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1. INTRODUCTION

Currently, queueing models with Markovian Arrival Process with phase-type
distribution have been studied and analyzed with various service interruptions
using the matrix-geometric method. Neuts [1] introduced Phase-type (PH) distri-
bution, then developed matrix-geometric methods in queueing theory and popu-
larized the algorithmic strategies to study stochastic models. Later he introduced
the Markovian arrival process (MAP) and then Chakravarthy [2] deeply explained
the concept of MAP. In his recent work [3], he analyzed the MAP queueing systems
with phase-type service using the matrix-geometric method.

Server vacation queueing models are useful for queueing systems in which the
server wants to utilize its time for different purposes. The vacation mechanism
considered in this paper is termed as Single Working Vacation (SWV). We analyze
MAP/PH/1 queueing model with single working vacations and service, in which
the server provides service at lower rate, rather than stopping the service altogether
during its vacation period. Such a vacation is called a Working Vacation and the
vacation queueing model was deeply analyzed by servi and finn [4]. The working
vacation of the server begin when the system is empty right after the completion of
its services in busy period. If there are no customers in the system when a working
vacation ends, then the server stays available and is ready to serve new arrivals. If
the server returns from a working vacation and find the system as non-empty then
the server immediately switches to the original service rate. This working vacation
is called a SWV. Many researchers have looked into queueing models with server
vacations ([5],[6],[7],[8],[9],[10]).

Using N-policy for vacations, Sreenivasan et al. [11] examined a MAP/PH/1
type queue. Goswami and Selvaraju [12] also evaluated a working vacation model
that had two different priority customer kinds, the potential to interrupt vaca-
tions, and services that followed a phase-type distribution. The survey article by
Chandrasekaran et al. [13] has a distinct section on working vacation models
with Markovian Arrival Process (MAP ). The MAP/PH/1 queueing structure
with breakdown, instantaneous feedback, and server vacation has been examined
by Ayyappan and Thilagavathy [14]. Choudhary et al. [15] looked at a single
server queueing system with phase-type vacation and degraded service rate.

Especially in industrial, manufacturing, and communication systems, it can
be unreasonable to assume that the service environment is completely reliable.
The study of stochastic models with server breakdowns and repairs can result
from the possibility of server breakdowns brought on by external shocks. We can
use a standby (backup) server in the event that server fails. Chakravarthy and
Agnihothri have examined the MAP and phase type service queueing model with
the backup server in [16].

Yang and Wu [17] explored into the M/M/1 queueing system with working
vacation and server failure under N-policy. They looked at various breakdown rates
during working vacations, busy and idle time of the server. Working breakdown
is a term that Kalidass and Kasturi [18] used to characterise the situation . The
researchers also thought about having a backup server accessible to serve at a



Baby Saroja K, Suvitha V / Analysis of Single Server Repairable Queueing System 287

lower rate when the primary server is down. Later, Ye and Liu [19] investigated
the MAP/M/1 type queue with working failures and repairs of the server. Deepa
and Kalidass [20] studied the steady-state probability for a finite working vacation
and working breakdown queue.

Sharma [21] explored the threshold N -policy for theMX/H2/1 queueing sys-
tem with an unreliable server and vacations. Singh et al. [22] explored theM/G/1
queueing model with vacation and employed the generating function method to
get various performance metrics. Wang et al. [23] concentrated on a single-arrival
Erlangian service time queueing model with an unreliable server and extended the
queueing model to the N-policy for theM/H2/1 queueing system. TheMX/Hk/1
queueing model was developed by Jain et al. [24] using a server that was unreliable
and multiple vacation policies.

The existing literature in this topic focuses mainly on a single server queue-
ing model with multiple vacations. This would also encourage us to study the
MAP/PH/1 queue with a single working vacation. We discovered the research
gap in which the server only provides phase-type services with some disturbance.
This helps us to develop the single server queueing model with a variety of services
from which consumers can select based on their requirements. We investigated the
single server queueing model with various kinds of service and standby servers as
a backup for whenever the system breaks down during busy or working vacation
periods. This type of queueing model is analyzed using Neuts’ [1] well-known
matrix-geometric approach to determine steady-state probability vectors.

This article’s structure is as follows: Section 2 presents a discussion of the
mathematical model as well as how the model’s matrix was constructed. We
outline the stability requirement in section 3 and we analyse the steady-state
probability of the proposed model in section 4. The performance measures are
evaluated in section 5. We discuss some special cases in section 6 and present
a few real-world examples in section 7. Numerous numerical illustrations and
graphical representations are included in section 8. The conclusion is provided in
section 9. Throughout the work, the following conventional notations are used:

� The Kronecker product and Kronecker sum are denoted by the symbols ⊗
and ⊕, respectively.

� e is the column vector will be assigned the appropriate dimension its entries
are all ones.

� The identity matrix of order m is denoted by the symbol Im.

� The diagonal matrix with entries given in the parantheses is indicated by
△(.)

� e1: (3lmn) times 1 vector with the first lmn component set to 1 and the
remaining components set to 0.

� e2: (3lmn) times 1 vector, where (lmn + 1) to 2lmn components have a
value of 1, while the rest have a value of 0.



288Baby Saroja K, Suvitha V / Analysis of Single Server Repairable Queueing System

� e3: (3lmn) times 1 vector, where (2lmn + 1) to 3lmn components have a
value of 1, while the rest have a value of 0.

2. THE MODEL DESCRIPTION

Customers are presumptively following the Markovian arrival process, orMAP
as it was introduced by Neuts, when they access the system. Assume that the
generator of MAP is D = D0 + D1, where D0 governs transitions for no arrival
and D1 governs transitions for an arrival in the system, both of which are of order
m. σ denotes the stationary vector of D, therefore we get

σD = 0, σe = 1. (1)

Then, the average arrival rate is given by, λ = σD1e.

The system contains a single server that offers many kinds of service and is re-
ferred to as the main server. Customers can select from a variety of services based
on their needs from a list of l-kinds. Phase-type (PH) distribution is used for
all service kinds. The main server takes a Single Working Vacation (SWV) while
the system is supposed to be empty and offers service at a reduced rate when
customers enter the system at that time. If the system is not empty after SWV
is finished, the server switches to the busy period and serves the customer; oth-
erwise, the server remains in the busy period and awaits the customers’ arrival.
An exponential distribution with rate γ has been used to estimate the length of
working vacation. The main server breaks down and is sent for repair immediately
which is exponentially distributed with rate ξ and η, respectively. The standby
server immediately takes over the service at that point. Take in consideration that
the backup server is not susceptible to failures. The standby server immediately
surrenders the control of the service to the main server once the repair procedure is
finished. We assume that the interarrival, service, breakdown, and vacation times
are all independent of one another and that first come, first served (FCFS) is the
service discipline.

Figure 1: A Visual representation of the model
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The service time for the model under consideration follows Hyper-(PH) dis-
tribution. A customer after entered into the server and choosing any one of the
l kinds of service with rate θ1, θ2, · · · θl and the probability α1, α2, · · · , αl, re-
spectively. This can be represented by (α, θ) where, α = (α1, α2, . . . , αl) and θ
indicates the block diagonal matrix θ = △(θ1, θ2, θ3, . . . , θl) with order l, where
l indicates the total number of available kinds of service. We assume that each
kinds of service follows PH-distribution with an irreducible representation (β, S)
of order n. It is important to note that the service rate is expressed as µ where
µ = [β(−S)−1e]−1. In addition, we designate S0 as the column vector satisfies
Se+S0 = 0. Whenever a customer (i > 0) leaves any kind of service (k) i.e., (i, k),
can take the system to any of the kinds (i− 1, k) at rate αkθkS for k = 1, 2, · · · , l.
Hence, the service distribution of our model follows Hyper-(PH) distribution and
it can be represented by (ψ, T ) with mutually independent PH-distributions:

ψ = (α⊗ β) and T =


T1

T2
T3

. . .

Tk


where, Tk = θkS, T is the matrix with order ln and T 0 = −Te.
The model under study has three states such as busy, breakdown and working
vacation. The service time of each states follows PH-distribution with representa-
tion as (ψ, T ), (ψ, τT ) and (ψ, ζT ), 0 < τ < ζ < 1 where, τ and ζ are the ratios of
service speed when the server is in breakdown and working vacation, respectively.
In Figure 1 provides a visual representation of the queueing model under investi-
gation. The variables required to characterise the model under consideration are
now defined.

� N(t): the number of customers in the system at time t.

� X1(t) indicates the state of the server at time t.

X1(t) =


1, if the main server is available

2, if the main server is under repair and

offering service by standby server

3, if the main server is on working vacation

� X2(t) indicates the phase of arrival process at time t.

� X3(t) indicates the phase of service process at time t.

� X4(t) indicates the kind of service at time t.
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Then {(N(t), X1(t), X2(t), X3(t), X4(t)), t ≥ 0}, is a continuous-time Markov
chain with state space Ω as follows:

Ω =

∞⋃
i=0

d(i)

where, for i ≥ 0,

d(i) = {(i, j, a, b, k): 1 ≤ j ≤ 3; 1 ≤ a ≤ m; 1 ≤ b ≤ n; 1 ≤ k ≤ l}.

Then the infinitesimal generator matrix of our model with following structure:

Q =



B00 B01 . . .
B10 A1 A0 . . .
... A2 A1 A0 . . .

... A2 A1 A0 . . .
...

...
...


where the block matrices in Q are as follows:

B00 =

D0 − ξIm ξIm 0
ηIm D0 − 2ηIm ηIm
γIm ξIm D0 − (γ + ξ)Im

 ,
B01 =

ψ ⊗D1 0 0
0 ψ ⊗D1 0
0 0 ψ ⊗D1

 ,
B10 =

0 0 T 0 ⊗ Im
0 0 ζT 0 ⊗ Im
0 0 τT 0 ⊗ Im

,
A0 =

Iln ⊗D1 0 0
0 Iln ⊗D1 0
0 0 Iln ⊗D1

,
A1 =

(T ⊕D0)− ξIlmn ξIlmn 0
ηIlmn (ζT ⊕D0)− 2ηIlmn ηIlmn

γIlmn ξIlmn (τT ⊕D0)− (ξ + γ)Ilmn

,
A2 =

(ψ ⊗ T 0)⊗ Im 0 0
0 (ψ ⊗ ζT 0)⊗ Im 0
0 0 (ψ ⊗ τT 0)⊗ Im


3. THE STABILITY ANALYSIS

Assume that the matrix A is defined as A = A0 + A1 + A2. Let π represent
the steady-state probability vector of A, which satisfies the condition [25]

πA = 0, πe = 1. (2)
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The vector π is partitioned by π = (π0, π1, π2), where π0, π1 and π2 are of dimen-
sion lmn.

A =

 U ξIlmn 0
ηIlmn V ηIlmn

γIlmn ξIlmn W


where,

U = (T + ψ ⊗ T 0)⊕D − ξIlmn, (3)

V = ζ(T + ψ ⊗ T 0)⊕D − 2ηIlmn, (4)

W = τ(T + ψ ⊗ T 0)⊕D − (γ + ξ)Ilmn. (5)

By resolving the following equations, the vector π can be found. The steady-
state equations that correspond to (2) are expressed as

π0((T + ψ ⊗ T 0)⊕D − ξIlmn) + π1ηIlmn + π2γIlmn = 0 (6)

π0(ξIlmn) + π1((T + ψ ⊗ ζT 0)⊕D − 2ηIlmn) + π2ξIlmn = 0 (7)

π1ηIlmn + π2((T + ψ ⊗ τT 0)⊕D − (γ + ξ)Ilmn) = 0 (8)

π0e+ π1e+ π2e = 1 (9)

and using the condition πA0e < πA2e, we obtain the stability condition for
our proposed model i.e.,

(π0+π1+π2)(en⊗D1em) < π0((ψ⊗T 0)⊗Im)+π1((ψ⊗ζT 0)⊗Im)+π2((ψ⊗τT 0)⊗Im)

(10)

4. THE STEADY-STATE PROBABILITY VECTOR

Let we define P = (p0, p1, p2, p3, · · · ) as the steady-state probability vector
of Q, where p0 is of dimension 3m and p1, p2, · · · is of dimension 3lmn, then P
satisfies the following condition.

PQ = 0, P e = 1 (11)

where e is an appropriate dimension column vector of 1s [25].
The following equations from (11) can be used to generate the subvectors of P if
the stability criterion is satisfied.

p0B00 + p1B10 = 0 (12)

p0B01 + p1A1 + p2A2 = 0 (13)

pi−1A0 + piA1 + pi+1A2 = 0 for i ≥ 1 (14)

pi = p1R
(i−1) for i ≥ 2 (15)

where R is the rate matrix is the minimal non-negative solution of the matrix
quadratic equation.

R2A2 +RA1 +A0 = 0 (16)
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Substituting the (15) in (13) we have

p0B01 + p1(A1 +RA2) = 0 (17)

and the normalizing condition is subjected to

p0e+ p1(I −R)
−1
e = 1 (18)

We partition the subvectors pi for i ≥ 0 as p0 = (p0,1, p0,2, p0,3), p1 = (p1,1, p1,2, p1,3)
and pi = (pi,1, pi,2, pi,3), i ≥ 2, such that p0,1, p0,2 and p0,3 are of dimension m and
pi,1, pi,2 and pi,3 are of dimension lmn. The following provides the steady-state
vector interpretations:

� p0,1, the main server offers l kinds of service The arrival is in one of the m
phases and there are no customers in the system.

� p0,2, the main server is under repair and the standby server is available with
l kinds of service. There are no customers in the system and the arrival is
in one of m phases.

� p0,3, the main server is providing l kinds of service while it is on working va-
cation. The arrival is in one of the m phases and there are no customers in
the system.

� pi,1, the system has exactly i consumers, and it is busy providing services
with l kinds. The services and arrival are both in various phases.

� pi,2, the system has exactly i consumers, the main server is undergoing repair,
and the standby server is serving l kinds. Services and arrival are both in
various phases.

� pi,3, the system has exactly i customers, the main server is on working vaca-
tion and serving with l kinds. The arrival and services are in various phases.

The steady-state equations (11) can thus be expressed as

p0,1(D0 − ξIm) + p0,2ηIm + p0,3γIm = 0 (19)

p0,1(ξIm) + p0,2(D0 − 2ηIm) + p0,3ξIm = 0 (20)

p0,2ηIm + p0,3(D0 − (γ + ξ)Im) + p1,1(T
0 ⊗ In) + p1,2(ζT

0 ⊗ In)

+ p1,3(τT
0 ⊗ In) = 0 (21)

p0,1(ψ ⊗D1) + p1,1((T ⊕D0)− ξIlmn) + p1,2(ηIlmn) + p1,3(γIlmn)

+ p2,1((ψ ⊗ T 0)⊗ Im) = 0 (22)

p0,2(ψ ⊗D1) + p1,1(ξIlmn) + p1,2((ζT ⊕D0)− 2ηIlmn) + p1,3(ξIlmn)

+ p2,2((ψ ⊗ ζT 0)⊗ Im) = 0 (23)

p0,3(ψ ⊗D1) + p1,2(ηIlmn) + p1,3((τT ⊕D0)− (ξ + γ)Ilmn)

+ p2,3((ψ ⊗ τT 0)⊗ Im) = 0 (24)
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pi−1,1(In ⊗D1) + pi,1((T ⊕D0)− ξIlmn) + pi,2(ηIlmn) + pi,3(γIlmn)

+ pi+1,1((ψ ⊗ T 0)⊗ Im) = 0 (25)

pi−1,2(In ⊗D1) + pi,1(ξIlmn) + pi,2((ζT ⊕D0)− 2ηIlmn) + pi,3(ξIlmn)

+ pi+1,2((ψ ⊗ ζT 0)⊗ Im) = 0
(26)

pi−1,3(In ⊗D1) + pi,2(ηIlmn) + pi,3((τT ⊕D0)− (ξ + γ)Ilmn)

+ pi+1,3((ψ ⊗ τT 0)⊗ Im) = 0
(27)

along with the normalization condition
∞∑
i=0

(pi,1 + pi,2 + pi,3)e = 1 (28)

by substitute the block matrices in the equations (12), (13), (14) and (18), we
get (19) to (28). The matrix R has computed using the iterative method.

5. PERFORMANCE MEASURES

We examine our model’s qualitative behaviour at steady-state.

� The probability that the system is available with no customers (Pinactive)=P0e

� The probability that the main server is available (Pavailable)=P1(I −R)−1e1

� The probability that the standby server is busy while the main server is
under repair (Pstandby)=P1(I −R)−1e2

� The probability that the main server is busy on working vacation
(PWV )=P1(I −R)−1e3

� Expected system size ESystem=P1(I −R)−2e

6. SPECIAL CASES

6.1. M/M/1 queueing model
We reduce our proposed model into M/M/1, by taking inter-arrival time and

service times are exponentially distributed and substitute l = 1, θ1 = 1, β = 1,
n = 1 and m = 1. Then D0 = [−λ], D1 = [λ], α = [1], β = [1] and S = [−µ] The
infinitesimal generator becomes

Q =



B00 B01 . . .
B10 A1 A0 . . .
... A2 A1 A0 . . .

... A2 A1 A0 . . .
...

...
...


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where

B00 =

−λ− ξ ξ 0
η −λ− 2η η
γ ξ −λ− γ − ξ

 ,
B01 =

λ 0 0
0 λ 0
0 0 λ

 , B10 =

0 0 −µ
0 0 −ζµ
0 0 −τµ

 ,
A0 =

λ 0 0
0 λ 0
0 0 λ

 , A2 =

µ 0 0
0 ζµ 0
0 0 τµ


A1 =

−(λ+ µ+ ξ) ξ 0
η −(λ+ ζµ+ 2η) η
γ ξ −(λ+ τµ+ ξ + γ)


The generator matrix A as A0 +A1 +A2, that is,

A =

−ξ ξ 0
η −2η η
γ ξ −(γ + ξ)


To obtain the stability condition, it should satisfy πA = 0 and πe = 1 and the
steady-state probability vector π = (π0, π1, π2). From the conditions, we obtain
the following equations,

−ξπ0 + ηπ1 + γπ2 = 0 (29)

ξπ0 − 2ηπ1 + ξπ2 = 0 (30)

ηπ1 − (γ + ξ)π2 = 0 (31)

π0 + π1 + π2 = 0 (32)

from (31), we get

π1 = π2
γ + ξ

η
(33)

substituting (33) in (29) then,

π0 = π2
2γ + ξ

ξ
(34)

by substituting π0 and π1 in normalization condition (32), we get π2

π2 =

[
ξ(γ + ξ) + η(2γ + ξ)

ηξ
+ 1

]−1

(35)

then, we obtain the stability condition by using πA0e < πA2e i.e.,

λ < µ

[
(2γ + ξ)η + ζ(γ + ξ)ξ + τξη

ξ(γ + ξ) + η(2γ + ξ) + ηξ

]
(36)
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6.1.1.

ζ = 0, η = 1 and ξ = 0 if there is no backup and breakdown, then our model
coincide with [26].

6.1.2.

γ → ∞, ζ = 0, η = 1 and ξ = 0 if there is no vacation, no breakdown and no
backup, then our model synchronize with [27].

6.2. MAP/PH/1 queueing model

We reduce our model into MAP/PH/1 with same service rate for working
vacation and standby service, omitting the breakdown and repair rate of working
vacation and also ignore the kinds of service then, we obtain the model in [28].

7. APPLICATIONS

Our proposed model is motivated by various realistic systems. In manufactur-
ing industries, call centers, healthcare, etc., the customers receive the appropriate
service based on their needs. For example:

1. In manufacturing industries, a machine used to produce a variety of items
can be modeled as a single server queue with phase service. A customers can
choose any item from that varieties available. The items may be different
types juice in a juice machine, variety of pizza from pizza making machine,
various types of service in CNC machine etc. While serving the customer, the
server get breaks down at any time. The standby (backup) server takes over
instantly and provides service in the same manner as main machine. when
there are no customers in the system, the service provider will do some other
works such as machine adjustment, cleaning, making pre-required items etc.
while doing the other works if the customer enter into the system, then
the service provider will serve the customer with lower rate. Hence this
situation is coincide with a SWV. While the server is on working vacation, a
breakdown may occur only because of providing slow service. This is caused
when the machine (server) loses its energy and causes more heat. As a result,
whenever the server breaks down, the standby server takes over.

2. Similarly, at a call center, the server serves the customers by requesting
them to select a number based on their wants and offers services in phases
based on their demands. In this situation, the service provider may be stuck
due to technical or human issues. This refers to a breakdown and the service
provider will use a standby server as an alternative. Such a scenario coincides
with our model. if there is no call, the service provider may perform some
other work such as, documentation or data-collection. During that time, the
server may receive the calls. At that time the attender will to both works
simultaneously and hence it cause the slow service rate. At the completion of
the other documentation works, the service provider switches to the regular
working process. The server waits to serve the customer until they receive
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their call if the system is empty or starts to attend to the calls from the
customer if the server receives more calls.

3. In a mechanic shop, the server gives service to customers to repair and
maintain their products. The service provider may know how to rectify
issues, such as bike engine issues, water washing, brake problem, etc., not
only in the bike but even in the cycle, car, etc. Hence the mechanic will
get customers who need those kinds of service. The kinds of service increase
as many customers may gather in the same place for different issues. The
mechanic repairing the item as step by step procedure. Hence it represent
the phase service. The mechanic might do some other work such as cleaning
his place and rearranging the materials around them, etc. when there are no
customers. if the customer arrive at that time, the mechanic will serve the
customer and also continuing the cleaning process which may cause the slow
service rate. After the completion of cleaning process, he will wait for the
customers arrival and serve them in actual rate. Hence it represent the SWV.
Whenever the mechanic is unavailable, there may be some other person to
provide service. This is the standby mechanic whose service rate may be
slower than that of the mechanic. The unavailability of the mechanic occurs
if the mechanic suffers any issues while handling the product or due to some
personal emergency. Such type of model also coincides with our queueing
model.

8. SENSITIVE ANALYSIS

In this section, we provide a few numerical examples to help the reader grasp
the qualitative features of the working vacation, breakdown-repair, standby queue-
ing model under consideration. We examine several hypotheses by altering the
model’s parameters, such as the arrival processes and service time distributions.

The following three sets of values for D0 and D1, which are used as input data
in many research papers, are taken into consideration for the arrival procedure
(see [14],[28],[2],[3]). For our convenient, we display them here.

� Expo-A (Exponential Arrival): The standard exponential distribution is as
follows.

D0 = (−1), D1 = (1).

� Erlang-A (Erlang Arrival): This is order 2 of the Erlang distribution.

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
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� Hyper-A (Hyper-exponential Arrival): Two exponentials have been com-
bined to get this.

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.71 0.19
0.171 0.019

]

We take into consideration the following three PH-distributions for the service
times with representation (β, S). To obtain the desired µ, these representations
will be normalised.

� Expo-S (Exponential Service): The standard exponential distribution is as
follows.

β = 1, S = (−1).

� Erlang-S (Erlang Service): This is order 2 of the Erlang distribution.

β =
[
1 0

]
, S =

[
−2 2
0 −2

]
� Hyper-S (Hyper-exponential Service): Two exponentials have been com-
bined to get this.

β =
[
0.8 0.2

]
, S =

[
−2.8 0
0 −0.28

]
8.1. Illustration 1:

In figures 2, 3 and 4, we investigate the behaviour of arrival rate λ on different
scenarios. We fix the parameters as per the stability condition is satisfied, µ = 4,
l = 3, η = 2.8, ξ = 2.5, ζ = 0.5, τ = 0.7, α = (0.5, 0.3, 0.2), θ = △(0.9, 0.7, 0.5)
and γ = 2.

� The expected system size increases for different service and arrival distribu-
tions as the arrival rate (λ) rises. This is due to the fact that an increase in
arrival rates results in more customers of the system when there is a fixed
service rate.

� The expected system size increases more quickly in Hyper-A and more slowly
in Erlang-A when we correlate the above data for distinctive arrival distribu-
tion. Additionally, the expected system size grows gradually during Erlang-S
and swiftly during Hyper-S compared to Expo-S.
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Figure 2: Arrival rate versus the expected system size for all arrivals distribution with Exponen-
tial service
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Figure 3: Arrival rate versus the expected system size for all arrivals distribution with Erlang
phase service
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Figure 4: Arrival rate versus the expected system size for all arrivals distribution with Hyper-
exponential phase service

8.2. Illustration 2:

In this figures 5, 6 and 7, We look into the impact of service rate µ on expected
system size under various scenarios. We fix the parameters as λ = 1, l = 3, η = 2.8,
ξ = 2.5, ζ = 0.5, τ = 0.7, α = (0.5, 0.3, 0.2), θ = △(0.9, 0.7, 0.5) and γ = 2 as per
the stability condition is satisfied.
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� From the figures 5, 6 and 7, We can see that as the service rate mu grows,
the expected system size also grows since an increase in service rate results
in a decrease in service time, which raises server availability. The estimated
system size is reduced as a result of the speedy customer service.

� Comparing the figures 5, 6 and 7, we can see that the expected system size
for Hyper-A and Erlang-A are both quick. Additionally, Erl-S is slower while
Hyp-Exp-S is faster.
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Figure 5: Service rate versus the expected system size for all service distribution with Exponential
arrival
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Figure 6: Service rate versus the expected system size for all service distribution with Erlang
arrival
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Figure 7: Service rate versus the expected system size for all service distribution with Hyper-
exponential arrival

8.3. Illustration 3:

In 3D figures 8, 9, 10 and 11, we visualise the breakdown rate’s (η) and repair
rate’s (ξ) impact of the server on the expected system size under different scenarios.
We fix λ = 1, µ = 4, l = 3, ζ = 0.5, τ = 0.7, α = (0.5, 0.3, 0.2), θ = △(0.9, 0.7, 0.5)
and γ = 2 as per the stability condition is satisfied.

Figure 8: Breakdown rate(η) and repair rate(ξ) versus expected system size with Em/En/1



Baby Saroja K, Suvitha V / Analysis of Single Server Repairable Queueing System 301

Figure 9: Breakdown rate(η) and repair rate(ξ) versus expected system size with Em/Hn/1

An overviewing of figures 8, 9, 10 and 11 reveals that

� Maximize the repair rate cause the expected system size decrease for all
arrivals and service distributions. Increase the repair rate means the faster
the server repaired and get into the system sooner, so the server will be
availabile as soon as the server gets repaired. It cause the lower in expected
system size.

� Maximize the breakdown rate cause the expected system size higher. Be-
cause increase in breakdown means the server face the breakdown frequently.
So the server gets unavailablity many times and it cause the system size
higher at lower repair rate.

� This influence makes the expected system size increasing slowly in Em/En/1,
rapidly in Hm/Hn/1 and gradually increase in Em/Hn/1 and Hm/En/1

Figure 10: Breakdown rate(η) and repair rate(ξ) versus expected system size with Hm/En/1



302Baby Saroja K, Suvitha V / Analysis of Single Server Repairable Queueing System

Figure 11: Breakdown rate(η) and repair rate(ξ) versus expected system size with Hm/Hn/1

8.4. Illustration 4

In table 1,2,3, we investigate the influence of kinds of service rate (l) on ex-
pected system size. We fix the parameters as λ = 1, µ = 4, η = 2.8, ξ = 2.5,
ζ = 0.5, τ = 0.7 and γ = 2. In case 1,2 and 3, we extract the interpretation of
the kinds of service on expected system size for various θ as decreasing, increasing
and random order, respectively in accordance with the satisfaction of the stability
condition.

8.4.1. Case 1

For l = 1 : θ = △(0.9) and α = (1)
For l = 2 : θ = △(0.9, 0.7) and α = (0.6, 0.4)
For l = 3 : θ = △(0.9, 0.7, 0.5) and α = (0.5, 0.3, 0.2)
For l = 4 : θ = △(0.9, 0.7, 0.5, 0.3) and α = (0.4, 0.3, 0.2, 0.1)
For l = 5 : θ = △(0.9, 0.7, 0.5, 0.3, 0.1) and α = (0.35, 0.25, 0.2, 0.15, 0.05)

Table 1: Effect of l on expected system size

Expo-A Erlang-A Hyper-A
l Expo-S Erlang-S Hyper-S Expo-S Erlang-S Hyper-S Expo-S Erlang-S Hyper-S
1 0.5687 0.5220 0.8836 0.4779 0.4390 0.7772 0.8523 0.7605 1.3454
2 0.6773 0.6139 1.1017 0.5639 0.5094 0.9717 1.0706 0.9492 1.7105
3 0.8322 0.7423 1.4321 0.6877 0.6075 1.2702 1.3993 1.2356 2.2547
4 1.1621 1.0082 2.1838 0.9569 0.8137 1.9603 2.1203 1.8714 3.4456
5 3.3819 2.7197 7.7632 2.9076 2.2569 7.2698 6.3888 5.6112 11.1150

8.4.2. Case 2

For l = 1 : θ = △(0.9) and α = (1)
For l = 2 : θ = △(0.5, 0.9) and α = (0.6, 0.4)
For l = 3 : θ = △(0.5, 0.7, 0.9) and α = (0.5, 0.3, 0.2)
For l = 4 : θ = △(0.3, 0.5, 0.7, 0.9) and α = (0.4, 0.3, 0.2, 0.1)
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For l = 5 : θ = △(0.3, 0.4, 0.5, 0.7, 0.9) and α = (0.35, 0.25, 0.2, 0.15, 0.05)

Table 2: Effect of l on expected system size

Expo-A Erlang-A Hyper-A
l Expo-S Erlang-S Hyper-S Expo-S Erlang-S Hyper-S Expo-S Erlang-S Hyper-S
1 0.5687 0.5220 0.8836 0.4779 0.4390 0.7772 0.8523 0.7605 1.3454
2 1.1648 1.0135 2.1695 0.9487 0.8087 1.9343 2.1820 1.9305 3.5073
3 1.1622 1.0122 2.1591 0.9445 0.8061 1.9220 2.1869 1.9358 3.5076
4 3.1828 2.5875 7.1216 2.5416 1.9609 6.4584 7.4214 6.6945 11.7619
5 3.8917 3.1321 8.9161 3.0713 2.3275 8.0728 9.5461 8.6536 14.9819

8.4.3. Case 3

For l = 1 : θ = △(0.9) and α = (1)
For l = 2 : θ = △(0.7, 0.9) and α = (0.6, 0.4)
For l = 3 : θ = △(0.6, 0.9, 0.8) and α = (0.5, 0.3, 0.2)
For l = 4 : θ = △(0.4, 0.9, 0.5, 0.7) and α = (0.4, 0.3, 0.2, 0.1)
For l = 5 : θ = △(0.3, 0.7, 0.4, 0.9, 0.6) and α = (0.35, 0.25, 0.2, 0.15, 0.05)

Table 3: Effect of l on expected system size

Expo-A Erlang-A Hyper-A
l Expo-S Erlang-S Hyper-S Expo-S Erlang-S Hyper-S Expo-S Erlang-S Hyper-S
1 0.5687 0.522 0.8836 0.4779 0.4390 0.7772 0.8523 0.7605 1.3454
2 0.735 0.6625 1.2198 0.6091 0.5460 1.0768 1.1936 1.0563 1.9126
3 0.8577 0.7641 1.4817 0.7061 0.6225 1.3121 1.4633 1.2923 2.3533
4 1.5987 1.3587 3.1895 1.2914 1.0639 2.8621 3.2610 2.9037 5.2133
5 2.9352 2.3965 6.5001 2.3540 1.8293 5.8975 6.7036 6.0343 10.6652

� The expected system size will increase as we enhance the kinds of service
that are available. Because additional service options draw a wider range
of customers to one location. The expected system size varies depending on
the duration of each kinds of service and the probability that customers will
select the service.

� According to cases 1,2 and 3, the variations in the service rates of kinds
affect the system size. Still, they have a similarity: an increase in expected
system size when the kinds l increase.

� Because of the outcomes for our predetermined parameters and the expansion
of the services offered, a variety of customers of all kinds begin to accumulate
in the system. As a result, the expected system size grows.

� When we take into account the data from tables 1,2,3, for distinct arrival
times, the expected system size increases more quickly in the duration of
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Hyper-A and more slowly in the duration of Erlang-A. Additionally, in
Erlang-S and Hyper-S, the predicted system size grows substantially and
quickly, respectively.

8.5. Illustration 5

We look at how the working vacation rate γ affects the expected size of the
system in table 4. We use the following values to determine whether the stability
criterion is met: λ = 1, µ = 4, η = 2.8, ξ = 2.5, ζ = 0.5, τ = 0.7 and l = 3.

Table 4: Effect of γ on expected system size

Expo-A Erlang-A Hyper-A
γ Expo-S Erlang-S Hyper-S Expo-S Erlang-S Hyper-S Expo-S Erlang-S Hyper-S
1 0.8696 0.7742 1.5059 0.7181 0.6326 1.3368 1.4783 1.3060 2.3776
1.5 0.8485 0.7563 1.4639 0.7010 0.6186 1.2989 1.4334 1.2660 2.3075
2 0.8322 0.7423 1.4321 0.6877 0.6075 1.2702 1.3993 1.2356 2.2547
2.5 0.8192 0.7310 1.4073 0.6771 0.5985 1.2477 1.3726 1.2116 2.2134
3 0.8086 0.7217 1.3872 0.6683 0.5910 1.2296 1.3510 1.1922 2.1803
3.5 0.7997 0.7140 1.3708 0.6611 0.5848 1.2148 1.3332 1.1763 2.1531
4 0.7923 0.7074 1.3570 0.6549 0.5795 1.2024 1.3183 1.1628 2.1303

� The expected system size decreases for a given service and arrival rate as
the vacation rate γ rises. The length of vacation time is reduced as a result
of an increase in the vacation rate. This cause the server rapidly resumes
normal service rate. So, since the server is available for longer to provide the
service, the expected system size reduces.

� The expected system size increases immediately for Hyper-A and progres-
sively for Erlang-A when we correlate the enlisted values for particular arrival
times. Also, with Erlang-S and Hyper-S, the expected system size is reduced
significantly and fast, respectively.

9. CONCLUSION

We investigated the single server MAP queueing system with many kinds of
service, in the framework of a server going on a single working vacation, a server
breaking down due to some issues or while changing the types frequently, a server
being repaired, and a server being assisted by a standby server during break-
downs that occur during working vacation or busy periods. Our system’s stability
requirement has been satisfied. Additionally, certain important performance met-
rics have been provided and MATLAB is used to offer numerical demonstrations.
Investigation has been done on how the expected system size is affected by the
arrival rate and service rate. Additionally, with the help of 3D graphs, the effect
of the server’s breakdown and repair rates on the expected system size has been
depicted. Additionally, the interpretation of the kinds of service on the expected
system size has been tabulated. Furthermore, by using BMAP for the arrival
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process, one can expand the study by carrying out a cost analysis for our model.
These are currently being investigated.
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