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Abstract: We study on-line versions of maximum weighted hereditary subgraph 
problems for which the instance is revealed in two clusters. We focus on the comparison 
of these on-line problems with their respective off-line versions. In [3], we have reduced 
on-line versions to the off-line ones in order to devise competitive analysis for such 
problems. In this paper, we first devise hardness results pointing out that this previous 
analysis was tight. Then, we propose a process that allows, for a large class of 
hereditary problems, to transform an on-line algorithm into an off-line one with 
improvement of the guarantees. This result can be seen as an inverse version of our 
previous work. It brings to the fore a hardness gap between on-line and off-line 
versions of those problems. This result does not apply in the case of maximizing a -
colorable induced subgraph of a given graph. For this problem we point out that, 
contrary to the first case, the on-line version is almost as well approximated as the off-
line one.  

k
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1. CONTEXT AND AIMS OF THE PAPER  

A set-property π , assigning to every finite set  a Boolean value (either true 
if  satisfies 

V
V π , or false in the opposite case), is hereditary if, whenever  satisfiesV π , 

so does every subset of . V π  is called trivial if it is satisfied for only a finite number of 
sets, or unsatisfied for only a finite number of sets. Heredity is very natural in 
operations research; a generic example is the case where constraints represent the 
saturation of a shared resource: it is quite natural that a part of a feasible program 
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remains feasible ("who can do more can do less"). Consider then a general decision 
problem where one has to optimally select (accept) a subset  of alternatives among 

. Assume then that profits are associated to alternatives: to select 
'V

V ∈a V  induces a 
profit ( )p a  while to reject it induces neither a cost, nor a profit. The related problem is 

then to find a feasible subset  maximizing the additive profit ' ⊆V V ' ( )∈a V( ') = ∑p V p

'V

a . 

Whenever feasibility represents the non-saturation of resources, it is a hereditary 
property. We also suppose that it is not trivial and that it can be polynomially tested for 
every input set. Many times, such a set property can be defined by a graph property 
since, given a graph G V , subsets of  are one-to-one associated to induced 
subgraphs of G. In this context, the problem of finding in  a feasible set  
maximizing the additive profit is an instance of the combinatorial problem (or class of 
problems) WHG, called maximum hereditary subgraph problem. The unweighted 
problem HG corresponds to the case where all profits coincide. Two typical examples of 
such problems are maximum weighted independent set and maximum weighted clique 
problems. In our generic model, both problems correspond to the case of pair wise 
incompatibilities: for the maximum independent set problem, edges of the input graph 
represent incompatibilities whereas, for the maximum clique one, the input is a 
compatibility graph. HG and WHG are NP-hard [5] and moreover are hard to 
approximate [7, 8]. 

( , )E= V
V

t
t

π

ρ< ≤0 1

ρ
t =t n

V

In on-line computation, the instance is not supposed to be completely known 
before one begins to solve it, but it is revealed step-by-step. At each step a new part of 
the instance is revealed and one has to decide how this part contributes to the solution 
under construction. Given an integer , we denote by L(W)HG ( )  the on-line version 
(or on-line model) of (W)HG where the instance is revealed in  steps. At each step, a 
subgraph of new vertices is revealed together with edges linking new vertices and 
already known vertices. An on-line algorithm for this model selects, at each step, some 
vertices that will be included in the solution. The set of so selected vertices has to 
satisfy 

t

. The quality of an on-line algorithm is measured, for every instance, by the 
ratio of the value of the on-line solution to the optimal value of the whole instance. The 
algorithm is said to guarantee competitivity ratio ρ  against optimality (where  
for the case of maximization) if, for every one-line instance, the related ratio is at 
least . 

In [3], we have studied LHG ( )  for different values of  and also for , 
corresponding to the case where  is revealed vertex by vertex. In this paper we have 
also considered LWHG(2) we are interested in. It has its own interest with regard to 
the application fields: suppose for instance that vertices do not appear at the same 
time, one can defer the decision in order to take into account new information, but one 
has imperatively to take a first decision at a fixed deadline for the already known 
vertices. It corresponds to on-line problem LWHG(2) where the first part of the 
instance consists of all vertices that are known (submitted) before the deadline, and the 
second one contains the last vertices. From a theoretical point of view, this on-line 
version is particularly interesting: it corresponds to the first level of on-line framework 
for this problem (LWHG(1) = WHG is the usual off-line problem). Consequently, this 

t
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on-line model is really suitable for understanding in what measure the on-line 
framework influences the hardness of the problem. 

The aim of this note is namely to study the borderline between on-line and off-
line, and more precisely, to evaluate the hardness gap between WHG and LWHG(2). 
For the case of WHG, seen as LWHG(1), the competitivity ratio corresponds exactly to 
the usual notion of approximation ratio ([5]). So, approximating the off-line problem 
with performance guarantees and solving the on-line version within a competitivity 
ratio are very similar points of view that we try to compare. The extra difficulty of 
LWHG(2) is due to the fact that a good choice of vertices during the first step can 
drastically restrict the possibilities during the second step (for preserving feasibility); 
so, it can be a very bad choice for the whole instance. 

Approximation preserving reductions, linking the approximation behaviour of 
(even really) different problems, are very useful in order to compare the approximation 
hardness of those problems. Such reductions describe process allowing us to transfer an 
approximation result for the former problem into another approximation result for the 
latter. The expansion of the reduction is a function describing how the approximation 
ratio is affected during the transfer. In order to link the approximation behaviour of 
WHG to the competitivity behaviour of LWHG(2), we conceive reductions that are able 
to link an off-line problem and an on-line one. This generalization of approximation 
preserving reductions already appears as very interesting and useful in on-line 
framework. In [3], we have presented a first example of such a reduction that 
transforms an approximation algorithm for WHG into an on-line algorithm for 
LWHG(2). We have also given other similar examples allowing devising competitivity 
analysis of several on-line versions of HG. The expansion of the reduction from WHG to 
LWHG(2) can be considered as a first evaluation of the relative hardness of both 
problems. In what follows, we show that, in a way, this first evaluation is tight. 

We first devise a hardness result for LWHG(2). We deduce that the above 
reduction cannot be significantly improved: in the other case, an optimal algorithm for 
WHG could be transformed into an on-line algorithm for LWHG(2), contradicting our 
hardness result. But it does not allow us to compare polynomial-time approximation of 
WHG and polynomial-time on-line solution of LWHG(2). Our main result is then a 
reduction that allows us to transfer, for a class of hereditary properties, an on-line 
algorithm for LWHG(2) into an approximation algorithm for WHG with improved 
ratio. This reduction holds either for polynomial, or for non-polynomial algorithms. It 
allows us to devise hardness results for polynomial-time on-line algorithms. It also 
points out that improving the on-line algorithm given in [3] for LWHG(2) would allow 
us to improve the best known polynomial-time approximation of WHG. 

From a theoretical point of view, we find this result to be interesting for two 
reasons. It brings to the fore a hardness gap between an off-line problem and its on-line 
version. It also allows us to achieve hardness results dealing with polynomial-time on-
line algorithms, whereas most of on-line hardness results do not take into account the 
completion time. But the algorithmic complexity is precisely a significant parameter in 
the framework of on-line models for which the instance is revealed per large clusters. 
The second interest is that this is, to our knowledge, the first non-trivial reduction that 
exploits an on-line algorithm in order to solve an off-line problem. In [3], we have 
already devised reductions allowing changing off-line algorithms into on-line ones and 
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also reductions between on-line problems. So, in this paper we give an example of the 
third possible case of reductions in on-line context. 

Finally, in the last section we focus on maximum -colorable induced 
subgraph problem for some . The previous result does not apply for this case; we 
show that its on-line version is almost as well approximated as the off-line version. 

k
≥ 2k

2. DEFINITIONS AND NOTATIONS 

We denote by  the set of positive integers and by  the set of rational 

numbers. For a positive real number 

` _
,   x x  denotes the largest integer less than, or 

equal to x , and   x  denotes the smallest integer strictly greater than x . In particular, 

if x  is an integer, . For a rational number , we define its dimension 

by the minimum value of 

= =  x x −   1x r

pq  where ,p q  are integers such that /=r p . For a real 

vector , we denote by |  its L

q

|w |w 1-norm; if  is a finite set, |  denotes its 
cardinality (the L

E E
1-norm of its characteristic vector). 

In this work, we will only consider simple graphs ([1]), i.e., non-oriented, 
without loop and with at most one edge between every two vertices. Let G V  be a 
graph, we denote by  (or n ) its order 

( , )= E
( )n G ( | |)=n V

w

' ;∈

. For every set of vertices , 

we denote by  the subgraph of  induced by . Let us then assign to every 
vertex  a rational weight ; we denote by  the vector of weights (each component 

is associated to a vertex and corresponds to its rational weight); for a set of vertices 
, its weight is defined by 

' ⊂V V

[ 'G V ] G

) =

'V

')

v

V

vw

' ⊂V ( ' (∑ vv V w w

)

w V  is also called the weight of the 

graph . We also denote by 

V

[ ']G V (=W w V  the weight of the whole graph.  is 
called a weighted graph; G  denotes the set of finite graphs and G  the set of finite 

weighted graphs. 

( ,G w)

w

 
2.1 Hereditary properties 

Definition 1. Hereditary property  
Let : { , }π → false trueG  be a graph-property. 

(i) π  is hereditary if: 

( , ) , ( ) ' , ( [ '])π π∀ = ∈ ⇒ ∀ ⊂G V E G V V G VG  

(ii) π  is trivial if it is satisfied for only a finite number of graphs, or is unsatisfied for 
only a finite number of graphs. 

 

The following remark is immediately deduced from the definition: 
 

Remark 1. Let π  be a non-trivial hereditary graph-property: 
(i) ∀ ∈ , there exists a graph of order n satisfying , ≠` 0n n π . 

(ii) ,∃ ∈ ∀ ≥`K n K , there exists a graph of order  that does not satisfy n π . 
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In this work, we consider a polynomially computable non-trivial propertyπ . 
We assume without loss of generality that a single set, seen as a graph ({ , 
satisfies 

},v )0
π ; in the other case, x  would never belong to a feasible set and could also be 

drawn out of the instance. Let ( , )=G V E  be a graph, a subgraph   
, satisfying 

[ '],G V ' ,V V⊂
' ≠V V π  is called maximal (for inclusion), or non-extendible if, 

 does not satisfy \ 'V , [ ' {∪G V }]v∀ ∈v V π . An independent set is a graph without edges 

and a clique is a complete graph. "Independent set" and "clique" are two well-known 
hereditary graph properties that play a specific rule in what follows. In both cases the 
following properties C1 and C2 can be immediately deduced: 

 

C1. For every graph G V  and every size n , there exists a graph  

such that V V   satisfies 

( , )=1 1 1E

| | , [=2 2V n G
2 ( , )=G V E

,= ∪1 2V ]=1 1V G , 2V π  and, ( , ) ,∀ ∈ ×1 2 1v v V 2V { , }1 2v v  

does not satisfy π . 
C2. For every graph  and every size , there exists a graph  

such that  and every single set { }
( , )=1 1 1G V E

, | | ,=2 2V n
2n ( , )=G V E

= ∪1 2V V V [ ]1G V G= 1 2⊂2x V  is a maximal 

(for inclusion) set satisfying π  in . G
 

One can easily show that π  is unsatisfied for exactly one graph of order 2 if and only if 
it is either "independent set" or "clique". We will also consider examples of hereditary 
properties that are satisfied for every graph of order 2. In order to point out, in a more 
general framework, properties that look like C1 and C2, we introduce the following 
definition:  

 

Definition 2. Let π be a hereditary graph property and let k be an integer. 
(i) We say that π  satisfies the k-boundary condition if, for every n , there exists a 
graph of order n such that every induced subgraph of G of order 

≥ + 1k
+ 1k  does not satisfy π . 

(ii) We say that π  satisfies the k-star-boundary condition if every graph of maximum 
degree at least k (containing a star of size + 1k  us partial subgraph) does not satisfy π . 
 

Proposition 1. Let π  be a hereditary graph property that is satisfied for every single 
vertex. π  satisfies a k-boundary condition, for some k, if and only if it is false for some 
clique or independent set. 
 

Proof: Let us first suppose that a graph ( , )= H HH V E , that is either a clique or an 

independent set, does not satisfy π . Let us define | |= −1Hk V  ( H  is not a single set 

since it does not satisfy π ). Then, for every , there exists a graph of order n  (a 
clique or an independent set, respectively) which every subgraph of order  is 
isomorph to

≥ + 1n k
+k 1

H ; so, π  satisfies the -boundary-condition. k
Let us now suppose that every independent set and every clique satisfy π . For 

 there is (see for instance [1]) a finite number ( , ) ,∈ ×` `m n ( , )R m n  (the so-called 
Ramsey number) so that every graph of order at least ( , )R m n  contains either a clique 
of size  or an independent set of size . Consequently, for every integer , every 
graph of order at least 

m n k
( ,+ +1 1)R k k  contains an induced subgraph of order  that 

satisfies 
+ 1k

π , which concludes the proof. ♦ 



 M. Demange / Reducing Off-Line to On-Line: An Example and Its Applications 8

This proposition brings to the fore that many hereditary graph properties 
satisfy a -boundary condition. Among over let us mention independent, clique, 
planar, acyclic, -colorable, of maximum degree , with at most -edges 
satisfying, respectively,  and -boundary-condition. -star-

boundary condition trivially implies -boundary condition. l -colorable with  does 
not satisfy the -star-boundary condition for any value of ; on the other hand, 
properties "of maximum degree " and "with at most  edges" satisfy -star-
boundary condition. Let us also note that, for every  - (star)-boundary condition 
implies - (star)-boundary condition. The following properties are natural extensions of 
C1 and C2: 

k
k

k

k

≥

( ) /+ 1 2k k
k

≥ 2l

+ 1k

, , , , ,− − − − − + −1 1 4 2 1k k

k

k

k

,l k

k
k
k

l

 

C1.1k. For every graph G V  of order  and every integer , there exists 

a graph  such that 

( , )=1 1 1E ≥1n

|
k 2n

( , )=G V E , | , [ ]= =∪1 2 2 1V G V G= 12V nV V ,  satisfies 2V π  and, 

, | | ,′∀ ⊆1 1V V , { }′′ = ∀ ∈1 2v ∪2 1V V v2V k  does not satisfy π . 

C1.2k. For every graph  and every integer , there exists a graph 

 such that ,  satisfies 

( , )=1 1 1G V E

, | |∪1 2V V V V

≥2n

2

k

1( , )=G V E , [ ]= =2 2 1n G V G= V π , and,  

 does not satisfy 

,′∀ ⊆2 2V V

| | ,= ∀V k ,′ ∈2 1 1v V V {∪2 }′ 1v π . 

C2k. For every graph G V  and every integer , there exists a graph 

 such that  and, 

( , )=1 1 1E

, | |∪1 2V V V V

≥2n k

= 1( , )=G V E , [ ]= =2 2 1n G V G , | | , \ ,′ ′ ′∀ ⊆ = ∀ ∈2 2 2 2V V V k v V V  

 does not satisfy { }′ ∪2V v π . 
 

C1 and C2 correspond to the case where = 1k . C1.1k and C1.2k trivially hold 
if π  satisfies the -star-boundary condition, and C2k k is satisfied if π  satisfies the -
boundary condition. In fact, let us suppose that k -boundary condition holds for a given 

; then, given a graph  and an integer n , let 

k

k ( , )=1 1 1G V E ≥2 k H  be a graph of order 

 which every induced subgraph of order +2 1n + 1k  does not satisfy π ; let also v  be a 

vertex of 
0

( , )= H HH V E  and let [ \ { }] ( , )= = V

( , )
2 0 2 E2 )HG H V v . We define  

such that  and for every 

( ,=G V V∪1 2 E

[ ] ,=G V G[ ] =2 2V G1 1G ∈ ×1V1 2v v 2V ,  and v  are linked 

by an edge if and only if
1v 2

( ) ∈0 2 Hv v E . Then, , | | , \ , [ { }]′ ′ ′ ′∀ ⊆ =2V k ∀v∈ 2V V ∪2G2 2V V V v  

is a subgraph of H  of order + 1k ; so it does not satisfy π , that corresponds to 
condition C2k . 

Property C1 has a nice consequence, called C3 that will be useful in the 
sequel: 

 

C3. Let G V  be a graph, let ( , )=1 1 1E ,′ ⊆1 1VV  satisfying π , and let  be an integer, 

there exists a graph G V  such that 
2n

]( , )= E , | , [|= =∪1 2 2V V V V n G V G= 12 1 ,  satisfies 2V

π  and V  is a maximal subgraph of ′1 [ ]′ ∪1G V V2  satisfying π . 
 

C1.1k corresponds to property C3 for every ′1V  of size . If k [ ]′1G V  has at least one edge 

and π  is "without triangles", then C3 is also satisfied. Let us finally point out another 
situation for which property C3 holds: 
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Proposition 2. Let π  be a hereditary property, let ( , )=1 1 1G V E  be a graph, and let 

 be such that  is a maximal induced subgraph of G satisfying ,′ ≠1 1V V [ ]′1G V π . Then 

property C3 holds. 
 

Proof: Let \ , [ { }′ ′ ]∈ ∪1 1 1 1 1 1V G V vv V  does not satisfy π . Let  be an integer and 

 be a graph of order  satisfying 
2n

( ,=2 2G V )2E 2n π . Then, we define edges between  

and  such that every vertex of V  has the same neighbourhood in  as . 

Consequently, 

1V

1v2V 2 1V

, [ { }]′ [ { }′ ]∀ ∈ ∪2 2 1 2v V G V v = 1 1V ∪ 1vG  does not satisfy π . 

 
2.2. WHG and approximation algorithms 

WHG is the problem of finding, for every weighted graph , a maximum 
weight induced subgraph of  satisfying 

( , )G w
G π . Let A  be a polynomial-time algorithm for 

WHG computing, for every weighted graph ( , , an induced subgraph of  
satisfying 

)G w G
π . We denote by ( , )A G w  the subgraph computed by A  (or equivalently its 

vertex set) and by• ( , )λA G w  the weight of ( , )A G w ; we also denote by ( , )β G w  the 

optimal value of instance ( , , i.e., the maximum weight of an induced subgraph of 
 satisfying 

)G w
G π . Several particular cases of WHG are well-known; let us notably 
mention the maximum weighted independent set problem denoted by WS, the 
maximum weighted clique problem denoted by WK, and the maximum weighted -
colorable subgraph denoted by WC

k

k. 
 

Definition 3. Approximation ratio 
Let A be a polynomial time approximation algorithm for WHG and : ] , ]ρ →` 0 1A  be a 

function. We say that A guarantees approximation ratio ρA  if: 

( , )( , ) , ( )
( , )

λ ρ
β

∀ ∈ ≥A
w A

G w
G w n

G w
G . 

WHG is known to be hard to approximate; the following theorem recalls some 
hardness results for it: 

 
Theorem 1. If ≠P NP , then: 
(i) there exists ] , [ε ∈ 0 1  such that HG cannot be polynomially approximated with ratio 

ε −1n  for any nontrivial hereditary property that is false for some clique or independent 
set. ([8]) 
(ii) for maximum clique and maximum independent set problems, item (i) holds for 
every .ε > 0 5 . ([7]) 
 

Without loss of generality, we can assume that an approximation ratio for 
WHG is at least , where W  denotes the sum of the weights and n is the order of 
the graph instance: in fact the naÈve algorithm computing, for every instance , a 
vertex of maximum weight (seen as a graph satisfying 

/W n
( , )G w

π ) trivially guarantees this 
ratio. 
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2.3. An on-line version: LWHG(2) 

The on-line version of WHG is denoted by LWHG. We are interested in the 
case, denoted by LWHG(2), where the instance is revealed in two clusters: at the first 
step a weighted graph  of order n  is revealed and one has to 

irrevocably decide which vertices of  belong to the solution. Then, the second part of 

the instance  of order  is revealed together with edges between 

 and  and one has to complete the solution by vertices of  in such a way that 

the whole solution satisfies 

( ( , ),=1 1 1 1G V E w

1V

, ), )2 2E w n

) 1

( (=2 2G V 2

1V 2V 2V

π .  and G  are called clusters. In our context, we also 

suppose that the order  and the total weight |
1G 2

n | | |= +1 w2W w  of the whole graph are 

known at the beginning of the on-line process. If Π  is a particular case of WHG, we 
define  and  as well (for instance LWS(2), LWK(2) and LWCΠL ( )Π 2L k(2)). An on-line 
algorithm LA has to select some vertices of  and  as soon as they are revealed, so 

that the whole solution satisfies 
1V 2V

π . The computational complexity of LA is the sum of 
the complexities of both steps; LA is said to be polynomial if its computational 
complexity is bounded above by ( )P n , where P  is a polynomial function, and  
denotes the order the whole graph. We then denote by  the whole graph and by 
LA  the on-line solution computed by LA for the graph  if G  is 

revealed at the first step. •

n
( , )G w

(( 1,G w),G ) ( , )G w 1

(( , ), )λLA 1G w G

( , )1 1G w

 denotes the value (weight) of LA . 

For every weighted graph , with

(( ,G w),G )1

| | =1 1W

n

(( ), ,

w , for every rational number  

and every integer , let us consider an instance of LWHG(2) for which ( ,  is 

revealed at the first step and the whole graph is of size  and of total weight . We 
denote by LA  the set of vertices introduced in the solution by LA at the 

first step (when  has been revealed) and by 

>W W

1 1G w

W

1

)≥ 1n n

(( , ), ,1 1G w n

1G

)W

, )λ 1 1G wLA n W  its value. 

 
Definition 4. Competitivity ratio 
Let LA be an on-line algorithm for LWHG(2) and : ] ,→`LA 0 1]c  be a function. We say 

that LA guarantees competitivity ratio LAc  if: 

(( , ), [ ])( ( , ), ) , | | , , (
( , )

λ
β

∀ = ∈ = ∀ ⊂ ≥LA 1
1 Lw

G w G V
G V E w V n V V c n

G w
G )A . 

 
Algorithm 1. LA 
 

begin 
if ( ( )) ( ) ( ( )) / ( )ρ≥1 2 2w A G w V n G n G2  then 

output ( )1A G  

else 
output ( )2A G  

fi 
end 
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We denote by PWHG the restriction of WHG to instances for which weights 
are polynomially bounded: if P  is a polynomial function, we restrict ourselves to 
instances of order  for which the dimension of each weight is bounded above byn ( )P n . 
Roughly speaking, it corresponds to the case where we allow polynomial-time 
complexities to be polynomially related to dimensions of weights. 

 

Remark 2. By multiplying every weight by P(n), one gets an instance of PWHG, that is 
equivalent, and for which every weight is an integer. So, PWHG reduces to the case of 
polynomially bounded integer weights. 
 

 
3. COMPETITIVE ANALYSIS FOR LWHG(2):  

ON-LINE REDUCES TO OFF-LINE 

The following result is shown in [3]: 
 

Theorem 2. ([3]) LWHG(2) reduces to WHG; the reduction allows us to transform a 
( )ρ n -algorithm A for WHG such that ρ  decreases, ρn  increases and, 

 ( ( , ), ) ∈ wG V E w G , ( , ) ( ) /∀ = λ ≥A G w w V n , into an on-line algorithm for LWHG(2) 

guaranteeing, for every ε > 0  and for every instance  ( , )G w

( )min ( ),
( ) ( )

ε ρρ
ε ε

  ≥  
+ +  

LA
1

1 1
n

c n
n

. 

Let us note that the hypothesis " ρ  decreases, ρn  increases and, 
 ( ( , ), )∀ = ∈ wG V E w G , ( , ) ( ) /λ ≥A G w w V n " is not restrictive. Algorithm 1 (called LA) 

describes the reduction: it is parameterized by A, an off-line algorithm for WHG that is 
assumed to guarantee an approximation ratio ρ . LA has the same computational 
complexity as A. In particular, this reduction preserves polynomial-time complexity, 
but it also holds if A is not polynomial. 

Let us now focus on ratios of the form1 ( ) ( ) /ρ =n f n n
( ) /f n n

, where n  denotes the 
order of the graph,  infinitely increases and  decreases beyond a value . In 

[3], we deduce the following corollary: 

f 0n

 

Corollary 1. If A is an approximation algorithm for WHG achieving ratio of the above 
form, then: 
(i) for every ε > 0 , there exists a constant ( )εK  such that, for every graph with 

( )ε>n K , LA achieves competitivity ratio 

( ) ( ) /ε −≥ + 1
LA 1c f n n . 

(ii) If furthermore, n G , ( ) ( ) /= =1 2 2n G n

( ) ( / ) /ε −≥ + 1
LA 2 1 2c f n n . 

                                                 
1 Most of the known approximation results for problems of the class WHG involve such ratios. 
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First item is immediately deduced from theorem 2 while the second one is 
deduced from a slight improvement of its proof in the case where ( ) ( )=1 2n G n G . 

A polynomial-time algorithm for WHG guaranteeing approximation ratio 
 is devised in [6]. For the special case of maximum weighted independent set 

WS, this ratio can be improved ([6]) to O . We immediately deduce the 
following corollary (item (ii) corresponds to the case where A is an exact algorithm for 
WHG): 

(log / )O n n

(log / )2 n n

 
Corollary 2. 
(i) LWHG(2) admits a polynomial-time on-line algorithm guaranteeing competitivity 
ratio ( log / )O n n . 

(ii) for every ε > 0 , there exists a constant ( )εK  such that LWHG(2) admits an on-line 
algorithm guaranteeing, for every graph of order at least ( )εK , competitivity ratio 

( ) (ε −+ 11 / )1 n . 
(iii) LWS(2) admits a polynomial-time on-line algorithm guaranteeing competitivity 
ratio . (log / )O n n
 

4. HARDNESS RESULTS 

In this section, given an approximation algorithm for WHG guaranteeing ρ , 
we suppose that there exist a weighted graph  and a constant ( , )1 1G w ν > 0  such that: 

( , ) ( ( )) ( , ) ( ) ( , ) ( ( ))β ρ λ ν β ρ≤ < +1 1 1 1 1 1 1 11AG w n G G w G w n G . (1) 

This condition means that the ratio cannot be widely improved for this 
algorithm. In the case where the ratio is asymptotically reached, ν  can be chosen 
arbitrary small. Then, we devise the following proposition: 

 
Proposition 3. Let A be an approximation algorithm guaranteeing ρ  for WHG and 
satisfying relation 1 for a constant ν ; then, algorithm 1 parameterized by A cannot 
guarantee a competitivity ratio strictly better than 

( / )( )
/

ρν+
2

1
2

n
n

 

even if both clusters have the same order. 
 
Proof: Let ] , [ε ∈ 0 1 , and let  be an instance of WHG (of order  and of total 

weight ) satisfying relation 1, for a constant 

( , )1 1G w 1n

1W ν . Let = 12n n  and let  be a 

rational number such that: 
2W

( , ) ( , )ρ β ρ β
ε

   < ≤   +    
1 1 2 1 1

1
1 2 2 2 2

n n n n
G w W G w . (2) 
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Let us consider an on-line instance of LWHG of order  and of total weight 
 for which  is revealed at the first step and the second cluster G  is a 

graph of order n , of total weight W , and satisfying 

n
+1W W2 )( ,1 1G w 2

/ 2 2 π . Let us consider the solution 

computed by algorithm 1 for this instance. From relations 1 and 2 we have : ( /= 2n n )2

( )( ( , )) ( , ) ρλ= ≥ 2
1 1 1 1 2

2
A

n
w A G w G w W

n
  

and consequently, algorithm 1 outputs A ( , , while )1 1G w ( , )β ≥ 2G w W . Relations 1 and 

2 imply that, for every ] , [ε ∈ 0 1 , the related competitivity ratio is bounded above by 

( )( ) ( / ) /( /ε ν ρ+ +1 1 2n )2n , which concludes the proof. ♦ 

 
This result means that the analysis of algorithm 1, performed in theorem 2, 

cannot be significantly improved. In particular, let us point out that, in the case of 
ratios of the form  where f increases, the bound becomes ( ) /f n n

( / )
( )ν+

2
2 1

f n
n

. 

Consequently, if the approximation ratio guaranteed by A is asymptotically 
tight, then item (ii) of corollary 1 is almost tight. 

As shown in the next proposition, this result can be extended to a more 
general class of algorithms including algorithm 1. In what follows, we express each on-
line instance as a two-player game: first player reveals the instance while the second 
one tries to construct the solution. In our context, this game has two steps; at step 

 player 1 reveals cluster  and player 2 decides which new vertices belong to 

its solution. This way of describing an on-line problem allows devising hardness results 
in this context. A competitive on-line algorithm can be seen as a strategy for player 2 
guaranteeing, for every instance and every way this instance can be revealed, a level of 
quality for the solution. On the other hand, a hardness result corresponds to a first 
player's strategy (for revealing instances) forcing the second one to choose a relatively 
bad solution. In our context, the order n and the total weight W  of the instance are 
fixed at the beginning of the game. Player 1 has to reveal both clusters  of 

order  and  of order n  with 

, ,= 1 2i

n

iG

( , )1 1G w

1 ( ,2 2G w ) 2 , | | ||+ = + =1 2 1 2n w Wn n , so that the 

solution constructed by player 2 cannot exceed the hardness threshold. 

w

 
Proposition 4. Let us consider an approximation algorithm A guaranteeing an 
approximation ratio ρ  that satisfies relation (1) for  and 1G ν . We also suppose that A 

constructs a maximal solution for every graph and that  does not satisfy 1G π . 

(i) If π  satisfies the k-boundary-condition, for a constant k, and if LA is an on-line 
algorithm selecting, at the first step, either ( )1A G  or 0 , then LA cannot guarantee a 

competitivity ratio strictly better than 
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( )ρν+ 1

1
2 1

n
k

n
 

even if both clusters have the same order. 

(ii) If, furthermore,  (= 1k π  corresponds to "independent set" or "clique"), then the 
bound 

( )ρν+ 1

1
2 1

n
n

 

holds even if LA is only supposed to select, at the first step, a subgraph (eventually 
empty) of ( )1A G . 

 
Note that the hypothesis that A constructs a maximal solution and that  

does not satisfy 
1G

π  is not restrictive. In fact, every approximation algorithm for WHG 
can be assumed to devise a maximal (not extendible) solution. In this case, if  

satisfies 
1G

π , then A ; but if relation (1) only holds for graphs satisfying ( ) =1G V1 π , then 

the ratio can be easily improved by a multiplicative factor ( )ν+1 . 
 

Proof: 
(i) Let  be an integer (its value will be fixed below), l /ε = 1 l  and /ε= 1n n , where 

. Let us then choose W , a rational number such that: (G )=1n n 1 2

( ) ( )( ) ( , ) ( ) ( , ) (
( )

ν ρ νν β ρ β ρ
ε ε ε

+ +
+ < ≤

−
1

1 1 1 2 1 1 12
1

1 1
1

1
n

G w n W k G w n
n

)

2

. (3) 

Second player's strategy is assumed to be such that he selects, at the first step, 
either A , or no vertex. Let us then suppose that the whole graph is of order  and 

of total weight . Let us also assume that first player reveals graph  at the 

first step. At the second step, player 1 has to reveal a graph G  of order 

( )1G n

( ) +1w G W 1G

2 ( )ε= −12n n  

and of weight . We also assume that all vertices of  have the same weight 

. 
2W 2G

/2 2W n

We then consider two cases according as player 2 selects some vertices of G  or not. 1

Case 1:  Some vertices of A  are selected. ( )1G

According to Proposition 2, condition C3 holds since A  is maximal and is not equal 

to . Then, player 1 reveals a graph  defined by condition C3 for . 

Player 2 cannot select any vertex at the second step of the game. Consequently, the 
weight of the on-line solution is bounded above by 

( )1G

(

1G 2G ( )′ =1 1AV G

)λA 1G , while the optimal value is 

at least . Using relations (1) and (3) we deduce that the related competitivity ratio 

satisfies: 
2W

( ) (
( )

ν ρ
ε ε

+
≤

−
1

LA
1

1
1

k n
c

n
)

. (4) 
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Case 2: no vertex of  is selected. 1G

In this case, player 1 reveals a graph  defined by condition C22G k; it implies that the 

on-line solution contains at most  vertices of weight , while the optimal value 

is at least 

k /2 2W n

( , )β 1 1G w . By using the fact that ε=1n n  and relation (3), we deduce that 

relation (4) also holds. It concludes the proof of (i). 
(ii) If , conditions C1 and C2 hold and the proof is the same.  = 1k

Finally, we choose l  (so = 2 /ε = 1 2 ) that minimizes the expression / ( )ε ε−1 1 , which 

concludes the proof. ♦ 
 

Proposition 3 means that, for almost every WHG-approximation algorithm A, 
the competitivity analysis of algorithm 1, devised in theorem 2 cannot be significantly 
improved. Proposition 4 means, in a way, that the related reduction from LWHG(2) to 
WHG dominates every such reduction selecting, at the first step, either A  or ( )1G 0 . In 

particular, it could not be improved by using another threshold. Finally, the following 
result points out that, for a class of hereditary properties, this reduction is almost 
optimal. 

 

Theorem 3. Let us suppose that π  satisfies a k-star-boundary condition, then for 
every ε > 0 , an on-line algorithm LA for LWHG(2) cannot guarantee competitivity ratio 

( )ε+1
k
n

 

even if weights can take only two values. 
 
Proof: Let ] , [ε ∈ 0 1 , let  be such that: ∈`1n

( )ε ε> +1 1n k  and ε ε ε+ + ≤ +
1 1

4 2 1
k k
n n

. (5) 

Let also ( / )ε= +1 1 1n n  (  and let W  be a rational number. )∈n N

We then define 

ε 
 = + +
  

2

2
1 11

1 4
2

k k k
r

n nn
. 

Let us point out that  and that relation (5) implies: ( / ) ( / )ε− −2
1 1 0r k n r k n =

( )ε ε ε≤ + = +
1

1 1
k k

r
n n

< 1 . (6) 

Following the same method as previously, player 1 has to reveal a weighted 
graph of order , of total weight  and with two possible values for weights. n W
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Player 1 first reveals a set  of order 1V ( /( ))ε ε= +1 1n n  satisfying π  (recall 

Remark (1)) and of total weight ( /( ))= +1r1W W r . All vertices of V  have the same 

weight . 
1

/=1 1w W n1

Player 2 selects a set ′ ⊂1V V1  of weight ′1W . We then consider two cases 

according as | |′ ≤ −1 1V k  or | | . ′1 ≥V k

 
Case 1: . | |′ ≤ −1 1V k

At the second step, player 1 reveals a graph  of order 2G /ε= >2 1n n

( / )( /
k

)
 defined 

by condition C2k. Every new vertex is of weight ( ) / ε− =1 2n 1 1W n rW W . Player 2 

can choose at most  vertices during the second step and consequently, the value of 
the on-line solution is at most 

k

( ) ε−
+1 1

1 1

1k W k W
n rn

 

while the optimal value is at least  (recall that  satisfies 1W 1G π ). The related 

competitivity ratio satisfies: 

ε ≤ + = 
 

LA
1

1
k

c r
n r

. 

 

Case 2: | | . ′ ≥1V k

In this case, player 1 reveals a graph G  of order 2 /ε=2 1n n ²defined by 

condition C1.1k. Then, player 2 cannot select any vertex during the second step. The 
value of the on-line solution is at most , while the optimal value is at least  

( G  satisfies 
1W − 1W W

2 π ). So, the competitivity ratio satisfies: 

≤ =
−

1
LA

1

W
c r

W W
. 

In both cases, ≤LAc r , which concludes the proof by using relation (6). ♦ 
 

This result limits the analysis of every (not only polynomial-time) on-line 
algorithm. In particular, the competitivity ratio devised in item (ii) of corollary 2 is 
optimal, up to a constant multiplicative factor, and consequently: 

 

Corollary 3. The reduction LA cannot be significantly improved. 
 

It gives us a first answer about the relative hardness of WHG and LWHG(2): 
the former trivially admits an optimal algorithm, while the best competitivity ratio for 
the latter is ( / )1 nO . But the question remains open for polynomial-time on-line 
algorithms; the next section is devoted to this question. 
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5. OFF-LINE REDUCES TO ON-LINE 

In this section, we study how an on-line algorithm can be used in order to 
solve the off-line version of the problem. Let us first remark that the on-line version 
LWHG(2) is at least as difficult as the off-line one: every instance of WHG can be seen 
as an instance of LWHG(2) for which the second cluster is empty. It brings to the fore a 
trivial reduction preserving the ratio (the competitivity ratio simply becomes an 
approximation ratio). The aim of this section is to transform an on-line algorithm into 
an off-line one with an improved ratio. 

In what follows, we are interested in polynomially bounded versions PWHG 
and LPWHG(2) of WHG and LWHG(2), respectively. The following result can be seen, 
in a way, as an "inverse version" of theorem 2: 

 
Theorem 4. If π  satisfies a k-star-boundary condition for fixed k, then PWHG reduces 
to LPWHG(2); for every ε > 0 , the reduction allows us to transform a competitive ( )c n -
algorithm satisfying, for ,≥ 2n k ( ) /ζ>c n n , with ( )ζ > −2 1k , into an algorithm 
approximating PWHG within ratio 

( )

( ) ( ( ))
( )

ζρ
ε

−
−

≥
+

2

2 1
1

2
1

k

n n c
k

n . 

Let us first point out that the condition ( ) /ζ>c n n  is not restrictive since competitivity 
ratios produced by Theorem 2 are bounded above by /[( ) ]ε+1 1 n . If  (case of 
independent set or clique), then 

= 1k
ζ  is only supposed to be positive. 

 
Proof: Since  is a fixed integer, PWHG-instances of order less than  can be solved 
in constant time; consequently we can restrict ourselves to PWHG-instances of order at 
least . 

k k

k
Let LA be a polynomial-time on-line algorithm for LPWHG(2) guaranteeing a 
competitivity ratio LAc  which satisfies, if  ,≥ 2n k /ζ>LAc n , with ( )ζ > −2 1k . We 

define [ ( )]/α ζ−1= −1 2 k  (of course ] , [α ∈ 0 1 ). Let P  be a polynomial function and 

 be an instance of PWHG, i.e., a weighted graph of order , of total weight 

| , and such that weights are polynomially bounded by 

( ,1G w

=1W

)1

| 1w
1n

P . In what follows, 

whenever the expression of P  is not known, we replace its value by the maximum 
dimension of weights in . Let finally 1G ] , [ε ∈ 0 1 , and let  be the polynomial function Q

/ε=Q P   . We recall that LA  denotes the set of vertices computed by 

LA at the first step of the on-line process if  is revealed at this step, and the 

whole graph is of order  and of total weight . 

(( ,G w ), ,1 1 n W )

( ,1G w

W

)1

n
One can polynomially compute the quantity: 

( ),...,
( )

( , ) arg max ( , ), ,
( ) ( )

ζ

λ
   ∈  − −   

  
= +  

   
�

1 1 1

1 1 LA 1 1 1 1
1 12

0
2 1

1
2

Q n n W
l

k

l
W G w G w n W

Q n Q n
. 



 M. Demange / Reducing Off-Line to On-Line: An Example and Its Applications 18

The related complexity is 
( ) (

( )ζ
  

+   − −  
1 1 1

1
2

1
2 1

Q n n W
T n

k
)2  where  denotes the 

computational complexity of LA. We then consider the following algorithm A for graphs 
of order at least : 

T

k

: ( , ) (( , ), ,| | ( , ))+ �6 LA 2A G w G w n w W G w  

where  denotes the order of . We denote by A  the solution computed by A for 
instance , and by 

n G
( ,

( , )G w
( , )G w )λA G w  (or only λA  if no ambiguity arises) its value. A is a 

polynomial-time approximation algorithm for PWHG for instances of order at least k . 
Moreover, let us point out that LA (( , ,), ) ≠1 1G w n1 12 0W  if W  and, consequently, >1 0

( , )λ > 0A G w  if . > 0W

Let  be an instance of PWHG of total weight  and of order 

, we define 

( , )1 1G w >1 0W

≥1n k

( , )
( , )

λρ
β

= >1 1
1

1 1
0A G w

G w
 

and 

( ) ( , )
( ) ( )

λ
α

 
=  

 
1 A 1 1

2
1 1

1
2

Q n G w
W

Q n c n
. 

Then, we have (recall that ( )α ≤12 1c n ): 

( , ) ( ) ( , ) ( , )( )
( )

λ α λ λ< ≤ + ≤A 1 1 2 1 A 1 1 A 1 1
1

1
2G w W c n G w G w

Q n
ε+1  (7) 

where the last inequality holds because ( , ) / ( )λ ≥A 1 1 11G w P n . 

Let us then consider an on-line instance of LPWHG(2) where  is 

revealed at the first step, the whole graph is of order  and of total weight W , 

and every weight of  is . Note that weights of this instance are of dimension 

bounded above by , and that 

( , )1G w

+12n 1 2W

2G

O n

/2 1W n

( ))3
1 12P n( ( )

( )1

l
Q n

=2W , with
( )

ζ ( )
 

≤  − − 
1 1 1

2 1
n W

k
2Q n

l . In 

fact, ( , )λ ≤A 1 1G w 1W  and ( ) ( ( )) /( )α ζ≥ − −12 2 1 12c n k n  (recall ). Consequently, 

by definition of  we have: 

≥12 2n k

( ,1 w )1
�W G

(( , ), , ) ( , ) ( )λ λ α+ ≤ <LA 1 1 1 1 2 A 1 1 2 12G w n W W G w W c n2 . (8) 

Let us suppose that (( , ), , )λ + >LA 1 1 1 1 22 0G w n W W , and that , revealed at 

the second step, is defined by condition C1.2
2G

k recall that ( ) = ≥2 1nn G

/2 1W n

k . Then, at most 

 new vertices (of weight ) will be introduced at the second step and −1k

( , ) ( , )β β≥ 2 2 2G w W=G w , where  and  denote the weight system of  and , 

respectively. Then (recall that 2  and 
2w w

≥1 2n k ( ) /(
2G G

)ζ>1 12 2c n n ): 
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(( , ), ) (( , ), , )
( , )

( )( )( )

( )

λ λ
β

α
ζ

−
≤ +

−
< +

=

LA 1
LA 1 1 1 1 2

2 1

1
1

1

1 1
2

2 2 1
2

2

G w G k
G w n W W

G w W n

c n k
c n

c n

+

 

which contradicts the fact that the on-line algorithm guarantees competitivity ratio c . 
We deduce that •LA (( , ), , )+ =1 1 1 1 22G w n W W 0 . Let us then suppose that the graph G , 

revealed at the second step, is defined by condition C2
2

k; ( ) = ≥2 1n G n k

1 ( )
 then the on-line 

solution will contain at most k vertices of weight , while /2W n ( )β β 1G≥G . Since LA 

guarantees competitivity ratio c , we have: 

( ) /( ( , ))β≤1 2 1 12 1c n kW n G w . 

By using relation 7, we deduce: 

( ) ( , )( )
( ) ( ,

ε λ
α β

+
≤

)
A 1 1

1
1 1 1 1

1
2

n 2
k G

c n
w

c n G w
 

which implies that 

( , ) [ ( )]
( , ) ( )

λ α
β ε

≥
+

21 1
1 1

1 1
2

1
A G w

n c n
G w k

. 

This relation being valid for every instance  of PWHG, the proof is 

complete.  ♦ 

( , )1 1G w

It is well-known (see for instance [2]) that, for a large class of problems 
including WHG, the weighted version reduces to the polynomially bounded version, up 
to a multiplicative factor ( )ε−1 , by a simple scaling and rounding process. The 
combination of both reductions allows us to prove that WHG reduces to LWHG(2). 

Theorem 4 allows us to devise hardness results dealing with polynomial-time 
on-line algorithms; in particular we deduce from theorems 1 and 4 the following 
corollary: 

 
Corollary 4. 

(i) If ε ²is such that WHG is not polynomially approximated within ratio ε −1n
/( )ε −2 1

, then a 

polynomial time on-line algorithm cannot guarantee competitivity ratio . O n
(ii) If ≠P NP , no polynomial-time on-line algorithm for LWS(2) or LWK(2) guarantee 

competitivity ratio ε −1n  with .ε > 0 25 . 
 
Algorithm 2. LAk 

 

begin 
/←   2l k ; 

output ( ) ( )−∪1 2l k lA G A G  

end 
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6. MAXIMUM K-COLORABLE INDUCED SUBGRAPH 
PROBLEM 

Hardness results stated in theorems 3 and 4 suppose that π  satisfies a -
star-boundary condition for some . In particular, these results do not apply in the 
case where 

k
k

π  is "k-colorable", for . The related problem is denoted by WC≥ 2k k 
(maximum weighted induced k -colorable subgraph problem). In this section, we show 
that, for this problem, the situation is completely different: roughly speaking, the on-
line version LWCk(2) is not more difficult than the off-line one, for . 
Consequently, LWC

≥k 2

k(2) appears to be "less difficult" than ( )ΠL 2 , where Π  is based on 
a hereditary property satisfying a -star-boundary condition. k

 
Theorem 5. Suppose that, for every , there exists an approximation off-line 
algorithm 

≥ 1k
Ak  guaranteeing an approximation ratio ( )ρk n , for every graph of order n. 

Then, for every , there exists an on-line algorithm LA≥ 2k k  for  

guaranteeing a competitivity ratio 

( )LWC 2k

LAk
c  such that: 

(i) if k is even, then: 

( ) min{ ( ( )); ( ( ))}ρ ρ≥
2 2

LA 1 2
1
2

k kc n n G n G  

(ii) if k is odd, then: 

( ) [min{ ( ( )); ( ( ))}]ρ ρ− +

−
≥ 1 1

2 2
LA 1 2

1
1

2
k k

kc n n G n G . 

Moreover, LAk  is polynomial if  is polynomial for every fixed l. A l

Let us point out that algorithm LAk  needs algorithms  for . In order 

to express this result as a reduction, one can consider a generic problem 

A l ≤l k
�

kWC  for 

which  is included in the instance. Then, the on-line version of this problem reduces 
to its off-line version. 

k

 
Proof: For every weighted graph , we denote by ( , )G w ( , )βk G w  the optimal value of 

problem WCk  for instance . We then consider algorithm 2 (called LA( ,G w) k ) for 

. It constructs a feasible solution since  is l -colorable and  is 

-colorable. On the other hand, 

(LWC 2k

( )−k l

) ( 1A l G ) (−k l G )2A

LAk  is clearly polynomial if  is polynomial for 

every fixed . 

Ah

h
Let us now analyze the competitivity ratio of LAk . We first point out that 

( , ) ( , ) ( , )β β β≤ +1 1 2 2k k kG w G w G w . On the other hand, if ≤l k , then the l  heaviest 

color-classes of a -colorable subgraph k kG  constitute a -colorable subgraph of , 

denoted by . Moreover, the average weight of color classes of  is not less than the 

average weight of color classes of 

l G

lG lG

kG . Consequently, we have: 
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( , ) , ( , ) ( , )β β∀ ∈ ≤w k l
k

G w G w G w
l

G . (9) 

(i) Let us first suppose that  is even, which implies that k /= − = 2l k l k . Then by using 
relation (9), we have ( , ( , ))β β2 lG w G w≤k , and consequently: 

( , ) ( , ) ( , )

min{ ( ); ( )}( ( , ) ( , ))

min{ ( ); ( )}( ( , )).

λ λ λ

ρ ρ β β

ρ ρ β

= +

≥ +

≥

LA 1 1 A 2 2

1 2 1 1 2 2

1 2

1
2
1
2

k l lA

l l k k

l l k

G w G w G w

n n G w G w

n n G w

 

It concludes the proof of item (i). 
(ii) By using relation (9), we have ( , ) ( /( )) ( , )β β≤ −2 1k lG w k k G w , and ( , )β ≤k G w  

( /( )) ( , )β −≤ +2 1 k lk k G w . Then, the proof is the same as for case (i). ♦ 

In [4], we have reduced WCk to WS: 
 

Proposition 5. ([4]) For every  ≥ 2k , WCk  polynomially reduces to ; the reduction 

transforms a polynomial-time algorithm 

WS

( )ρWS n  (n being the order of the instance) into 

a polynomial-time algorithm for WCk  guaranteeing: 

( ) ( )ρ ρ≥WC WSk
n kn . 

For the on-line version of WCk , we deduce: 

 
Corollary 5. Suppose that WS can be (polynomially) approximated within ( )ρWS n , a 

decreasing function. Then,  admits a (polynomial-time) on-line algorithm 

guaranteeing competitivity ratio 

( )LWC 2k

LWCk ( )2c  such that: 

(i) if k  is even, then: 

( ) ( ) ρ  ≥  
 
�LWC 2 WS

1 1
2 2k

c n n  

(ii) if k  is odd, then: 

( ) ( ) ρ
− − ≥  

 
�LWC 2 WS

1
1 1

2 2k

kkc n n  

where . max( ( ), ( ))=� 1 2n n G n G

Finally, by using the  approximation algorithm for WS ([6]), we 
get: 

(log / )2O n n

n

 
Corollary 6.  admits a polynomial-time on-line algorithm guaranteeing 

competitivity ratio O . 

( )LWC 2k

(log2 / )n



 M. Demange / Reducing Off-Line to On-Line: An Example and Its Applications 22

Considering theorem 5, let us point out that an optimal algorithm for WCk 
brings to the fore an on-line algorithm for  guaranteeing competitivity ratio 

1/2, if  is even, and ( / , if k is odd. The following proposition shows that this 
result is optimal, which means that the reduction devised in theorem 5 cannot be 
improved. 

( )LWC 2k

k ) /−1 1 2k

 
Theorem 6. Let  ≥ 1k .
(i) If k is even, then no on-line algorithm for LW  can guarantee a competitivity 

ratio strictly better than 1 . 

( )C 2k

/ 2
(ii) If k is odd, then no on-line algorithm for  can guarantee a competitivity 

ratio strictly better than  

( )LWC 2k

( / ) /−1 1 2k .
Proof: Let α ≥ 0  be an integer, let us consider an on-line instance ( ,  of , 

of total order 

)G w ( )LWC 2k

( )α α+ 2k k
)1 1G w

∪"∪1

, and for which every weight is equal to 1. At the first step, 
player 1 reveals ( , , where  is a balanced complete k-partite graph of order 

, where 

1G

)1: (= = 1G V ,α1 1 1
kn k V E | | α=1

iV , and two vertices of  are linked by 

an edge in  if and only if they do not belong to the same set . Every weight of  

is equal to 1. The second player selects a subgraph 

1G

E 1
iV 1w

′1G  of . We denote by l the 

chromatic number of G , of course 
1G

′1 ≤l . Let us then consider two cases: k

Case 1: . /< 2l k
Since the independence number of G  is 1 α , we have ( ) ( / )α′ <1 2w G k , while 

( , )β α= =1 1 1k G w n k

=

2V

. In this case, we suppose that G , revealed at the second step, is a 

clique of order n n ,  and  being linked by a complete bipartite graph and 

every weight of  being equal to 1. Then, player 2 selects at most 

2

2
2 1 1V 2V

( )−k l  vertices of 

, while 2V ( , ) ( , )β βk k≥ G = 1n1 1wG w . Consequently, in this case, the competitivity ratio 

is bounded above by: 

( ( ))α
α α

+ − ≤ +
1 1l

l k l
k k

. (10) 

Case 2: . /≥ 2l k
In this case, we suppose that ( , )=2 2 2G V E

= 2
2n n

, revealed at the second step, is a 

balanced complete k-partite graph of order , each color classes being of size 1

α2k .  and  are linked by a complete bipartite graph and every weight of  is 

equal to 1. 
1V 2V 2V

During the second step, player 2 selects at most ( ) α− 2k l k  vertices of , 

while 

2V

( , ) ( , ) ( )β β≥ = = 2
2 2 2k kG w G w n kα . Consequently, in this case, the competitivity 

ratio is bounded above by: 

( ( ) )α α
αα

−
+ − ≤ +2

2 2
1 k l

l k l k
kk

1
. (11) 
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(i) If  is even, then relations 10 and 11 imply that the competitivity ratio is bounded 
above by 

k
/ /α+ 11 2 . 

(ii) If  is odd, then  and relations 10, and 11 imply that, in both cases, the 
competitivity ratio is bounded above by 

k ( ) /= −1 2l k
( / ) / /α− +1 1 2 1k . 

We complete the proof by choosing α  as large as needed. 

7. CONCLUSION 

In this paper, we have studied some links between the approximation 
behaviour of a combinatorial problem, and the competitivity behaviour of its on-line 
version. The considered problem is WHG; it admits numerous well-known particular 
cases. The on-line version we focus on corresponds to the case where the instance is 
revealed in two clusters. It can be seen as the easiest on-line version of WHG. So, it is 
suitable for understanding the extra difficulty of the on-line case with respect to the 
off-line one. 

We have first considered hereditary properties satisfying a -star boundary 
condition. Independent set, clique, of fixed maximum degree ... satisfy this condition, 
while -colorable does not. For this case, we have pointed out a hardness gap between 
off-line and on-line frameworks: if 

k

k
( )ρ n  denotes the approximation threshold for the 

off-line problem then ( ) /ρ n n  is, up to a constant multiplicative factor, the 

competitivity threshold of its on-line version. In order to show that, we have 
established a reduction (from off-line to on-line) allowing us to transform an on-line 
algorithm into an off-line one, with improved ratio. It can be seen as the "inverse 
reduction" of a reduction from on-line to off-line performed in [3]. This reduction being 
polynomial, it allows us to deduce hardness results for polynomially computable on-line 
algorithms, from hardness results known in the framework of polynomial 
approximation. To our opinion, it would be interesting to devise such reductions, from 
off-line to on-line, for other combinatorial problems. 

For the case of maximum -colorable induced subgraph problem, we have 
pointed out a completely different behaviour: the on-line problem appears to be, up to a 
constant multiplicative factor, as efficiently solvable as the off-line one. This theorem 
improves a result of [3]; it can simply be extended to the case of p clusters, for a fixed p. 
On the other hand, this result only exploits the fact that, for the considered problem, 
every feasible solution can be divided into two feasible solutions of close problems. 
Consequently, our process could be used for other problems satisfying a similar 
property.  

k

Let us finally point out that the proofs of our hardness results are not valid for 
the case where competitivity ratios depend on the maximum degree. But numerous 
approximation ratios for graph problems are expressed with respect to this parameter. 
So, the problem we are now interested in is to devise hardness competitivity thresholds 
that are depending on the maximum degree. 
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