)
c3 (0,0,1) (0,0,1) (0,0,1) (0,0,1)
c4 (0,0,1) (0,0,1) (0,0,1) (0,0,1)

Definition 13. A WNSMS (NA,A, ω) over U is said to be absolute WNSMS,
denoted by (NA,A, ω)U, if (NA,A) is an absolute NSMS and for all e ∈ A, ω(e) =
1.

Example 14. Let’s consider the values presented in Table 2, then the (NA,A, ω)U
is given by Table 7.

Table 7: The absolute WNSMS (NA,A, ω)U
Ui x11 x21 x31 x41

U1

a1 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
a2 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
a3 (1,0,0) (1,0,0) (1,0,0) (1,0,0)

U2

b1 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
b2 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
b3 (1,0,0) (1,0,0) (1,0,0) (1,0,0)

U3

c1 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
c2 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
c3 (1,0,0) (1,0,0) (1,0,0) (1,0,0)
c4 (1,0,0) (1,0,0) (1,0,0) (1,0,0)

Definition 15. Let (NA,A, ω) and (NB,B, ω2) be WNSMSs over U. Then, (NA,A, ω)
is a WNSMS-subset of (NB,B, ω2), denoted by (NA,A, ω)⊆̃(NB,B, ω2) if
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1. NA⊆̃NB,

2. for all e ∈ A, ω1(e) ≤ ω2(e) and TNAe
(u) ≤ TNBe

(u), INAe
(u) ≤ INBe

(u)
and FNAe

(u) ≥ FNBe
(u), for all u ∈ Ui, for i ∈ Ω.

Example 16. Let (NA,A, ω1) which is given as Table 2 and (NB,B, ω2) be WNSMSs
where (NB,B, ω2) is given as Table 8.

Table 8: The WNSMS (NB,B, ω)

Ui x10.6 x20.7 x30.9 x40.6

U1

a1 (0.2,0.3.0.8) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.7,0.3,0.3)
a2 (0.3,0.7,0.7) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.3,0.7,0.7)
a3 (0.5,0.5,0.5) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9)

U2

b1 (0.9,1,0.1) (0,0.5,1) (0.3,0.5,0.7) (0.2,0.7,0.8)
b2 (0.3,0.7,0.7) (0.2,0.6,0.8) (0.2,.0.9,0.8) (0.6,0.7,0.4)
b3 (0.1,.0.9,0.2) (0.2,0.1,0.8) (0.25,0.1,0.75) (0.1,0.2,0.9)

U3

c1 (0,0.1,1) (0.2,0.8,0.8) (1,0.2,0) (0.23,0.5.,0.77)
c2 (0,0.8,1) (0.5,0.25,0.5) (0.3,0.17,0.7) (0.8,0.37,0.2)
c3 (0.9,0,0.1) (0,0.6,1) (0.3,0.1,0.7) (0.2,0.24,0.8)
c4 (0.1,1,0.2) (0.2,0,0.8) (0.3,0.6,0.7) (0.1,0.24,0,9)

Then, (NA,A, ω1)⊆̃(NB,B, ω2) .

Proposition 17. Let (NA,A, ω) be WNSMS over U. Then, the following state-
ments holds:

1. (NA,A, ω)⊆̃(NA,A, ω),

2. (NA,A, ω)∅⊆̃(NA,A, ω),

3. (NA,A, ω)U⊇̃(NA,A, ω).

Proof. The proof follows from Definition 15.

Definition 18. Let (NA,A, ω1) and (NB,B, ω2) be WNSMSs over U. Then,
(NA,A, ω) and (NB,B, ω2) are WNSMS-equal-set, denoted by (NA,A, ω) = (NB,B, ω2)
if the following conditions holds:

1. NA = NB,

2. for all e ∈ A, ω1(e) = ω2(e) and TNAe
(u) = TNBe

(u), INAe
(u) = INBe

(u)
and FNAe

(u) = FNBe
(u), for all u ∈ Ui, for i ∈ Ω.

Proposition 19. Let (NA,A, ω1), (NB,B, ω2) and (NC,C, ω3) be WNSMSs over
U, then

1. (NA,A, ω1) = (NB,B, ω2) and (NB,B, ω2) = (NC,C, ω3), then (NA,A, ω1) =
(NC,C, ω3),
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2. (NA,A, ω1)⊆̃(NB,B, ω2) and (NA,A, ω1)⊆̃(NB,B, ω2), then (NA,A, ω1) =
(NB,B, ω2),

3. (NA,A, ω1)⊆̃(NB,B, ω2) and (NB,B, ω2)⊇̃(NC,C, ω3), then (NA,A, ω1)⊆̃(NC,C, ω3).

Proof. The proof follows from Definitions 15 and 18.

Definition 20. Complement of a WNSMS (NA,A, ω) over U is denoted by (NA,A, ω)
c

and it is represented by (NA,A, ω)
c= (Nc

A,A, ω
c) and it is defined as for all

e ∈ A, ωc = 1 − ω(e), Tc
NAe

(u) = FNAe
(u), IcNAe

(u) = 1 − IcNAe
(u) and

Fc
NAe

(u) = TNAe
(u), for all u ∈ Ui, for i ∈ Ω.

Example 21. Let (NA,A, ω1) which is given as Table 2, then (NA,A, ω1)
c is given

as Table 9.

Table 9: The WNSMS (NA,A, ω)
c

Ui x10.3 x20.5 x30.7 x40.4

U1

a1 (0.9,0.7.0.1) (0.5,0.4,0.5) (0.7,0.9,0.3) (0.2,0.7,0.8)
a2 (0.2,0.3,0.8) (0.6,0.4,0.4) (0.7,0.1,0.3) (0.9,0.3,0.1)
a3 (0.75,0.5,0.25) (0.6,0.2,0.4) (0.4,0.8,0.6) (0.9,0.95,0.1)

U2

b1 (0.9,0,0.1) (1,0.5,0) (0.7,0.5,0.3) (0.8,0.3,0.2)
b2 (0.1,0.3,0.9) (0.8,0.4,0.2) (0.8,.0.1,0.2) (0.64,0.3,0.34)
b3 (0.2,.0.1,0.8) (0.8,0.9,0.2) (0.75,0.9,0.25) (0.89,0.8,0.11)

U3

c1 (0.1,0.9,0.9) (0.8,0.2,0.2) (0,0.8,1) (0.77,0.5,0.23)
c2 (0.9,0.2.0.1) (0.5,0.75,0.5) (0.7,0.73,0.3) (0.2,0.63,0.8)
c3 (0.9,1,0.1) (1,0.4,0) (0.7,0.9,0.3) (0.8,0.76,0.2)
c4 (0.2,0,0.8) (0.8,1,0.2) (0.75,0.4,0.25) (0.89,0.76,0.11)

Proposition 22. Let (NA,A, ω) be a WNSMS over U. Then, the following state-
ments are satisfied:

1. ((NA,A, ω)
c)c = (NA,A, ω),

2. (NA,A, ω)
c
∅ = (NA,A, ω)U,

3. (NA,A, ω)
c
U = (NA,A, ω)∅.

Proof. The proof follows from Definition 20.

Definition 23. Let (NA,A, ω1) and (NB,B, ω2) be WNSMSs over U. The union
of (NA,A, ω1) and (NB,B, ω2) denoted by (NA,A, ω1)∪̃(NB,B, ω2) and defined
as (NA,A, ω1)∪̃(NB,B, ω2) = (NC,C, ω3), where G = A ∪ B and for all e ∈ C,
ω3(e) = max{ω1(e), ω2(e)} and for all u ∈ Ui, i ∈ Ω.

(NC,C, ω3) =

 max{TNA
,TNB

} if e ∈ A ∩B
max{INA

, INB
} if e ∈ A ∩B

min{FNA
,FNB

} if e ∈ A ∩B.
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Example 24. Let (NA,A, ω1) and (NB,B, ω2) be WNSMSs which are given as
Table 2 and Table 8, respectively. Then, WNSMS (NA,A, ω1)∪̃(NB,B, ω) is pro-
vided in Table 10.

Table 10: The WNSMS (NA,A, ω1)∪̃(NB,B, ω)

Ui x10.6 x20.7 x30.9 x40.6

U1

a1 (0.2,0.3.0.8) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.7,0.3,0.3)
a2 (0.3,0.7,0.7) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.3,0.7,0.7)
a3 (0.5,0.5,0.5) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9)

U2

b1 (0.9,1,0.1) (0,0.5,1) (0.3,0.5,0.7) (0.2,0.7,0.8)
b2 (0.3,0.7,0.7) (0.2,0.6,0.8) (0.2,.0.9,0.8) (0.6,0.7,0.4)
b3 (0.1,.0.9,0.2) (0.2,0.1,0.8) (0.25,0.1,0.75) (0.1,0.2,0.9)

U3

c1 (0,0.1,1) (0.2,0.8,0.8) (1,0.2,0) (0.23,0.5.,0.77)
c2 (0,0.8,1) (0.5,0.25,0.5) (0.3,0.17,0.7) (0.8,0.37,0.2)
c3 (0.9,0,0.1) (0,0.6,1) (0.3,0.1,0.7) (0.2,0.24,0.8)
c4 (0.1,1,0.2) (0.2,0,0.8) (0.3,0.6,0.7) (0.1,0.24,0,9)

Proposition 25. Let (NA,A, ω1) and (NB,B, ω2) be WNSMSs over U. Then,
the following statements are satisfied:

1. (NA,A, ω1)∪̃(NA,A, ω1) = (NA,A, ω1),

2. (NA,A, ω1)∪̃(NB,B, ω2)∅ = (NA,A, ω1),

3. (NA,A, ω1)∪̃(NB,B, ω2)U = (NC,C, ω3), [ (NC,C, ω3) defined in 23],

4. (NA,A, ω1)∪̃(NB,B, ω2) = (NB,B, ω2)∪̃(NA,A, ω1).

Proof. The proof follows from Definition 23.

Definition 26. Let (NA,A, ω1) and (NB,B, ω2) be WNSMSs over U. The inter-
section of (NA,A, ω1) and (NB,B, ω2) denoted by (NA,A, ω1)∩̃(NB,B, ω2) and
defined as (NA,A, ω1)∩̃(NB,B, ω2) = (NC,C, ω3), where G = A ∩ B and for all
e ∈ C, ω3(e) = min{ω1(e), ω2(e)} and for all u ∈ Ui, i ∈ Ω.

(NC,C, ω3) =

 min{TNA
,TNB

} if e ∈ A ∩B
min{INA

, INB
} if e ∈ A ∩B

max{FNA
,FNB

} if e ∈ A ∩B.

Example 27. Let (NA,A, ω1) and (NB,B, ω2) be WNSMSs which are given as
Table 2 and Table 8, respectively. Then, WNSMS (NA,A, ω1)∩̃(NB,B, ω) is pre-
sented in Table 11.
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Table 11: The WNSMS (NA,A, ω1)∩̃(NB,B, ω)

Ui x10.3 x20.5 x30.7 x40.4

U1

a1 (0.1,0.3.0.9) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.8,0.3,0.2)
a2 (0.8,0.7,0.2) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.1,0.7,0.9)
a3 (0.25,0.5,0.75) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9)

U2

b1 (0.1,1,0.9) (0,0.5,1) (0.3,0.5,0.7) (0.2,0.7,0.8)
b2 (0.9,0.7,0.1) (0.2,0.6,0.8) (0.2,.0.9,0.8) (0.34,0.7,0.64)
b3 (0.1,.0.9,0.2) (0.2,0.1,0.8) (0.25,0.1,0.75) (0.11,0.2,0.89)

U3

c1 (0.9,0.1,0.1) (0.2,0.8,0.8) (1,0.2,0) (0.23,0.5.,0.77)
c2 (0.1,0.8.0.9) (0.5,0.25,0.5) (0.3,0.17,0.7) (0.8,0.37,0.2)
c3 (0.1,0,0.9) (0,0.6,1) (0.3,0.1,0.7) (0.2,0.24,0.8)
c4 (0.1,1,0.2) (0.2,0,0.8) (0.25,0.6,0.75) (0.11,0.24,0.89)

Proposition 28. Let (NA,A, ω1) and (NB,B, ω2) be WNSMSs over U. Then,
the following statements are satisfied:

1. (NA,A, ω1)∩̃(NA,A, ω1) = (NA,A, ω1),
2. (NA,A, ω1)∩̃(NB,B, ω2)∅ = (NC,C, ω3)∅, [ (NC,C, ω3) defined in 26],
3. (NA,A, ω1)∩̃(NB,B, ω2)U = (NC,C, ω3), [ (NC,C, ω3) defined in 26],
4. (NA,A, ω1)∩̃(NB,B, ω2) = (NB,B, ω2)∩̃(NA,A, ω1).

Proof. The proof follows from Definition 26.

Proposition 29. Let (NA,A, ω1), (NB,B, ω2) and (NC,C, ω3) be WNSMSs over
U. Then, the following statements holds:

1. (NA,A, ω1)∩̃((NB,B, ω2)∩̃(NC,C, ω3)) = ((NA,A, ω1)∩̃(NB,B, ω2))∩̃(NC,C, ω3).
2. (NA,A, ω1)∪̃((NB,B, ω2)∪̃(NC,C, ω3)) = ((NA,A, ω1)∪̃(NB,B, ω2))∪̃(NC,C, ω3).
3. (NA,A, ω1)∩̃((NB,B, ω2)∪̃(NC,C, ω3)) = ((NA,A, ω1)∩̃(NA,A, ω1))∪̃

((NA,A, ω1)∩̃(NC,C, ω3)).
4. (NA,A, ω1)∪̃((NB,B, ω2)∩̃(NC,C, ω3)) = ((NA,A, ω1)∪̃(NA,A, ω1))∩̃

((NA,A, ω1)∪̃(NC,C, ω3)).

Proof. In the following, we just prove (1); (2), (3) and (4) are proved analogously.
Let’s suppose that (NB,B, ω2)∩̃(NC,C, ω3) = (ND,D, ω4), where D = B∩ C and
for all e ∈ D, ω4 = min{ω2, ω3}, TND

= min{TNB
,TNC

}, IND
= min{INB

, INC
}

and FND
= max{FNB

,FNC
} for all u ∈ Ui, iΩ.

Since (NA,A, ω1)∩̃((NB,B, ω2)∩̃(NC,C, ω3)) = ((NA,A, ω1)∩̃(ND,D, ω4), we
consider that (NA,A, ω1)∩̃(ND,D, ω4) = (NM,M, ω5) where M = A∩D= A∩BC
and for all e ∈ M, ω5 = min{ω1(e), ω4(e)} = min{ω1(e), ω2(e), ω3(e)},

TNM
= min{TNA

,TND
}

= min{TNA
,min{TNB

,TNC
}}

= min{TNA
,TNB

,TNC
}
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INM
= min{INA

, IND
}

= min{INA
,min{INB

, INC
}}

= min{INA
, INB

, INC
}

FNM
= max{FNA

,FND
}

= max{FNA
,max{FNB

,FNC
}}

= max{FNA
,FNB

,FNC
}

For all u ∈ Ui, i ∈ Ω. Now, consider that (NA,A, ω1)∩̃(NB,B, ω2) = (NK,K, ω6),
where K = A ∩B and for all e ∈ K, ω6 = min{ω1, ω2}, TNK

= min{TNA
,TNB

},
IND

= min{INA
, INB

} and FND
= max{FNA

,FNB
} for all u ∈ Ui, iΩ. Since

((NA,A, ω1)∩̃(NB,B, ω2))∩̃(NC,C, ω3) = ((NK,K, ω6)∩̃(NC,C, ω3), we consider
that (NK,K, ω6)∩̃(NC,C, ω3) = (NL,L, ω7) where L = K ∩ C= A ∩ BC and for
all e ∈ L, ω7 = min{ω6(e), ω3(e)} = min{ω1(e), ω2(e), ω3(e)} = ω5(e),

TNL
= min{TNK

,TNC
}

= min{min{TNA
,TNB

},TNC
}}

= min{TNA
,TNB

,TNC
} = TNM

INL
= min{INK

, INC
}

= min{min{INA
, INB

}, INC
}}

= min{INA
, INB

, INC
} = INM

FNL
= max{FNK

,FNC
}

= max{max{FNA
,FNB

},FNC
}}

= max{FNA
,FNB

,FNC
} = FNM

.

For all u ∈ Ui, i ∈ Ω. Therefore, it can be seen that M = L and for
all e ∈ M, ω5(e) = ω7(e), TNL

= TNM
, INL

= INM
and FNL

= FNM
for

all u ∈ Ui, i ∈ Ω. Hence, (NM,M, ω5) = (NL,L, ω7), and this proves that
(NA,A, ω1)∩̃((NB,B, ω2)∩̃(NC,C, ω3)) = ((NA,A, ω1)∩̃(NB,B, ω2))∩̃(NC,C, ω3).

Proposition 30. Let (NA,A, ω1) and (NB,B, ω2) be WNSMSs over U. Then,
the following statements holds:

1. (NA,A, ω1)
c∩̃(NB,B, ω2)

c⊆̃((NA,A, ω1)∩̃(NB,B, ω2))
c.

2. ((NA,A, ω1)∪̃(NB,B, ω2))
c⊆̃(NA,A, ω1)

c∪̃(NB,B, ω2)
c.

Proof. In the following, we just prove (1); (2) is proved analogously.
Let’s suppose that (NA,A, ω1)∩̃(NB,B, ω2) = (ND,D, ω3) where D = A ∩ B
and for all e ∈ D, ω3(e) = min{ω1(e), ω2(e)}, TND

= min{TNA
,TNB

}, IND
=

min{INA
, INB

} and FND
= max{FNA

,FNB
} for all u ∈ Ui, iΩ. Thus, ((NA,A, ω1)∩̃

(NB,B, ω2))
c=(ND,D, ω3)

c= (Nc
B,B, ω3

3) where for all e ∈ D, ωc
3(e) = 1 −

min{ω1(e), ω2(e)} and Tc
ND

= 1−min{TNA
,TNB

}, IcND
= 1−min{INA

, INB
} and
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Fc
ND

= 1−max{FNA
,FNB

} for all u ∈ Ui, iΩ. Again, (NA,A, ω1)
c∩̃(NB,B, ω2)

c =
(NK,K, ω4), where K = A ∩ B and for all e ∈ K, ω4(e) = min{ωc

1(e), ω
c
2(e)}=

min{1− ω1(e), 1− ω2(e)}= 1−max{ω1(e), ω2(e)} ≤ ωc
3;

TNK
= min{Tc

NA
,Tc

NB
}

= min{1− TNA
, 1− TNB

}
= 1−max{TNA

,TNB
} ≤ TND

INK
= min{IcNA

, IcNB
}

= min{1− INA
, 1− INB

}
= 1−max{INA

, INB
} ≤ IND

FNK
= max{Fc

NA
,Fc

NB
}

= max{1− FNA
, 1− FNB

}
= 1−min{FNA

,FNB
} ≤ FND

,

for all u ∈ Ui, iΩ. Therefore, this proves that
(NA,A, ω1)

c∩̃(NB,B, ω2)
c⊆̃((NA,A, ω1)∩̃(NB,B, ω2))

c.

4. APPLICATION OF WEIGHTED NEUTROSOPHIC SOFT
MULTISET IN DECISION-MAKING

In this section, we procure a new approach to WNSMS based on decision-
making, for solving decision-making in an uncertain situation under an indetermi-
nacy. Kumar [15] defined an algorithm to determinate weighted neutrosophic soft
set (WNSS), for more idea related to this algorithm, we refer the reader to page 6
in [15].

To define the algorithm, we will need Kumar’s algorithm which was defined in
[15] as follows:

Kumar’s algorithm
Step 1. input the neutrosophic soft sets (H, A), ( G, B) and ( H, C).
Step 2. input the weights (wi) for the parameters A, B and C.
Step 3. Compute weighted neutrosophic soft sets (H, Aw), ( G, Bw) and ( H, Cw)
corresponding to the neutrosophic soft sets (H, A), ( G, B) and ( H, C), respec-
tively.
Step 4. Input the parameter set P as preferred by the decision maker.
Step 5. Compute the corresponding neutrosophic soft set (S,P) from the weighted
neutrosophic soft sets (H, Aw), ( G, Bw) and ( H, Cw) and place in tabular form.
Step 6. Compute the comparison matrix of the neutrosophic soft set (S,P).
Step 7. compute the score Si of oi, for all i = 1, 2, ...., n.
Step 8. The decision making is ok if Sk = max

i
Si.

Step 9. If k has more than one values then any one of oi may be chosen.

Then, we present the following algorithm:
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Algorithm 1
Step 1. Input a NSMS (NA,A).
Step 2. Input a weighted ω for the NSMS (NA,A), where ω : A → [0, 1].
Step 3. Compute the WNSMS ς = (NA,A, ω) with regard to a weighed ω.
Step 4. Apply Kumar’s algorithm to the first WNSMS-part in ς to compute the
decision Sk1

.
Step 5. Redefine the WNSMS by taking all values in each row where sk1 is maxi-
mized and replacing the values in the other rows by zero, to get ς1.
Step 6. Apply Kumar’s algorithm to the second WNSMS-part in ς1 to compute
the decision Sk2

.
Step 7. Redefine the WNSMS ς1 by taking the first and second WNSMS-parts in
ς1 and use the method in step 5 to find the third WNSMS-part in ς1, to get ς2.
Step 8. Apply Kumar’s algorithm to the third WNSMS-part in ς2 to compute the
decision Sk3 .
Step 9. Continuing this way, we obtain the final decision (Sk1

, Sk2
, ..., Skn

).

Remark 31. The advantages of Algorithm 1 are:
Firstly, we need not treat WNSMS directly in decision making, but only handle
with the related WNSMS-parts and finally the crisp NSs of WNSMS-parts after
choosing weighted vectors. This makes our algorithm simpler and easier for ap-
plication in practical problems. Nevertheless, we also see that by using Algorithm
1 possibly we can get all the weighted choice values (WCVs) of objects for some
WNSMS-parts are zero; this could be terrible for our decision. In this condition,
we must adjust the weighted vectors in order to get a better choice. Besides, there
are a large variety of weighted vectors that can be used to get the final optimal
decision; consequently our algorithm has great flexibility and adjustable capability.
As mentioned by [16], many decision making problems are basically humanistic
and subjective in nature; henceforth there really does not exist a unique or uni-
form criterion for decision-making in an uncertain environment. This adjustable
feature makes Algorithm 1 proficient, as well as more fitting for some reasonable
applications. To illustrate the fundamental thought of Algorithm 1, let’s consider
the following example.

Example 32. Let’s consider the decision-making problem, including the WNSMS
with its tabular representation given in Table 2. If we control this, we may utilize
the information of U1-WNSMS-part in (NA,A) and to establish the WCVs as can
be seen in Table 12.

Table 12: U1-WNSMS-part in (NA,A, ω) = ς with WCVs

U1 x10.3 x20.5 x30.7 x40.4 Choice
Value

WCV (Sk)

a1 (0.1,0.3.0.9) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.8,0.3,0.2) 4 S1 = 2.3
a2 (0.8,0.7,0.2) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.1,0.7,0.9) 4 S2 = 3.7
a3 (0.25,0.5,0.75) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9) 4 S3 = 2.9
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From Table 12, we can see that the greatest WCV is 3.7, scored by a2. Presently,
we reclassify the WNSMS ς by keeping all values in every row where a2 is maxi-
mized and changing the values in alternate rows by zero, to obtain ς1 as in Table
13.

Table 13: The WNSMS ς1
Ui x10.3 x20.5 x30.7 x40.4

U1

a1 (0.1,0.3.0.9) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.8,0.3,0.2)
a2 (0.8,0.7,0.2) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.1,0.7,0.9)
a3 (0.25,0.5,0.75) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9)

U2

b1 (0.1,1,0.9) (0,0,1) (0.3,0.5,0.7) (0,0,1)
b2 (0.9,0.7,0.1) (0,0,1) (0.2,.0.9,0.8) (0,0,1)
b3 (0.1,.0.9,0.2) (0,0,1) (0.25,0.1,0.75) (0,0,1)

U3

c1 (0.9,0.1,0.1) (0,0,1) (1,0.2,0) (0,0,1)
c2 (0.1,0.8.0.9) (0,0,1) (0.3,0.17,0.7) (0,0,1)
c3 (0.1,0,0.9) (0,0,1) (0.3,0.1,0.7) (0,0,1)
c4 (0.1,1,0.2) (0,0,1) (0.25,0.6,0.75) (0,0,1)

Presently, we apply Kumar’s Algorithm to the second WNSMS-part in ς1 to
take the choice from the accessibility set U2.

Table 14: U2-WNSMS-part in ς2 with WCVs

U1 x10.3 x20.5 x30.7 x40.4 Choice Value WCV (Sk)

b1 (0.1,1,0.9) (0,0,1) (0.3,0.5,0.7) (0,0,1) 2 S1 = 2.1
b2 (0.9,0.7,0.1) (0,0,1) (0.2,.0.9,0.8) (0,0,1) 2 S2 = 2.5
b3 (0.1,.0.9,0.2) (0,0,1) (0.25,0.1,0.75) (0,0,1) 2 S3 = 1.3

From Table 14, we can see that the greatest WCVs is 2.5, scored by b2.
Presently we reclassify the WNSMS ς1 by keeping all values in every row where b2
is maximized and replacing the values in alternate rows by zero, to obtain ς2 as in
Table 15.
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Table 15: The WNSMS ς2
Ui x10.3 x20.5 x30.7 x40.4

U1

a1 (0.1,0.3.0.9) (0.5,0.6,0.5) (0.3,0.1,0.7) (0.8,0.3,0.2)
a2 (0.8,0.7,0.2) (0.4,0.6,0.6) (0.3,0.9,0.7) (0.1,0.7,0.9)
a3 (0.25,0.5,0.75) (0.4,0.8,0.6) (0.6,0.2,0.4) (0.1,0.05,0.9)

U2

b1 (0.1,1,0.9) (0,0,1) (0.3,0.5,0.7) (0,0,1)
b2 (0.9,0.7,0.1) (0,0,1) (0.2,.0.9,0.8) (0,0,1)
b3 (0.1,.0.9,0.2) (0,0,1) (0.25,0.1,0.75) (0,0,1)

U3

c1 (0,0,1) (0,0,1) (1,0.2,0) (0,0,1)
c2 (0,0,1) (0,0,1) (0.3,0.17,0.7) (0,0,1)
c3 (0,0,1) (0,0,1) (0.3,0.1,0.7) (0,0,1)
c4 (0,0,1) (0,0,1) (0.25,0.6,0.75) (0,0,1)

Presently, we apply Kumar’s Algorithm to the third WNSMS-part in ς2 to take
the choice from U3-WNSMS-part in ς2. The tabular form of U3-WNSM-part in ς2
with WCVs as in Table 16.

Table 16: U3-WNSMS-part in ς2 with WCVs

U1 x10.3 x20.5 x30.7 x40.4 Choice Value WCV (Sk)

c1 (0,0,1) (0,0,1) (1,0.2,0) (0,0,1) 1 S1 = 1.25
c2 (0,0,1) (0,0,1) (0.3,0.17,0.7) (0,0,1) 1 S2 = 2.6
c3 (0,0,1) (0,0,1) (0.3,0.1,0.7) (0,0,1) 1 S3 = 1.9

From the Table 16, it is clear that the greatest WCV is 2.6, by c2. At that
point from the above results the choice for Mr. Y is (a2, b2, c2).

Remark 33. From the above Example 32, we can see that in the Tables 12, 14
and 16, the greatest choice value is 4, 2 and 1; scored by a1, a2, a3; b1, b2, b3 and
c1, c2, c3, respectively. Thus, it is confusing for decision-maker to which one he has
to select using choice value. But in case of WCV, the greatest WCV is 3.7, 2.5
and 2.6, scored by a2, b2 and c2 respectively. So effectively we can obtain the ideal
choice. Algorithms 1 is really an adjustable approach due to the fact that the final
optimal decisions vary with the weighted vectors. This adjustable feature makes
Algorithms 1 efficiently capture the uncertainty and subjectivity of some decision
making problems.

5. CONCLUSION

In this paper, we have presented the idea of WNSMS as a generalization
of NSMS and its basic properties are studied. Furthermore, we define a new
adjustable approach to WNSMS based on decision-making, for solving decision-
making in an indeterminacy situation. The feasibility of our proposed WNSMS
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based on decision-making procedure in practical application is read by a mathe-
matical example. The WNSMS is regarded as one of the neutrosophy generalized
concepts of soft sets [1] and multi sets [17], the last one has more extensive appli-
cations in practice.

Funding. This research received no external funding.

REFERENCES

[1] D. Molodtsov, “Soft set theory-first results”, Computers and Mathematics with Applica-
tions, vol. 37, pp. 19-31, 1999.

[2] L. A. Zadeh, “Fuzzy Sets”, Information and Control, vol. 8, pp. 338 - 353, 1965.
[3] Z. Pawlak, “Rough Sets”, International Journal of Computer and Information Sciences,

vol. 11, pp. 341 - 356, 1982.
[4] W. L. Gau and D. J. Buehrer, “Vague Sets”, IEEE Transactions on Systems, Man, and

Cybernetics, vol. 23, no. 2, pp. 610 - 614, 1993.
[5] A.K. Das and C. Granados, “IFP-intuitionistic multi fuzzy N-soft set and its induced IFP-

hesitant N-soft set in decision making”, Journal of Ambient Intelligence and Humanized
Computing, pp. 1-10, 2022.

[6] C. Granados, “On soft b-w-open sets”, Journal of the Indonesian Mathematical Society,
vol. 27, no. 1, pp. 123-129, 2021.

[7] P. K. Maji, “Neutrosophic soft set”, Annals of Fuzzy Mathematics and Informatics, vol. 5,
no. 1, pp. 157-168, 2013.

[8] I. Deli, S. Borumi and M. Ali, “Nuetrosophic soft multiset and its decision making”, Neu-
trosophic Sets and Systems, vol. 5, pp. 65-76, 2014.

[9] M. Riaz, K. Neem, I. Zareef and D. Aafzal, “Neutrosophic N-soft sets with TOPSIS methods
for multiple attribute decision making”, Neutrosophic Sets and Systems, vol. 32, pp. 146-
170, 2020.

[10] M. Saqlain, M. Naveed and M. Riaz, “A New Approach of Neutrosophic Soft Set with
Generalized Fuzzy TOPSIS in Application of Smart Phone Selection”, Neutrosophic Sets
and Systems, vol. 32, pp. 307-316, 2020.

[11] M. Riaz, N. Cagman, N. Wali and A. Mushtaq, “Certain properties of soft multi set topology
with applications in multi criteria decision making”, Decision Making: Applications in
Management and Engineering, vol. 3, no. 2, pp. 70-96, 2020.

[12] S. Broumi, R. Sundareswaran, M. Shanmugapriya, G. Nordo, M. Talea,A. Bakali and F.
Smarandache, “Interval- valued fermatean neutrosophic graphs”, Decision Making: Appli-
cations in Management and Engineering, vol. 5, no. 2, pp. 176-200, 2022.

[13] S. Broumi, D. Ajay, P. Chellamani, L. Malayalan, M. Talea, A. Bakali, P. Schweizer and
S. Jafari, “Interval Valued Pentapartitioned Neutrosophic Graphs with an Application to
MCDM”, Operational Research in Engineering Sciences: Theory and Applications, 2022.

[14] F. Smarandache, A Unifying Field in Logics. Neu-trosophy: Neutrosophic Probability, Set
and Logic. Rehoboth: American Research Press, 1998.

[15] P. Kumar, “Weighted neutrosophic soft sets approach in a multi-criteria decision problem”,
Journal of New Theory, vol. 5, pp. 1-12, 2015.

[16] F. Feng , Y.B. Jun, X. Liu and L. Li, “An adjustable approach to fuzzy soft set based
decision making”, Journal of Computational and Applied Mathematics, vol. 234, pp. 10-20,
2010.

[17] R.R. Yager, “On the theory of bags”, International Journal of General Systems, vol. 13,
pp. 23-37, 1986.


