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Abstract: This paper presents a metaheuristic approach for solving an optimization
problem that arises at container terminals where straddle carriers (SCs) transport con-
tainers between the stacking areas and the seaside. In such container terminals, oper-
ational efficiency depends mainly on SC routing. SCs routes should consider the order
in which containers are unloaded and loaded at the quay cranes (QCs), taking into
account the limited capacity of the buffer area of each QC where containers are tem-
porarily stored after being handled by a QC or an SC. Besides the precedence relations
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(i.e., container sequences) and buffer capacities, the solution framework considers safety
constraints. Efficient routing of SCs directly contributes to minimizing the idle time of
QCs, thereby improving their overall productivity and minimizing the turnaround time
of vessels, which is the objective of the problem. Specifically, we present two different
variants of the Variable Neighborhood Search (VNS) algorithm. Each variant is initial-
ized in both a greedy and a random manner. These algorithms address the problem
by incorporating four LS operators commonly utilized in vehicle routing problems. We
perform a comparative analysis of the results of these four approaches against each other
and against solutions generated by an exact solver. Our numerical experiments show
that the proposed algorithms perform better than the used solver, especially for bigger
instances. A comparison with the results from the literature is also given and shows that
the proposed VNS-based approach provides competitive results.

Keywords: VNS, port logistics, container terminals, straddle carrier routing problem,

vehicle routing.

MSC: 90C59, 90C27, 90B06.

1. INTRODUCTION

Various problems in port logistics can be modeled as discrete optimization
problems, which play a crucial role in efficiently managing the complex operations
that occur within seaports. These problems involve taking discrete decisions to
optimize various aspects of port operations, such as container handling, vessel
scheduling, resource allocation, and transportation. Some common discrete op-
timization problems encountered in port logistics include: Container Allocation,
Container Storage, Vessel Berthing and Scheduling, Quay Crane Scheduling, Rail
Yard Scheduling, Inventory Management, etc. Different metaheuristics have been
used for solving many of these problems in literature, such as POPMUSIC [1, 2],
Variable Neighborhood Search (VNS) [3], a Simulated Annealing-based simula-
tion optimization method [4], etc. In general, various metaheuristic approaches
have been developed with the goal of solving a wide range of tasks that often
cannot be solved by exact methods due to their complexity. For an overview of
metaheuristics, the reader is referred to [5], [6], and [7].

One of the important problems that arises in ports is the scheduling of horizon-
tal transport vehicles such as automated guided vehicles (AGVs), straddle carriers
(SCs), reach stackers, etc. In this paper, we focus on SC routing, where the aim
is to determine optimal routes for SCs as they transport containers between the
quay and the storage yard while adhering to loading/unloading sequences. More
specifically, we consider an optimization problem proposed in [8] which is referred
to as the Manhattan Metric Straddle Carrier Routing Problem with Buffer Areas
(MSCRB). The MSCRB emerges in seaport operations, specifically concerning the
movement of containers between large stacking areas (i.e., yard areas) and smaller
buffer areas with limited space. These buffer areas are strategically positioned
within the operational range of QCs. SCs are responsible for transporting the
containers and their routes must adhere to prescribed vessel unloading and loading
sequences given by the QCs. The primary goal is to minimize vessel turnaround
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times which can be operationalized in various directions, including to minimize
the distance of the routes for the horizontal transport vehicles. The MSCRB was
shown to be NP-hard in the strong sense in [8], where they also provided a math-
ematical model of the problem. To address the problem while considering high
performance requirements of real-world scenarios, we utilize a VNS approach and
achieve competitive results. In addition, we use GUROBI to compare the obtained
results with an exact solver.

The remainder of the paper is organized as follows. Section 2 provides the
problem description. Section 3 covers the related literature review. Section 4 gives
a detailed overview of our VNS approach. Computational results are discussed in
Section 5. Finally, the paper concludes in Section 6, summarizing findings and
contributions.

2. PROBLEM DESCRIPTION

As previously outlined, we propose a solution framework for an optimization
problem in container terminals where SCs are the primary means of horizontal
transport, facilitating container movements between large stacking areas and QCs
introduced in [8]. In the terminal, when addressing container transports from the
stacking areas, including internal movements, to QCs at the quayside, and vice
versa, a variety of container flows emerges. The categorization of these container
flows is influenced by both their initial location and final destination. SCs are
tasked with both transporting related containers from their starting point to their
designated destination and managing their stacking (i.e., lifting and dropping)
within the terminal. Upon closer examination of container flows, containers situ-
ated in the yard area, awaiting transport by an SC to a QC and subsequently onto
a vessel by a QC, are termed loading containers (outbound containers). On the
other hand, containers located in one of the buffer areas that need to be stacked in
the stacking area are referred to as unloading containers. For these unloading con-
tainers (inbound containers), after being unloaded by a QC from a vessel, SCs are
responsible for transporting them from the buffer area to their designated location
within the stacking area and ensuring their precise placement. Lastly, restacking
containers represent containers that are moved within the stacking areas. That
is, some containers may need to be repositioned within the stacking area to allow
SCs to either access a loading container or to facilitate the placement of an un-
loading container. They have to be processed by SCs before the relevant loading
or unloading of the containers.

The scope of this study defines a job as the responsibility of an SC to retrieve
a container from its initial location and transport it to its destination. This con-
cept of jobs is central to the optimization problem concerning the routing of SCs.
Given the aforementioned definition of a job, each container requiring movement
by an SC within the terminal corresponds to a distinct job. As such, a container
can be referred to as a job, more specifically labeled as a loading, unloading, or
restacking job. As previously discussed, regarding the flow of these jobs, QCs
are tasked with loading containers onto vessels and unloading them from vessels.



442 A. Cürebal et al. / VNS approach for the MSCRB problem

Each QC has a designated area within its range, intended explicitly for container
exchange, previously referred to as buffer. Containers that have been processed
or are awaiting processing by QCs are temporarily stored in buffer areas. Due
to limited space on the operational side and in the terminal as a whole, these
areas have a container capacity limit. Each QC possesses a pre-defined, sequenced
list of containers to process during the loading or unloading operations, resulting
from the vessel stowage planning. Considering the dynamic nature of container
terminals, the problem assumes that these container sequences are planned for
a relatively short timeframe, facilitating rescheduling with updated information.
Thus, throughout a planning period, each QC is specialized in either loading or
unloading operations, respectively, termed as loading crane and unloading crane
assuming that dual-cycling is not possible, which is usually the case for container
terminals.

The problem entails determining routes for the SCs, which includes the allo-
cation of jobs to individual SCs and the subsequent sequencing of these assigned
jobs. This must be done subject to the capacity restrictions in the buffer areas and
considering the precedence relations since QCs process containers in a sequenced
manner. This allocation and sequencing is designed to minimize the idle time of
QCs, which, in turn, enhances terminal productivity by directly reducing the du-
ration vessels remain docked, namely the vessel turnaround time. Considering the
pivotal role of effective coordination between SCs and QCs, it becomes evident
that the routing of SCs plays a critical role in influencing the overall terminal
productivity.

In addition to foundational assumptions, such as predefined container sequences
processed by QCs and the known initial and final destinations of each container,
the problem stipulates that all containers are of a uniform size. Furthermore, all
SCs and QCs are assumed to be homogeneous. The problem also outlines spe-
cific assumptions related to the beginning of the planning period. Regarding the
outset conditions, SCs may be positioned throughout the terminal. Additionally,
some SCs and QCs will be engaged in the processing of a container, which will
prevent them from performing immediate tasks. Expanding on this, buffer ar-
eas may already be occupied by containers awaiting further actions. Pertaining
to these containers, those situated within a loading crane’s buffer area are not
the primary focus of the optimization problem. Their allocation to SCs has been
pre-established, and they now stand in readiness to be loaded onto vessels by the
corresponding cranes. Nevertheless, they remain a consideration within the scope
of the problem due to the impact of their presence on the QC occupancy.

All relevant locations in the terminal are mapped using integer points in a
Cartesian place. Distances between points are measured using the Manhattan
metric. The time required for an SC to process a container is determined by
considering both the lift and drop durations, as well as the transit time from its
initial location to the designated destination. An SC is considered unloaded when
it is en route to the initial location of its next assigned container, either from the
final location of the previously processed container or from its initial position, if
it is the first container to be processed in the planning period. This unloaded (or
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empty) movement is a primary focus of the optimization. Whereas QCs adhere to
a fixed sequence for processing containers, the scenario for SCs offers a degree of
flexibility from the standpoint of loading operations. SCs can handle containers
in a non-fixed order, ensuring that buffer capacities are not surpassed and the
container sequence designated for QCs remains intact. In relation to handling
unloading containers, SCs are not bound by a specific sequence. Immediately
after containers are unloaded by QCs, SCs have the flexibility to transport them
from the buffer area to their designated positions within the stacking areas.

3. LITERATURE REVIEW

In regards to the main logistics processes and operations in container terminals,
Steenken et al. [9] provided detailed descriptions and classifications, as well as an
overview of methods for optimizing these processes. A subsequent publication of
this work appeared in [10]. Recently, Kizilay et al. [11] and Weerasinghe et al. [12]
have offered in-depth analyses covering both the landside and quayside aspects of
container terminal operations, including their integrated handling. In the existing
literature, many survey papers address horizontal transport means relevant to our
study as part of more general considerations. However, both Stahlbock and Voß
[13] and Carlo et al. [14] provide comprehensive discussions specifically on this
subject. Notably, Stahlbock and Voß [13] conducted an extensive review on the
operations of container terminals, emphasizing horizontal container movements
such as AGVs and double rail mounted gantry cranes. They provide a foun-
dational context on the problem domains of the vehicle routing problem (VRP)
and its variants. Further, they describe the structure and operational nuances
of seaport container terminals. They further highlight main terminal processes
such as berth scheduling, QC scheduling and horizontal transport operations. On
the other hand, Carlo et al. [14] offer a comprehensive overview of transport op-
erations, emphasizing the material handling equipment utilized. They highlight
industry trends and propose a classification system for both transport operations
and associated academic literature. Heilig and Voß [15] offer an annotated bib-
liography that chronologically reviews research on inter-terminal transportation
operations. Their work encompasses the approach, scope, and methods employed
in these studies. A bibliometric analysis was recently conducted by [16] regarding
container terminal operations from an operations research perspective, with the
goal of highlighting influential articles. Focusing on pivotal topics like big data
analytics, environmental implications, and the uncertainties prevalent in container
terminal operations, Raeesi et al. [17] offer a comprehensive analysis, detailing the
significant advancements in the domain.

Many studies within our review highlight specific horizontal transport meth-
ods and the unique facets of container terminal operations and layouts that may
differ from the primary topic of our investigation. However, due to the evident
similarities in the container flow procedures within terminals, as portrayed in the
existing literature, the scope of our review has been expanded. We do not restrict
our analysis to papers that focus solely on particular types of horizontal transport
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methods. As far as buffer areas are concerned, horizontal transport characteristics
play a crucial role in determining the flow of containers in terminals. In certain
configurations, especially due to stacking capabilities of certain horizontal trans-
port vehicles, QCs can utilize buffer areas for container exchanges, whereas in
others, QCs directly handle the loading and unloading to and from the horizontal
transport means such as for AGVs not having stacking capabilities.

In container terminal operations, the routing, dispatching, and scheduling of
transport vehicles are key research topics that have been extensively explored in
the literature. Böse et al. [18] focus on container transportation coordinated by
QCs and SCs between vessels and yard areas. In their setting, QCs have a buffer
area below them, although the capacity restrictions for these buffer areas are not
considered. They investigate two dispatching strategies, also referred to as pooling
strategies: assigning a fixed number of SCs to QCs serving a single vessel and
assigning a fixed number of SCs to all QCs. The primary objective of their work
is to minimize the time in port for the vessel by maximizing QCs productivity.
They state that this can be achieved through efficient scheduling and dispatching
of the SCs. In terms of methodology, the authors use evolutionary algorithms
and propose a genetic algorithm. They combine this with changes to terminal
processes for optimization. Kim and Kim [19] present a study on SC routing in
a port setting where QCs are designated for loading operations exclusively. In
this setup, the SC moves between specific yard-slots and the endpoints of yard-
bays to facilitate container transfers to trailers. Their main goal is to minimize
the overall distance traveled by the SC. Additionally, the authors determine both
the number of containers the SC picks up at each yard-bay and the order in
which these yard-bays are visited. The routing issue is modeled as an integer
programming model. To solve it, the authors introduce an optimization algorithm
and employ a two-step solution method. The first step determines the number
of containers to be picked up at each yard-bay during a given tour, while the
second step focuses on the sequencing of the yard-bay visits by the SC. Yin et al.
[20] focus on the scheduling of integrated QCs and SCs in the context of inbound
container operations. They consider real-world constraints like traveling time for
QCs, non-interference of QCs, safety requirements, and a specific order in which
containers must be handled. Additionally, they apply a buffer capacity rule from
[21], a more streamlined version of the one introduced in [8]. In their model, only
the QCs have the task of placing containers in the buffer area. In contrast, the
setting considered in this paper allows SCs to place containers in the buffer as
long as they respect the buffer’s capacity and the container processing sequence
for QCs. Skaf et al. [22] address the scheduling problem for unloading operations
involving one QC and multiple yard trucks at a container port. The problem
is modeled as a mixed-integer linear programming model with the objective of
minimizing the total completion time for all containers. A genetic algorithm and
exact enumerative algorithms are used by the authors in order to find solutions to
their model.

In summary, the literature on container terminal operations highlights the sig-
nificance of efficient routing, dispatching, and scheduling of transport vehicles. No-
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tably, while different objectives are presented—such as minimizing the makespan
for both horizontal transport vehicles and QCs, reducing the overall distance for
horizontal transport routes, and minimization of the total completion time for all
containers—all aim towards a common primary goal: enhancing the overall pro-
ductivity of the terminal. A reduced turnaround time for vessels stands out as a
widely recognized metric of this efficiency (see, e.g., [23]).

4. VNS FOR MSCRB

In this research, we explore using a very popular metaheuristic proposed by
Mladenović and Hansen [24], namely VNS for solving the optimization problem at
hand. Starting with the fundamental form of VNS from [24], known as Basic VNS
(BVNS), numerous variations of the VNS method have been developed. Those
methods based on the VNS methodology have demonstrated their effectiveness
in tackling a range of optimization problems [25], including discrete optimization
from location problems (e.g. the bus terminal location problem in [26], the maxi-
mal covering location problem with customer preferences [27]) to several routing
problems that share similarities with the MSCRB problem. For example, an ef-
ficient VNS with tabu shaking was used for solving a class of multi-depot VRPs
in [28]. Also, a modified VNS was proposed for solving a practical version of the
VRP with cross-docking in [29]. A VNS approach was successfully used for solving
the multi-compartment VRP with time windows considering carbon emission in
[30].

4.1. VNS algorithm

The BVNS iteratively goes though two key phases: an improvement phase,
where local search (LS) techniques are employed, and a shaking phase, aimed at
breaking free from local minima. These two phases, along with the neighborhood
change step, are performed in a cyclic manner until a predetermined stopping
condition is met. Typically, the stopping criterion is defined as the maximum
allowable CPU time for the BVNS to run.

The pseudocode for BVNS is given in Algorithm 1 as it was presented in [31].
As input for BVNS, we should provide an initial solution x, the maximum number
of neighborhoods kmax and the maximum allowable CPU time tmax. At the begin-
ning of the algorithm, the current time t is reset to 0. The main loop repeats while
t does not reach tmax. Within this loop, we firstly set k to 1 in order to start the
search within the first neighborhood of solution x. More precisely, we firstly use a
shake function to move from the current solution x, obtaining a new solution x′,
that might be even worse than x. This allows exploring the neighborhood of the
solution x′ using LS as presented in Algorithm 2, finding the best improvement
and returning the best-found solution x′ withing the used neigborhoods. Within
the BVNS, we denote the solution obtained by BestImprovementLS as x′′. Fi-
nally, using the Neighborhood Change procedure presented in Algorithm 3, we
accept x′′ as x and reset k to 0 if x′′ is better than x; otherwise we just increase
k by 1 and continue the search within the k-th neighborhood of x. These three



446 A. Cürebal et al. / VNS approach for the MSCRB problem

steps (Shake, BestImprovemenetLS and NeighborhoodChange) are repeated until k
reaches kmax. As a result of the BVNS algorithm, we have the best found solution
x.

Algorithm 1 BVNS

Require: x, kmax, tmax

Ensure: x
t ⇐ 0
while t < tmax

k ⇐ 1
repeat
x′ ⇐ Shake(x, k)
x′′ ⇐ BestImprovemenetLS(x′)
x, k ⇐ NeighborhoodChange(x, x′′, k)

until k == kmax

t ⇐ CPUTime()

Algorithm 2 BestImprovementLS

Require: x
Ensure: x
repeat
x′ ⇐ x
x ⇐ argminy∈N(x′)f(y)

until f(x) ≥ f(x′)

Algorithm 3 NeighborhoodChange

Require: x, x′′, k
Ensure: x, k

if f(x′′) < f(x)
x ⇐ x′′

k ⇐ 1
else
k ⇐ k + 1

An important part of each iteration of the BVNS algorithm is the potential
change of neighborhoods. This is performed as presented in Algorithm 3.

The Variable Neighborhood Descent (VND) method (presented as Algorithm
4) performs a change of neighborhoods in a deterministic way. This algorithm
requires an initial solution x and the maximum number of neighborhoods kmax

as input and returns the best solution x found. These neighborhoods are denoted
as Nk, k = 1, ..., kmax. Initially, k is set to 1, and we repeat two steps until we
have an improvement (i.e. until f(x) ≥ f(x′)). The first step is finding the best
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solution in the k-th neighborhood of x and call it x′. The second step is where we
perform NeighborhoodChange as presented in Algorithm 3.

There are three main variants of the VND method: sequential, nested, and
mixed. In this study, we use the sequential VND strategy, in which we return to
the initial neighborhood after discovering an improvement, referred to as B-VND
[32].

The LS step from BVNS (Algorithm 1) can also be replaced by VND (Al-
gorithm 4) from [31], which leads us to the General VNS (GVNS) presented in
Algorithm 5. This algorithm requires the maximum number of neighborhoods in
the VND phase lmax in addition to the same input as required for the BVNS. Note
that different neighborhoods N1, ..., Nlmax

are used in the VND step in addition
to the neighborhoods N1, ..., Nkmax

applied within the Shake step. The GVNS ap-
proach has been successful in the literature for various problems (e.g. the traveling
salesman problem [33], the swap-body VRP [34], the capacitated dispersion prob-
lem [35]). Therefore, we also implemented it for the MSCRB problem to compare
its performance with the BVNS.

Algorithm 4 VND

Require: x, kmax

Ensure: x
k ⇐ 1
repeat
x′ ⇐ argminy∈N(x)f(y)
x, k ⇐ NeighborhoodChange(x, x′, k)

until f(x) ≥ f(x′)

Algorithm 5 GVNS

Require: x, lmax, kmax, tmax

Ensure: x
t ⇐ 0
while t < tmax

k ⇐ 1
repeat
x′ ⇐ Shake(x, k)
x′′ ⇐ V ND(x′, lmax)
x, k ⇐ NeighborhoodChange(x, x′′, k)

until k == kmax

t ⇐ CPUTime()

4.2. Neighborhood Structures

The main concept needed to apply VNS to any problem is to construct neigh-
borhood structures suitable for solving the specific problem. We propose adapting
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neighborhood structures commonly employed in VRPs to create suitable neigh-
borhood structures for addressing the MSCRB problem, described as follows.

� An intra-route operator (focused on improvements within a single route):
2-opt;

� Inter-route operators (focused on improvements between pairs of routes): 2-
relocate (Figure 1), 2-exchange (Figure 2) and 2-opt for two routes (2-opt*)
(Figure 3).

In this implementation, all swaps are performed according to the best-improvement
strategy with the successive change of neighborhood structures.
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Figure 1: Graphic representation of the 2-relocate LS operator
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Figure 2: Graphic representation of the 2-exchange LS operator

4.3. Shaking

In addition to the operators used in the LS phase, we propose three different
shaking operators:
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SC1
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Ci Cj+1

Figure 3: Graphic representation of the 2-opt for two routes LS operator

� The first shaking operator is inspired by the LS operator 2-relocate. We
randomly select two SCs. Then we randomly select a container from the
first SC route and relocate it to a random location within the route of the
second SC.

� The second shaking operator is inspired by the LS operator 2-exchange. We
randomly select two SCs. Then we randomly select two containers from each
of the selected SC routes and exchange them.

� The third shaking operator is similar to the previous one, except that it works
with three randomly selected SCs. We then randomly select one container
from each of the selected SC routes and move the first container to the
position of the second, which in turn is moved to the position of the third,
while the third is moved to the position of the first container.

4.4. Initial solution for MSCRB

In addition to generating a random initial solution, we have developed a greedy
procedure for generating an initial solution. In the greedy algorithm, the assign-
ment of jobs to SCs is iterative, taking into account both the distances between
the current job and all available SCs and the availability status of the SCs. The
order of the jobs is determined by the predefined container orders associated with
each crane.

5. COMPUTATIONAL RESULTS

In this section, we present the computational results of the proposed methods
implemented in the Python programming language and their comparison with the
results from [8]. All our tests for instances with three and four QCs have been
carried out on a computer with Intel i5-7300HQ CPU 2.50 GHz with 8 GB RAM
memory under the Windows 10 Professional operating system, while a computer
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with Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 2.00 GHz with 16 GB RAM
memory under Windows 11 Home is used for all instance with five and six QCs.

To evaluate the effectiveness of the proposed methods and compare them with
the results of [8], test instances are constructed in the same way as presented
in [8]. All relevant locations within a specific problem instance were randomly
generated in a Cartesian coordinate system within a two-dimensional plane. The
dimensions of this plane were configured to align with real-world data according to
[8]. These instances differ in sizes: the number of QCs (3, 4, 5, 6), containers per QC
(10, 14, 18, 22), and the ratio of SCs to QCs (3, 4, 5). While each primary instance
consistently presents numbers for QCs, containers, and SCs, there are 45 variations
of each due to different buffer area capacities (3, 4, 5), and rates of restacking
jobs (0.05, 0.1, 0.15) relative to the total number of loading and unloading jobs.
Additionally, these instances are affected by five different seed values as they are
generated randomly. For the purpose of this study, we narrowed down our scope
by selecting a subset of these instances, specifically considering only those with a
buffer area capacity of four and a restacking job rate of 0.1. Consequently, each
primary instance now comprises five distinct instances, differentiated by their seed
values.

Note that in [8], the authors presented the effectiveness of their methods com-
pared with each other and compared with the results obtained with CPLEX. Their
computational experiments were executed on a PC with an Intel®CoreTM i7-4770
CPU running at 3.4 GHz and 16 GB RAM running a 64-bit version of Windows 8.
A 64-bit version of IBM ILOG CPLEX 12.7 was used. They presented the resulting
average quality ratios for each group of instances with an identical number of QCs,
containers per crane, and SCs. They also presented the percentage of instances
for which CPLEX found a feasible solution within the same time constraint we
employed in our experiments, which is 180 seconds.

To compare our results with the results from [8], we first cross-compare the
results obtained with the proposed methods with those we obtained with GUROBI
10.0.1. in Table 1 and Table 2 using the following calculations. Given a set of all
approaches J , let us denote obj(j) to represent the objective value obtained by
a specific approach j ∈ J . We normalize these values by comparing them to
the smallest (i.e., best) objective value across all approaches in J . Let j∗ be the
approach with the smallest objective value. Thus, obj(j∗) would represent the
smallest objective value across all approaches. To normalize the objective value
of each approach j, we calculate: normalized(j) = obj(j)/obj(j∗) for each j in J
and for each instance. This way, normalized(j) would give us a value where the
best approach j∗ has a normalized value of 1, and all other approaches have values
relative to this best value. Finally, we include the average values of instances with
the same number of QCs, SCs, and containers per crane in the table.

Table 1 contains the average solution quality ratios for real-world instances,
while Table 2 contains the average running times until the best solution is found
for each group of instances. In the first three columns of the presented tables,
different values of the corresponding values are given: number of cranes (QC),
number of containers for each crane to be transported by SCs (CT) and the ratio
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of the total number of SCs to QCs (R∗). The next five columns correspond to the
best objective values and the time needed to obtain it by five different approaches
we have implemented, namely the following methods:

� GVNS initiated in a greedy manner - labeled as GVNS (greedy);

� BVNS initiated in a greedy manner - labeled as BVNS (greedy);

� GVNS initiated in a random manner - labeled as GVNS (random);

� BVNS initiated in a random manner - labeled as BVNS (random);

� GUROBI, used as an exact method.

Moreover, in Table 1, the last column additionally shows the percentage of in-
stances within each group for which GUROBI was able to find a feasible solution
within the given time limit.

Let us now consider Table 1, where the best value for the given set of instances
(in each row) is indicated by the elements that are highlighted elements. It can
be seen that the greedy initial solution instead of the randomly generated one was
beneficial for both GVNS and BVNS overall. Moreover, BVNS (greedy) performed
the best among all tested methods.
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Table 1: Average solution quality ratio for real-world instances

QC CT R∗ GVNS(greedy) GVNS(random) BVNS(greedy) BVNS(random) GUROBI GUROBI[%]

3 10 3 1.008 1.003 1.007 1.002 1.034 100

4 1.004 1.006 1.005 1.006 1.016 100

5 1.002 1.004 1.005 1.005 1.009 100

14 3 1.011 1.009 1.018 1.010 1.092 100

4 1.014 1.015 1.007 1.007 1.077 100

5 1.012 1.014 1.007 1.008 1.020 100

18 3 1.006 1.046 1.017 1.007 1.200 20

4 1.005 1.012 1.004 1.006 1.260 100

5 1.004 1.015 1.007 1.013 1.093 80

22 3 1.005 1.010 1.005 1.007 - 0

4 1.008 1.035 1.006 1.008 - 0

5 1.007 1.024 1.014 1.022 1.476 80

4 10 3 1.008 1.012 1.006 1.007 1.046 100

4 1.007 1.012 1.012 1.005 1.017 100

5 1.002 1.003 1.002 1.001 1.003 100

14 3 1.014 1.023 1.015 1.002 1.121 40

4 1.016 1.026 1.006 1.015 1.127 100

5 1.010 1.006 1.009 1.006 1.053 100

18 3 1.017 1.020 1.004 1.024 - 0

4 1.006 1.026 1.004 1.013 2.293 40

5 1.012 1.015 1.009 1.017 1.283 100

22 3 1.025 1.015 1.004 1.006 - 0

4 1.023 1.034 1.003 1.007 - 0

5 1.009 1.055 1.005 1.021 - 0

5 10 3 1.004 1.030 1.012 1.018 1.056 100

4 1.010 1.035 1.014 1.024 1.013 100

5 1.032 1.027 1.024 1.036 1.000 100

14 3 1.025 1.074 1.008 1.018 3.791 20

4 1.009 1.033 1.006 1.027 1.117 40

5 1.010 1.029 1.004 1.015 1.041 100

18 3 1.005 1.060 1.001 1.027 - 0

4 1.014 1.058 1.000 1.021 - 0

5 1.003 1.060 1.009 1.041 - 0

22 3 1.008 1.076 1.003 1.025 - 0

4 1.004 1.056 1.001 1.045 - 0

5 1.004 1.077 1.005 1.045 - 0

6 10 3 1.007 1.028 1.005 1.024 1.077 100

4 1.019 1.048 1.005 1.047 1.023 100

5 1.013 1.038 1.009 1.021 1.002 100

14 3 1.012 1.050 1.004 1.014 - 0

4 1.014 1.072 1.004 1.053 1.298 20

5 1.006 1.062 1.001 1.033 1.206 80

18 3 1.023 1.098 1.000 1.042 - 0

4 1.011 1.080 1.001 1.049 - 0

5 1.004 1.044 1.003 1.056 - 0

22 3 1.015 1.175 1.002 1.018 - 0

4 1.001 1.085 1.005 1.074 - 0

5 1.002 1.062 1.012 1.046 - 0

AVERAGE 1.010 1.040 1.007 1.022 1.129 50.417
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Table 2: Average times for real-world instances

QC CT R∗ GVNS (greedy) GVNS (random) BVNS (greedy) BVNS (random) GUROBI

3 10 3 73.1 112.1 107.5 106.9 180
4 40.3 95.8 74.5 97.0 180
5 55.2 106.7 53.1 57.8 180

14 3 125.5 88.1 69.0 112.0 180
4 116.7 92.4 108.1 102.8 180
5 110.5 134.0 108.6 49.1 180

18 3 166.5 129.4 108.4 91.6 180
4 72.4 127.8 58.2 106.1 180
5 90.2 150.4 109.2 140.0 180

22 3 134.6 145.5 84.5 144.5 -
4 91.1 118.4 56.7 117.5 -
5 122.7 116.7 94.3 102.9 180

4 10 3 153.0 108.6 110.9 77.9 180
4 85.1 108.5 75.5 101.9 180
5 83.1 76.9 55.0 85.2 149.84

14 3 129.4 126.3 66.8 90.5 180
4 118.9 150.3 123.9 110.2 180
5 123.4 146.1 134.3 107.6 180

18 3 149.4 163.0 132.6 83.7 -
4 102.4 162.6 123.5 128.0 180
5 140.7 154.4 94.0 84.2 180

22 3 142.6 168.7 117.2 164.3 -
4 177.7 183.3 125.6 144.0 -
5 176.1 180.2 134.6 140.7 -

5 10 3 143.9 165.4 128.8 114.4 180
4 153.8 133.3 66.9 84.1 180
5 82.7 142.0 85.4 97.8 151.645

14 3 181.9 186.5 137.0 156.2 180
4 181.9 183.1 161.9 178.1 180
5 164.5 175.8 153.3 167.2 180

18 3 193.5 191.9 155.7 167.8 -
4 187.1 191.6 142.3 171.7 -
5 197.6 194.5 179.3 161.6 -

22 3 219.3 191.8 125.2 180.8 -
4 201.1 207.0 160.3 182.5 -
5 217.3 222.3 151.3 188.1 -

6 10 3 124.5 161.9 133.4 149.5 180
4 143.7 174.6 135.9 155.9 180
5 150.3 160.7 123.7 143.2 142.837

14 3 190.9 189.8 146.5 146.3 -
4 188.1 185.7 121.2 139.2 180
5 190.1 190.1 140.2 162.2 180

18 3 204.8 199.0 175.1 176.8 -
4 205.7 200.6 162.9 154.1 -
5 208.4 213.0 140.1 177.2 -

22 3 227.7 219.9 295.3 307.5 -
4 231.0 193.9 275.4 270.8 -
5 200.8 205.0 268.3 304.1 -

Finally, the comparison between the best results of [8] and the results of our
BVNS (greedy) implementation is presented in Table 3, using the overall average
values of the average solution quality ratio. The instances are grouped by R∗

value. We can see that for these test instances generated in the same way as in
[8], our BVNS (greedy) outperforms GUROBI more than the best approach from
[8] compared with CPLEX. Note that our GUROBI implementation outperforms
their CPLEX implementation in terms of the percentage of feasible solutions found.
A more detailed comparison was not possible because neither the results on the
individual instances nor the instances in [8] were available.

Table 3: Comparison with the best approach from [8]

R∗ 3 4 5

Best approach from [8] 1.011 1.013 1.011
CPLEX from [8] 1.046 (29.6) 1.024 (32.9) 1.039 (35.8)
BVNS (greedy) 1.007 1.005 1.008
GUROBI 1.164 (36.25) 1.144 (50) 1.099 (71.25)
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6. CONCLUSION

This paper presented solution frameworks for the routing of SCs, taking into
account QC operations, buffer area capacities, and the precedence relations set by
QCs to handle container movements between the yard area and the QCs.

We presented two different variants of the VNS method and each variant is
initialized in both a greedy and a random manner. These algorithms address the
problem by incorporating four LS operators and three shaking operators. We
performed a comparative analysis of the results of these four approaches against
each other and against solutions generated by an exact solver. Our numerical
experiments showed that greedy initialization was useful for both VNS approaches.
Moreover, the computational results on the tested instances indicated that all our
proposed algorithms perform better than the used solver, especially for larger
instances. Finally, a comparison with the results from the literature showed that
the proposed VNS-based approach is promising for solving the MSCRB problem.

In addressing the objective function from a practical standpoint, the problem
focuses on minimizing the time instants when QCs interact with their buffer area,
effectively reducing their idle time. By ensuring that the QCs are utilized effi-
ciently, we expedite container loading and unloading processes, leading to vessels
spending less time docked at the terminal. This not only enhances the overall
productivity of the terminal but also curtails operational costs associated with
prolonged vessel docking.

Future work can be performed in various directions, including testing on more
instances. Moreover, we want to test other variations of the VNS approach as well
as other metaheuristic approaches. In this paper, the problem assumes that all
containers, SCs, and QCs are homogeneous. Moving forward, a more realistic set-
ting can be developed by introducing heterogeneous elements. Incorporating SCs
with different speeds and container handling capacities can make the model more
reflective of real-world scenarios. Furthermore, considering collision avoidance in
the yard area would enhance the model’s alignment with real-world operational
challenges. Incorporating uncertainties, such as the unexpected unavailability of
SCs or QCs, can further approximate real-world challenges. As sustainability be-
comes a central concern, energy consumption could be introduced as an objective
to address the environmental impact of terminal operations. There is a potential
in integrating machine learning techniques into the optimization processes. Addi-
tionally, ensuring the efficacy of these methods on larger datasets would also be a
promising avenue for research. In summary, while this study provides a founda-
tional understanding of the problem, there are numerous avenues through which
it can be expanded to align more closely with the complex challenges faced in
real-world container terminal operations.
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