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Abstract: Cloud Computing has gained substantial popularity due to its ability to offer 

diverse and dependable computing services suited to clients demands. Given the rapid 

expansion of this technology, an increasing number of IT service providers are 

competing to deliver cloud services that are both of excellent quality and cost-efficient, in 

order to best meet the requirements of their clients. With the extensive range of options 

available, selecting the best Cloud Service Provider (CSP) has become a challenging 

dilemma for the majority of cloud clients. When evaluating services offered by many 

CSPs, it is important to consider multiple attributes. Efficiently addressing the selection 

of the best CSP involves tackling a challenging Multi-Attribute Decision Making 

(MADM) problem. Several MADM techniques have been proposed in academic 

literature for evaluating CSPs. However, the persisting problems of inconsistency, 

uncertainty, and rank reversal remain unresolved. In this paper the authors present a 

hybrid MADM framework to rank eight CSPs using nine Quality of Service (QoS) 
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attributes. In order to achieve this objective, Fermatean fuzzy sets-full consistency 

method (FFS-FUCOM) is combined with Grey–Relational–Analysis and the Technique–

for–Order–Preference–by–Similarity–to–Ideal–Solution (Grey-TOPSIS) technique. The 

framework successfully resolved the aforementioned problems. Sensitivity analysis is 

conducted to assess the stability and robustness of the results produced by the proposed 

framework. The sensitivity analysis results indicate that the proposed framework offers 

an accurate and robust solution. A systematic ranking test is undertaken to ensure that the 

results are ranked in a systematic manner. Additionally, a comparative analysis is carried 

out with the most relevant study. 

Keywords: Cloud computing, cloud service providers, Fermatean fuzzy sets, MADM, 

FUCOM, Grey-TOPSIS. 

MSC: 90C31, 90C70, 62C86, 68P10, 68U35. 

 

1. INTRODUCTION 

Nowadays, researchers are intensively studying the emergence of the 5th industrial 

revolution and the crucial role of artificial intelligence within this revolution [1]. 

Nevertheless, the majority of sizable and moderately-sized corporations have yet to adopt 

sophisticated artificial intelligence technology and have not fully accomplished their 

digital transformation. The emergence and advancement of the 4th industrial revolution 

(Industry 4.0) can still be observed in industry and production, particularly in developing 

economies. 

The advent of Industry 4.0 has highlighted the need for connection in various 

domains. The formation of Industry 4.0 has brought along advanced technology that 

allows for instantaneous connectivity, monitoring, and accessible across several systems 

[2]. Cloud computing technology is a fast-growing technology within Industry 4.0. The 

literature highlights several advantages of cloud computing technology, including its 

accessibility, cost-effectiveness, and ability to facilitate speedy decision-making [3], [4]. 

Cloud computing technology is a model that allows for easy and immediate access to a 

shared pool of customisable computer resources, such as networks, storage, servers, 

services, and applications. This technology facilitates the transfer of basic computing 

operations from local servers to distant servers, potentially resulting in less information 

technology expenditure and reduced maintenance expenses. Large organisations are 

increasingly replacing their commercial information technology expenditures with 

outsourcing agreements due to the availability of high technology requirements through 

cloud computing technology services, which offer 24/7 accessibility and relatively cheap 

investment costs [5].  

Cloud computing encompasses a variety of services provided by Cloud Service 

Providers (CSPs) to fulfil client requirements [6]. Leading IT corporations such as 

Amazon, Microsoft, and Google are presently competing to offer clients reliable and 

cost-effective services that most effectively meet their demands. The competitive This 

competitive environment fosters the growth of cloud computing technologies and 

motivates numerous IT companies to enhance their Quality of Service (QoS).  

The CSPs provide comparable services with varying costs, levels of quality, and sets 

of features. Although a particular provider may offer affordable storage services, it could 

be costly for computing tasks. With the wide range of cloud services available, 
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consumers face the substantial challenge of choosing the CSP that most effectively meets 

their needs. Ensuring future performance and adhering to rules, policies, and laws [7], [8] 

is crucial. However, selecting an inappropriate CSP can result in future service delivery 

failures, compromised data security or integrity, and non-compliance with cloud data 

storage usage.  

The process of cloud service selection involves identifying the best suitable CSP by 

aligning the user's requirements with the characteristics offered by different CSPs [9]. 

The rapid growth of CSPs, together with their vast range of services offered at variable 

prices and quality levels, has resulted in challenges when ranking and choosing the most 

suitable CSP based on user preferences [10], [11], [12].  

Moreover, it is important to consider several attributes when choosing the most 

appropriate CSP. QoS attributes, such as reliability and performance, play an important 

role in assessing the quality of CSPs. Cloud customers also place great attention on the 

security attributes of the services. The consumer may find some selection attributes 

unclear, such as the lack of transparency from CSPs regarding the access and 

authorization of cloud resources. Some attributes, such as security and usability, are 

difficult to measure precisely [13]. Furthermore, it is important to consider that there may 

be trade-offs between these attributes, such as price and performance [14]. To determine 

the most suitable CSP that aligns most closely with user preferences, it is necessary to 

analyse a broad range of distinct evaluation attributes that define the various cloud 

services provided by multiple CSPs. Hence, the process of choosing the appropriate CSP 

involves a complicated Multiple Attributes Decision-Making (MADM) issue, wherein 

many options must be assessed and ranked based on different attributes [15], taking into 

account the user's specific preferences (i.e., the importance level of each of the attribute) 

[16], [17], [18], [19].  

1.1. Research Problem 

While MADM techniques have been extensively examined in the academic literature, 

they still have certain shortcomings, such as inadequate consistency in comparisons, 

complicated comparison systems, and an overall rise in computing complexity [20]. 

These weaknesses provide a substantial obstacle when selecting CSPs [21]. Another issue 

that arises in the process of ranking and selecting CSPs is uncertainty [22]. In addition, 

several MADM techniques have a rank reversal issue [23], [24], wherein the addition or 

removal of a CSP from the repository causes a non-ideal CSP to be ranked as ideal. An 

unexpected change in the ranking of CSPs misleads a cloud user and leads to significant 

financial losses over time due to the incorrect selection of services. Therefore, it would 

be advantageous to establish a framework for choosing CSPs that are resilient to 

inconsistency, rank reversals and uncertainty issues.  

1.2. Limitations of MADM Techniques 

Based on the literature reviewed in Section 2, numerous MADM techniques have 

been employed to rank CSPs in order to identify the most effective and optimal CSP. The 

subsequent sections will examine MADM ranking and weighting techniques, along with 

the applications of fuzzy set theory. 
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1.2.1. MADM Ranking Techniques 

MADM ranking techniques include TOPSIS, PROMETHEE, VIKOR, ELECTRE, 

Grey relational analysis, and multi-objective programming. Each technique has its own 

advantages and disadvantages, as well as different situations where it might be applied 

[25]. No technique stands out as superior to the others [26]. Several techniques can be 

used to solve the MADM problem, hence improving the dependability of decision-related 

information. According to our examination outlined in Section 2.1, TOPSIS was the most 

commonly used technique for ranking CSPs. 

TOPSIS is a prominent ranking technique employed for determining the optimal 

alternative among set of alternatives. It has been widely selected to rank CSPs. In these 

studies, it has been extended under different fuzzy environments such as triangular fuzzy 

numbers [27], [28], [29], [30], 2-tuple fuzzy linguistic [31], IFS [32] [33], [34], single-

valued NFS [35], interval-valued fuzzy set [36], and interval, IFS and NFS [23]. 

Nevertheless, the application of Euclidean distance in the traditional TOPSIS is 

associated with several drawbacks. Firstly, it is not sensitive to small values [37]. 

Secondly, it results in a relatively small distance between the positive-ideal-solution and 

negative-ideal-solution [38]. Thirdly, it distorts the original information [39]. Fourthly, it 

exhibits rank reversal defects [40]. Accordingly, several enhancements of TOPSIS have 

been proposed in the academic literature to address these drawbacks [37]. Alternative 

measures such as, contact-vector-distance [41], hamming-distance [42], Canberra-

distance [37], M-TOPSIS [43], and generalized-hybrid-distance [39] have been suggested 

as substitutes for Euclidean distance. In pursuit of the same objective, many academics 

integrated Grey-relational-analysis with TOPSIS (namely Grey-TOPSIS technique) [38], 

[44], [45], [46], [47], [48].  

Deng initially introduced the Grey-relational-analysis technique, which has been 

extensively employed to address issues of vagueness and insufficient information [49]. 

The main benefits of the Grey-relational-analysis technique include making decisions 

based on the original data, being one of the most efficient approaches for making 

business decisions, and facilitating simple and direct computations [49]. Furthermore, 

Grey-relational-analysis possesses an ability to handle intricate decision-making 

scenarios, such as those with ambiguous, inaccurate, and incomplete data [46].  

Although the Grey-TOPSIS technique [50] has advantages, it lacks the ability to 

assign weights to attributes based on their importance. Consequently, researchers 

employed alternative approaches, such as AHP or BWM, to achieve this goal.   

1.2.2. MADM Weighting Techniques 

Assessing alternatives involves considering the importance of the assessment 

attributes in the decision-making process [51], [52]. The assessment attributes have 

different levels of importance, causing certain attributes to have a greater influence on the 

evaluation than others [21]. Attributes weight is determined by many MADM techniques, 

which are categorised as either objective or subjective techniques [53]. The objective 

weighting techniques involve calculating attribute weights based on the variance of data 

in the decision matrix [54]. Objective attribute weights can be determined by many 

techniques, such as Gini index, standard deviation, or entropy [55]. By using the given 

techniques, the need for expert input is reduced, which helps in creating autonomous 

decision support systems. However, there are often situations where it is challenging to 
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estimate the weights of the attributes only from the decision matrix. This presents a 

challenge in verifying that the derived weights are valid in light of their actual 

importance as determined by the experts. 

The subjective weighting techniques have been established to precisely capture the 

decision-maker’s opinion [56], [57]. They facilitate the assessment of the importance of 

attributes systematically. Subjective techniques for determining attributes’ weight allow 

decision-makers to evaluate the importance of a specific attribute in relation to others in a 

certain decision context [58]. These techniques can determine the importance of 

assessment attributes, perform pairwise comparisons, or establish connections between 

assessment attributes. The weight vector used to determine the importance of attributes is 

based entirely on decision-makers’ knowledge [24], [59]. The AHP, ANP, and BWM are 

well-known subjective techniques utilised for calculating attributes’ weight [60].  

The accuracy of the weights in AHP is dependent upon successfully passing 

consistency test for pairwise comparison matrices [61]. These matrices incorporate 

numerical scales determined by decision-makers based on their expertise, which can 

result in inconsistencies owing to limited experience and the complicated nature of the 

decision problem. The number of comparisons rises proportionally with the number of 

attributes, leading to a potential escalation of inconsistency. In contrast, BWM, another 

MADM technique, necessitates a lesser number of pairwise comparisons in comparison 

to AHP. BWM employs a scale ranging from 1 to 9 to make comparisons, doing 

reference comparisons to identify the most favourable attribute and attributes preferences 

over the least favourable attribute. The application of this strategy effectively decreases 

the number of pairwise comparisons required from          in AHP to      in 

BWM [62]. Nevertheless, BWM has difficulties in determining the optimal and 

suboptimal attributes, as well as their respective importance. Minimising the use of 

fractional numbers improves comprehension for decision-makers, while this approach 

still requires significant cognitive effort due to the subjective nature of comparisons. In 

general, the pairwise and reference comparisons in these techniques result in considerable 

time consumption and difficulties in providing natural comparisons.  

Recently, a Full-Consistency-Method (FUCOM) [62] was proposed to address the 

issue of inconsistency that is often observed with the AHP and BWM techniques. The 

FUCOM relies on the principles of comparing pairs and validating outcomes by 

measuring the deviation from maximum consistency (DMC). The key advantages of 

using FUCOM are a limited number of pairwise comparisons of attributes (specifically, 

only   –    comparisons), the possibility of validating results by setting the DMC of 

comparison, and the ability to take into account transitivity in pairwise comparisons of 

attributes. The FUCOM incorporates the subjective influence of a decision-maker on the 

final weight value of attributes. Within FUCOM, decision-makers prioritise the attributes 

based on their preferences and conduct pairwise comparisons of the evaluated attributes. 

In contrast to previous techniques, FUCOM has exhibited slight variations in the 

acquired weights of attributes from the ideal values. In addition, the mathematical 

technique of FUCOM resolves the issue of redundant pairwise comparisons of attributes, 

a problem that is present in some subjective techniques used to estimate the weights of 

attributes. Therefore, FUCOM is considered as the most appropriate method for 

determining the weight of the QoS attributes. However, like AHP and BWM, the 

uncertainty issue remained an open issue that cannot be handled by employing the 

original version of FUCOM.  
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1.2.3. Fuzzy Set Theory 

Multiple types of uncertainty can be found in the literature, caused by the decision-

making process. They are involved in identifying attributes, assessing connections among 

attributes, assessing alternatives, generating attributes weight based on expert opinions, 

and selecting aggregation operators [63]. The uncertainties in the input data of a 

MADM problem mainly include evaluating many alternatives and establishing the 

weights of the attributes. Traditional MADM techniques typically need exact input 

values, even though it is common to include uncertain data in decision-making [63]. 

Meeting this condition is a difficulty for decision-making, as obtaining accurate values is 

often difficult, if not impossible. Therefore, when input data is ambiguous, specific 

techniques like fuzzy sets or probabilities are required for ranking [63]. This work utilises 

fuzzy set theory to address the uncertainty raised by depending on expert opinions in 

generating the weight of attributes using FUCOM. 

In this regard, Zadeh invented the notion of [64] (FS) to address uncertainties in real-

life problems. The utilisation of FS allows for the assignment of varied degrees of 

membership ( ) to alternative, with respect toothier numbers. However, Zadeh’s 

influential research failed to consider the consequences of incorporating a degree of non-

membership ( ). Atanassov [65] introduced a notable concept of intuitionistic fuzzy set 

(IFS), which incorporates the consideration of both   and  . This concept is restricted by 

the condition      . The concept of IFS has proven to be valuable in addressing 

numerous practical problems by considering the value of indeterminacy. However, the 

researchers highlighted the inefficiency of the method in handling uncertainties when the 

summation of the   and   exceeds 1. Yager [66] introduced the Pythagorean fuzzy set 

(PyFS) as a solution to address this problem. The notion of PyFS is subject to the 

condition            . However, the inefficiency of the PyFS appeared when the 

square sum of the   and   exceeds 1. Later, Yager [67] introduced an extended and 

generalised FS version named q-rung orthopair fuzzy sets (q-ROFSs). This version 

includes the condition            . Senapati and Yager [68] proposed the concept 

of Fermatean fuzzy set (FFS) as a specific instance of q-ROFSs, where   is equal to 3, 

developing upon the ideas of IFS and PyFS. FFS demonstrates superior flexibility and 

efficiency in managing uncertainty when compared to IFS and PyFS, as shown in Figure 

1. Consequently, the utilisation of FFS is gradually growing as a means to address 

numerous MADM issues. A q-ROFS offers greater flexibility compared to FFS, but it 

also introduces additional complexity. FFS provides analysts with a substantial degree of 

flexibility. 

 
Figure 1: Membership space analysis between IFS, PyFS and FFS 
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Thus, FFS-FUCOM is aimed to make more flexible and realistic decisions [69]. In the 

proposed MADM framework, the FFS-FUCOM is adopted to determine the weighting 

coefficients of the evaluation attributes. In this paper, the FFS-FUCOM proposed by [69] is 

modified by using modified Euclidean distance measure to process uncertain information.  

 

1.3. Research Motivation  

In this paper, we are motivated to hybrid MADM framework under fuzzy 

environment for ranking CSPs. The framework combines Grey-relational-analysis and 

Technique-for-Order-Preference-by-Similarity-to-Ideal-Solution (Grey-TOPSIS) techni-

que and Fermatean fuzzy sets-full consistency method (FFS-FUCOM) based distance 

measurement that is resistant to ranking reversal, inconsistency, and uncertainty issues. 

To the best of our knowledge, there is no existing study in the literature that combines the 

FFS-FUCOM and Grey-TOPSIS for the purpose of ranking CSPs or any other case 

study. Initially, the FFS-FUCOM based distance measurement is proposed to estimate the 

final weights of the QoS attributes and assess their relative levels of importance. 

Furthermore, the Grey-TOPSIS technique was adopted to rank the chosen CSPs based on 

the weighting results derived by FFS-FUCOM based distance measurement. 

Furthermore, the proposed framework’s effectiveness, efficiency, and robustness were 

evaluated using an experiment, sensitivity analysis, and comparative analysis. 

 

1.4. Research Contributions  

The main contributions of this study can be summarised as follows:  

 This paper adjusts FFS-FUCOM based distance measurement to obtain the final 

weights of the QoS attributes and determine their importance level. This method 

is utilised as a means to address the issues of inconsistency and uncertainty that 

are present in earlier techniques. 

 This paper utilise Grey-TOPSIS technique for ranking CSPs as a solution to 

address the issue of rank reversal that is associated with earlier MADM solutions.  

 This paper presents a hybrid MADM framework that combines the Grey-TOPSIS 

technique with the FFS-FUCOM based distance measurement to rank eight CSPs 

based on nine QoS attributes. 

The subsequent sections of this paper are organised as follows: Section 2 presents a 

comprehensive examination of the CSPs ranking techniques using MADM. Section 3 

provides a brief overview of some definitions that are relevant to the remaining contents 

of the paper. Section 4 provides a detailed explanation of the proposed methods, 

specifically focusing on the FFS-FUCOM based distance measurement and Grey-

TOPSIS technique. The overall findings are reported in Section 5. The validation and 

evaluation are presented in Section 6. Section 7 serves as the conclusion of our paper, 

where we discuss the limitations and potential for future studies. 

2. RANKING OF CSPS RANKING  

An examination of MADM-based techniques that utilised fuzzy sets to determine the 

most optimal CSP is presented in this section. Researchers have shown significant 

interest in evaluating the performance of CSPs across various applications due to their 

widespread availability [70], [71]. The objective of this research is to systematically rank 

the performance of CSPs and develop approaches for determining the most efficient and 
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optimal CSP. Prior research has commonly utilised MADM techniques to tackle 

decision-making difficulties in many sectors [72], [73]. The study conducted by [74] 

presents an alternative classification of metrics utilised for ranking cloud services, taking 

into account their degree of fuzziness. Additionally, they proposed fuzzy analytic 

hierarchy process (AHP) approach that enables the evaluation of cloud services based on 

a diverse model of service features. The researchers in [75] introduced an MADM 

framework that combines interpretive structural modelling and Analytic Network Process 

(ANP) approaches by employing triangular fuzzy numbers. The aim of this framework 

was to depict the relationships between the evaluation qualities of cloud computing and 

big data, while also considering uncertainties in the data. The authors of [22] presented a 

hybrid MADM approach for selecting the most suitable IaaS among several cloud 

providers for firms’ users. This study utilised a combination of the balanced scorecard 

and AHP technique, incorporating triangular fuzzy numbers, for the mentioned purpose. 

The authors of [70] introduced a fuzzy MADM framework to choose a Cloud service. 

They utilised AHP and fuzzy ontology to represent uncertain connections between 

objects in databases for service matching. 

The selection of the most suitable CSP among set of alternatives was tackled by many 

other studies such as [27], [28], [29], [30] integrated AHP and TOPSIS under triangular 

fuzzy numbers, [71] integrated AHP under triangular fuzzy numbers with Weighted 

Aggregated Sum-Product Assessment (WASPAS) techniques, [31] introduced 2-tuple 

fuzzy linguistic MADM technique based on TOPSIS, [33], [34] extended TOPSIS under 

intuitionistic fuzzy set (IFS), [76] extended Best Worst Method (BWM) under triangular 

fuzzy numbers, [77] integrated AHP, Revised AHP under Fuzzy Geometric mean and 

Weighted Sum Model (WSM), [78] utilized IFS score function, [79] developed cloud 

testing adoption assessment model under triangular fuzzy numbers, [80] integrated 

interval-valued IFS with WASPAS, [81] extended distance-based approach (DBA) under 

triangular fuzzy numbers, [82] introduced Shapley-TOPSIS under IFS, [83] used TOPSIS 

with triangular fuzzy numbers, [84] used AHP with triangular fuzzy numbers, [85] 

employed Sugeno Fuzzy inference system, [86] utilised data envelopment analysis 

method under neutrosophic fuzzy set (NFS), [35] extended TOPSIS under single-valued 

NFS, [36] extended TOPSIS with interval-valued fuzzy set, [87] proposed a grey wolf-

based approach that uses entropy and hesitant fuzzy sets, [23] proposed rank reversal 

robust modular TOPSIS technique with crisp, interval, IFS and NFS, and [32] used AHP 

and TOPSIS under IFS. It was observed that TOPSIS, AHP, and BWM were the most 

widely utilised techniques for ranking CSPs [51].  
 

3. PRELIMINARIES  

In order to ensure the self-sufficiency of this study, a brief introduction to some 

definitions that are relevant to the remaining content is provided.  
 

3.1. FFS 

Definition 1. [68], [88] Let   be a non-empty universe. A FFS  ̃ in   is determined by a 

membership              , and a non-membership               functions. The 

set  ̃ is represented as follows: 

 ̃  {⟨             ⟩    },            (1) 

with the condition that                      . 
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Additionally, the indeterminacy degree is       √                    
. The 

element ⟨             ⟩ is Fermatean fuzzy number (FFN) in  ̃. For convenience a 

FFN is denoted by  ̃          with          . 

Definition 2. Let  ̃          and  ̃          be two FFSs, and    . Then, the 

subsequent operators for FFSs may be expressed [88]: 

 ̃   ̃  (√  
    

    
     

  
    )                              (2) 

 ̃   ̃  (     √  
    

    
   

  
)                        (3) 

   ̃  (√       
    

   
 )                           (4) 

 ̃  (   
 √       

    
)                             (5) 

Definition 3. Let  ̃          be an FFS. The accuracy-function     and score-

function      for this FFS are expressed in Equations (6) and (7) [88]:   

   ̃    
    

                  (6) 

   ̃    
    

              (7) 

These equations can be utilised to compar two FFSs, specifically  ̃          and 

 ̃         . When comparing them, there are differences in conditions [88]: 

1. If    ̃     ̃ , then  ̃   ̃; 

2. If    ̃     ̃ , then  ̃   ̃; 

3. If    ̃     ̃ , then 

i.   If    ̃     ̃ , then  ̃   ̃; 

ii. If    ̃     ̃ , then  ̃   ̃; 

iii. If    ̃     ̃ , then  ̃   ̃. 

Definition 4. The FFS complement  ̃          may be expressed as follows [88]: 

      ̃                              (8)  

Definition 5. Let  ̃  (   
    

)            is a set of   FFSs, and   

              is the equivalent weight vector for  ̃          . Then, the Fermatean 

fuzzy weighted average (FFWA) aggregation operator can be expressed as follows [89]:  

     ( ̃   ̃     ̃ )  (   
         

    
         

)        (9) 

Definition 6. [90]  Let  ̃          is an FFS.    ̃  can be vary from -1 to 1. The 

establishment of a positive scoring function for an FFS within this specified range, 

ensuring a positive defuzzified results return. 

  ( ̃  )     ( ̃  ) (10) 

Definition 7. [91]      ̃               ̃          be two FFSs. The definition of a 

modified Euclidean distance measure           between the two FFSs is given as: 

          (
 

  
       |  

    
 |  |  

    
 |  |  

    
 |  )

   

.      (11) 

 



94 A. K. Al-Mashhadani et al. / Quality of Service Attributes  

3.2. Classical FUCOM 

The algorithm of classical FUCOM [62] can be summarised as follows: 
  

Step 1. Ranking attributes based on decision-makers' opinion of their importance. 

Let     {                     } be the set of attributes, listed in the order of 

preference by the decision-makers. 

                                , where   is the attribute's rank. 

Step 2. Determining the relative importance of the attributes. The relative importance 

of attribute         compared to           is expressed as         . The relative 

importance can be characterised in two ways: according to the decision-maker's opinion 

or based on a predetermined scale. A total of         comparisons will be performed, 

with the first ranked attribute being compared to itself due to its perceived importance. 

Step 3. Determining the final weight values of the attributes which can be derived 

based on the following two conditions: 
  

    
                                           (12) 

Mathematical transitivity: 
  

    
                           (13) 

Step 4. Defining the final model. Full consistency can be obtained if deviation from 

full consistency is minimised and meets the conditions outlined in Step 3. The final 

model is as follows: 

    
 s.t. 

|
     

       
         |      

|
     

       
                      |      

   
          

       

                  (14) 

 

3.3. Classical TOPSIS Technique  

The main steps in classical TOPSIS technique are: 

Step 1. Creating the normalised decision matrix.  

Step 2. Creating of weighted normalised decision matrix. 

Step 3. Determination of positive-ideal-solution and negative-ideal-solution. 

Step 4. Calculating the Euclidean distance for each alternative in the weighted 

normalised decision matrix from the positive-ideal-solution. 

Step 5. Computing the relative closeness to the ideal-solution. 

Step 6. Ranking alternatives based on the closeness coefficient values. 
 

3.4. Grey relational analysis 

The main steps in Grey relational analysis are: 

Step 1. Computing the normalised decision matrix. 

Step 2. Computing the weighted normalised decision matrix. 
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Step 3. Identifying the positive-ideal-solution and negative-ideal-solution. 

Step 4. Computing the grey relational coefficient. 

Step 5. Computing the relative grey relational grade. 

Step 6. Ranking alternatives based on the greyrelational grade. 
 

4. PROPOSED METHODS 

In this section, the proposed framework is explained in details. We dive into the 

prioritisation of attributes using the FFS-FUCOM based distance measurement in Section 

4.1, and the ranking of CSPs using the Grey-TOPSIS technique in Section 4.2. Figure 2 

illustrates the sequential steps that make up the research framework utilised in this study. 
 

 
Figure 2: Proposed framework. 

 

4.1. FFS-FUCOM Based Distance Measurement  

Suppose there are   assessment attributes denoted as   , where              , and 

their weight coefficients need to be calculated in a MADM scenario. Subjective 

approaches for generating weights based on pairwise comparison of attributes require 

decision-makers to assess the level of attribute i's influence on attribute j. The influence 

of attribute i on attribute j can be expressed as the comparison value (   ). Given that the 

resulting values of comparison     are not derived from precise measurements, but rather 

from subjective assessments, it is possible to represent existing uncertainties using fuzzy 

numbers. Linguistic terms are commonly employed to compare two variables. Therefore, 

the fuzzy linguistic terms [69] provided in Table 1 are regarded as a representation of the 

decision-maker's preferences in the FFS-FUCOM.  
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Table 1: The linguistic terms and FFNs [69] 

 
 

In this paper, the FFS-FUCOM proposed by [69] is extended by using modified 

Euclidean distance measure for determining the weights of QoS attributes. The modified 

algorithm of FFS-FUCOM is described in seven sequential steps. 

Step 1. Identifying the assessment attributes. As previously stated, there are   

decision attributes, represented by Att = {   ,    , ...,    }, where   ranges from   to  . 

These attributes are identified based on previous study [11]. A brief definition of each 

attribute is given below.  

Scalability (At1): it refers to a CSP's ability to manage an increasing demand or to be 

expanded efficiently to support the growth without sacrificing performance. 

Sustainability (At2): it refers to how environmentally sustainable a CSP's 

infrastructure and operations are, considering aspects such as use of renewable energy, 

waste reduction, and minimising carbon footprint. 

Usability (At3): it refers to how easy it is for consumers, developers, and managers to 

use and access the services provided by the CSP. 

Interoperability (At4): it refers to the ability of a CSP's services to easily connect and 

interact with another systems, applications, and technologies. 

Security management (At5): it refers to the procedures and policies implemented by 

the CSP that ensure the confidentiality, integrity, and availability of data and resources.  

Cost (At6): it refers to CSP's costs such as initial charges, usage-based billing, 

discounts, and contract conditions. 

Maintainability (At7): it refers to the simplicity and cost-effectiveness of managing 

and updating a CSP's services over time. 

Service response time (At8): it refers to the CSP's effectiveness in handling customer 

demands and providing resources or data during regular and high-demand periods. 

Reliability (At9): it refers to the consistency, stability, and availability of the CSP's 

services. 

Step 2. Ranking the assessment attributes. Decision-makers initially determine a 

ranking of attributes based on their subjective preferences regarding the importance of 

each attribute. The first rank is assigned to an attribute that is anticipated to possess the 

highest weight coefficient, followed by subsequent ranks assigned to attributes of 

decreasing relevance. The attribute that have the lowest weight value holds the final 

position. Therefore, the attributes are ranked based on the anticipated values of the 

weight coefficients, as given in Equation (15). 

                                  (15) 

where   denotes the ranking position of the certain attribute. In the case where two or 

more attributes are deemed to have equal importance, the "=" symbol, is used instead of 

the ">" symbol to indicate this in Equation (15). 

It is important to note that decision-makers should have expertise in the topic of 

research, such as CSPs. The researchers performed a bibliometric analysis on the authors 

and co-authors of publications that focused on developing CSPs. This analysis formed 
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the basis for the decision-makers' selection used in this study. According to [15], [92], at 

least three decision-makers should be selected to rank the attributes.  

Step 3. Performing a comparison of each attribute that has been ranked using FFNs. 

The attributes are thereafter compared by utilising Table 1. The comparison is conducted 

based on the attribute that is ranked first. Therefore, the fuzzy attribute importance 

( ̃      
) is determined for all attributes. Given that the most important attribute is being 

compared to itself, it is necessary to make     comparisons of the remaining attributes. 

The fuzzy comparative importance  ̃        is computed by applying Equation (16), 

based on the defined importance of the attributes.  

 ̃        
 ̃        

 ̃      

 
(         

 
          

 )

(        

 
        

 )
           (16) 

Therefore, a fuzzy vector of the comparative importance of the assessment attributes 

is determined by utilising Equation (17). 

  (                    )                 (17) 

where          represents the priority assigned to the attribute of the         ranking in 

relation to the attribute of the           ranking. 

Step 4. Measuring the distance between the most important attribute and all 

remaining attributes using modified Euclidean distance measure given in Definition 7.  

Step 5. Defining a model to determine the weight values of the assessment attributes 

                using Equation (14) based on the conditions given in Equations (12) 

and (13). The derived weights indicate the importance of each attribute according to the 

preferences of each decision maker.   

Step 6. Combining the weight of each decision-maker regarding to each attribute, as 

follows: 

   
                 

    
                   

                               (18) 

where              and       represent the weights of a certain attribute based on the 

preferences of decision-maker1, decision-maker2, and decision-maker3, respectively.  

4.2. Adaptation of Grey-TOPSIS Technique 

Let     be the decision given to the     ’s alternative based on    ’s attributes, with 

weight   , for         and        . Hence, the initial decision matrix is given in 

Equation (19).  

  (   )      
     

 .        (19) 

The Grey-TOPSIS technique [50] is based on the ten steps below. 

Step 1. Normalising the decision matrix using Equation (20). 

          ( (   )
  

   )
   

⁄                            (20) 

where     represents the value of the cell at the intersection of the     row and     column 

in the decision matrix. Let k be the number of alternatives considered, while   represents 

the number of attributes. 
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Step 2. Weighting the normalised decision matrix using Equation (21). The set of 

weight values               , which were obtained in Section 4.1, are used in this 

phase as follows: 

            , where                .   (21) 

Step 3. Determining positive-ideal-solution    and negative-ideal-solution    as 

follows:  

       
    

    
       

  ,               (22) 

       
    

    
       

  ,             (23) 

where   
     

 
    ,   

     
 

    ,               and              . 

Step 4. Calculating Euclidean distance between the evaluation alternative and the 

ideal solution using Equation (24).  

  
  [   

   (      
 )

 
]
   

   
  [   

   (      
 )

 
]
   

 .    (24) 

Step 5. Calculating the grey correlation coefficient matrix of the positive    

(   
 )

   
 and the negative    (   

 )
   

ideal solutions, as follows: 

   
  

      

|  
     |    

    
  

      

|  
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 ,            (25) 

where 
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     |, 
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 |  
     |, 

  represents the resolution coefficient and its equal to 0.5 in this paper. 

Step 6. Solving the grey correlation degree between each alternative and the ideal 

solutions as follows:  

  
  

 

 
   

      
    

  
 

 
   

      
 .                    (26) 

Step 7. Incorporating both shape and position, the grey correlation degree and the 

preceding Euclidean distance must be converted into dimensionless values, as follows: 

  
  

  
 

   
 

   
    

  
  
 

   
 

   
  .     (27) 

  
  

  
 

   
 

    
  

  
 

     
  .    (28) 

Step 8. Uniting the Euclidean distance and the grey correlation degree. A lesser 

Euclidean distance from the positive-ideal-solution indicates a superior alternative in 

terms of distance. The alternative is considered to have a better shape when the degree of 

grey correlation of the positive-ideal-solution is higher. Thus, they are merged based on 

these factors: 

  
     

     
    

     
     

 ,                      (29)             

where    and   represent the ratio of the two angles that determine the position and shape 

in the alternative. 

Step 9. Calculating the relative closeness    by replacing   
 and   

 with   
  and   

 , 

respectively.  
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  . (30) 

Step 10. Ranking the alternatives based on the score values obtained from Equation 

(30). The alternative's superiority is directly proportional to its score; a higher score 

indicates a better alternative, while a lower score indicates the opposite. 

 

5. RESULTS AND DISCUSSION  

5.1. QoS Attributes Weighting Results  

This section presents the weighting outcomes of the QoS Attributes using the FFS-

FUCOM based distance measurement presented in Section 4.1. A collection of nine 

assessment attributes, denoted as    , has been selected to rank CSPs, as mentioned in 

Step1. The attributes are Att1- Att9. As previously mentioned, the choice of these 

attributes was determined by prior research [11]. The initial step of the FFS-FUCOM 

involves identifying the assessment attributes. These attributes, namely At1, At2, At3, At4, 

At5, At6, At7, At8, and At9, correspond to scalability, sustainability, usability, 

interoperability, security management, cost, maintainability, service response time, and 

reliability, respectively. Then, three decision-makers determined the ranking of attributes 

based on their subjective preferences regarding the importance of each attribute, as 

explained in Step 2. For this purpose, the decision-makers utilised a nine-point Likert 

scale consisting of linguistic terms as presented in Table 1. The decision-makers' 

preferences for each of the attributes are provided in Table 2, as presented in Step 3.   

Table 2: Decision-makers' preferences for each attribute. 

Decision-makers/Attributes At1 At2 At3 At4 At5 At6 At7 At8 At9 

Decision-maker1 H VVL MH VH VVL ML VL H MH 

Decision-maker2 M VVL MH VVL H L M VH ML 

Decision-maker3 H M VH VVL VVL VL H M ML 

 

Subsequently, FFNs are utilised to compare each ranking attribute. At this step, each 

linguistic term is substituted with its corresponding FFN. After that, the fuzzy vector 

representing the comparative importance of the assessment attributes for each decision-

maker is derived, as given in Table 3. 

Table 3: Fuzzy vector of the assessment attributes comparative importance of each decision-maker 

Decision-makers/ 

Attributes 

At1 At2 At3 At4 At5 At6 At7 At8 At9 

                                    

Decision-maker1 0.7 0.2 0.1 0.9 0.6 0.3 0.8 0.1 0.9 0.1 0.4 0.5 0.1 0.75 0.7 0.2 0.6 0.3 

Decision-maker2 0.5 0.4 0.1 0.9 0.6 0.3 0.9 0.1 0.6 0.3 0.25 0.6 0.5 0.4 0.8 0.1 0.4 0.5 

Decision-maker3 0.7 0.2 0.5 0.4 0.8 0.1 0.1 0.9 0.9 0.1 0.1 0.75 0.7 0.2 0.5 0.4 0.4 0.5 

 

At that point, the modified Euclidean distance measure is utilised to calculate the 

distance between the most important attribute and all other attributes, as described in Step 

4 and given in Table 4. 

Then, two conditions are defined that must be met in order to calculate the final 

values of the weight coefficients. Accordingly, the mathematical model given in Step 5 is 

defined to ascertain the weight coefficients of the assessed attributes. The weights 
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assigned to the attributes, taking into account the preferences of each decision-maker, are 

provided in Table 5.   

Table 4: Distance between the most important attribute and all other attributes 

Decision-makers/Attributes At1 At2 At3 At4 At5 At6 At7 At8 At9 

Decision-maker1 1.5410 2.0295 1.7078 1.3069 1 1.8662 1.8952 1.5410 1.7078 

Decision-maker2 1.8133 2.0295 1.7078 1 1.7078 1.8964 1.8133 1.3069 1.8662 

Decision-maker3 1.5410 1.8133 1.3069 2.0295 1 1.8952 1.5410 1.8133 1.8662 

 

Table 5: Weight values based on each decision-maker and the final weights 

Decision-makers/Attributes At1 At2 At3 At4 At5 At6 At7 At8 At9 

Decision-maker1 0.1118 0.0852 0.1016 0.1318 0.1717 0.0933 0.0911 0.1121 0.1014 

Decision-maker2 0.0986 0.0881 0.1046 0.1786 0.1046 0.0944 0.0986 0.1366 0.0959 

Decision-maker3 0.1136 0.0964 0.1337 0.0861 0.1749 0.0919 0.1136 0.0964 0.0935 

Final weights 0.0980 0.0566 0.1112 0.1585 0.2459 0.0634 0.0799 0.1154 0.0711 

 

The weights assigned to the attributes, based on the preferences of each decision-

maker, are combined in Step 6 using Equation (18), as provided in Table 5. The security 

management attribute represented by At5 received the highest weight value of 0.2459. 

The attributes At4, At8, and At3 represent interoperability, service response time, and 

usability, respectively. They got weight values of 0.1585, 0.1154, and 0.1112. The 

attributes At1, At7, At9, and At6 represent scalability, maintainability, reliability, and cost, 

respectively. They received weight values of 0.0980, 0.0799, 0.0711, and 0.0634. At2, 

which represents the sustainability attribute, assigned the lowest weight value of 0.0566. 

These weights are fed to Grey-TOPSIS technique to rank the CSPs. 

5.2. CSPs Ranking Results 

This section presents the ranking outcomes of CSPs using Grey-TOPSIS technique. 

The decision matrix utilised in this paper is derived from a prior study [11]. This matrix 

had eight CSPs, namely CSP1, CSP2, CSP3, CSP4, CSP5, CSP6, CSP7, and CSP8, which 

corresponded to HP, Amazon, Google, GoGrid, Azure, Rackspace, Joynet, and Linode. 

These CSPs crossed with nine assessment attributes, as given in Table 6.  

Table 6: CSPs decision matrix.  

CSPs/Atts At1 At2 At3 At4 At5 At6 At7 At8 At9 

CSP1 12.81 15.47 31.11 7.81 8.05 20.75 6.89 2.43 7.32 

CSP2 29.24 8.11 13.2 6.69 18.79 10.37 2.9 17.95 6.27 

CSP3 19.21 10.14 5.66 11.71 2.68 6.92 10.33 9.58 8.78 

CSP4 9.61 34.69 6.6 5.86 32.21 2.53 13.78 13.08 10.98 

CSP5 12.81 3.2 19.8 33.97 10.07 5.19 8.27 7.67 34.51 

CSP6 2.23 13.52 13.2 22.25 13.42 32.12 10.33 12.78 20.56 

CSP7 7.69 6.76 2.51 2.34 8.05 8.3 13.78 30.12 2.79 

CSP8 6.4 8.11 7.92 9.37 6.71 13.83 33.72 6.39 8.78 
 

In the Step 1 of Grey-TOPSIS technique, the decision matrix is normalised to produce 

normalised decision matrix, as given in Table 7.  
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Table 7: Normalised decision matrix.  

CSPs/Atts At1 At2 At3 At4 At5 At6 At7 At8 At9 

CSP1 0.3063 0.3534 0.7227 0.1738 0.1870 0.4746 0.1600 0.0579 0.1641 

CSP2 0.6990 0.1853 0.3066 0.1489 0.4364 0.2372 0.0673 0.4277 0.1406 

CSP3 0.4593 0.2317 0.1315 0.2606 0.0622 0.1583 0.2399 0.2283 0.1969 

CSP4 0.2297 0.7926 0.1533 0.1304 0.7481 0.0579 0.3200 0.3117 0.2462 

CSP5 0.3063 0.0731 0.4600 0.7559 0.2339 0.1187 0.1920 0.1828 0.7738 

CSP6 0.0533 0.3089 0.3066 0.4951 0.3117 0.7347 0.2399 0.3045 0.4610 

CSP7 0.1838 0.1544 0.0583 0.0521 0.1870 0.1899 0.3200 0.7177 0.0626 

CSP8 0.1530 0.1853 0.1840 0.2085 0.1558 0.3164 0.7830 0.1523 0.1969 

 

In Step 2, each value in this matrix is multiplied by the weight values of the attributes, 

which are derived using the FFS-FUCOM, as provided in Table 8. The ideal solutions of 

positive    and negative    are derived, as detailed in Step 3 and given in Table 8. It is 

important to note that all attributes are beneficial except for the cost attribute (Att6), 

which is considered a non-beneficial attribute. 

Table 8: Normalised weighted decision matrix 

CSPs/Atts At1 At2 At3 At4 At5 At6 At7 At8 At9 

CSP1 0.0300 0.0200 0.0803 0.0276 0.0460 0.0301 0.0128 0.0067 0.0117 

CSP2 0.0685 0.0105 0.0341 0.0236 0.1073 0.0150 0.0054 0.0494 0.0100 

CSP3 0.0450 0.0131 0.0146 0.0413 0.0153 0.0100 0.0192 0.0264 0.0140 

CSP4 0.0225 0.0449 0.0170 0.0207 0.1840 0.0037 0.0256 0.0360 0.0175 

CSP5 0.0300 0.0041 0.0511 0.1198 0.0575 0.0075 0.0153 0.0211 0.0550 

CSP6 0.0052 0.0175 0.0341 0.0785 0.0766 0.0466 0.0192 0.0352 0.0328 

CSP7 0.0180 0.0087 0.0065 0.0083 0.0460 0.0120 0.0256 0.0828 0.0045 

CSP8 0.0150 0.0105 0.0205 0.0331 0.0383 0.0200 0.0625 0.0176 0.0140 

   0.0685 0.0449 0.0803 0.1198 0.1840 0.0037 0.0625 0.0828 0.0550 

   0.0052 0.0041 0.0065 0.0083 0.0153 0.0466 0.0054 0.0067 0.0045 

 

In Step 4, Euclidean distance is computed between each alternative and the    and 

  , as given in Table 9.  

Table 9: Positive and negative ideal solutions 

CSPs CSP1 CSP2 CSP3 CSP4 CSP5 CSP6 CSP7 CSP8 

   0.2013 0.1581 0.2175 0.1447 0.1614 0.1631 0.2117 0.2064 

   0.0895 0.1279 0.0695 0.1842 0.1457 0.107 0.0923 0.0752 

 

Upon performing calculations, the values for   ,   ,   , and     were determined 

to be 0, 0, 0.1687, and 0.1687, respectively, as presented in Step 5. These values are 

utilised to compute the grey correlation coefficient matrix for the positive    (   
 )

   
 

and the negative    (   
 )

   
ideal solutions, as given in Tables 10 and 11.  

Based on these matrices the grey correlation degree between all alternatives and the 

ideal solutions   
  and   

  are determined, as given in Step 6. The grey correlation degree 

and Euclidean distance are transformed into dimensionless values by computing   
 ,   

 , 

  
 , and   

  using Equations (27) and (28), as described Step 7. In the following Step 8, 

Equation (29) is employed to combine the Euclidean distance and grey correlation degree 
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by determining the values of   
  and   

 . In Step 9, the relative closeness    is calculated 

using these values. It’s worth mentioning that the   and   values in Equation (29) are 

selected to be 0.1 and 0.9, respectively, to determine relative closeness   . Finally, the 

eight CSPs are ranked according to the score values derived from Equation (30), as given 

in Step 10. A higher CSP score signifies a superior alternative, whilst a lower score 

signifies the contrary. The overall results of Step 6 to Step10 are given in Table 12.  

Table 10: Grey correlation coefficient matrix for the positive-ideal-solution 

CSPs/Atts At1 At2 At3 At4 At5 At6 At7 At8 At9 

CSP1 0.6866 0.7723 1 0.4774 0.3793 0.7615 0.6289 0.5254 0.6604 

CSP2 1 0.7104 0.6458 0.4670 0.5239 0.8812 0.5960 0.7158 0.6518 

CSP3 0.7821 0.7265 0.5620 0.5178 0.3333 0.9298 0.6603 0.5988 0.6726 

CSP4 0.6471 1 0.5712 0.4595 1 1 0.6952 0.6428 0.6920 

CSP5 0.6866 0.6743 0.7427 1 0.4001 0.9563 0.6412 0.5773 1 

CSP6 0.5713 0.7549 0.6458 0.6710 0.4400 0.6628 0.6603 0.6387 0.7912 

CSP7 0.6255 0.7001 0.5331 0.4304 0.3793 0.9098 0.6952 1 0.6250 

CSP8 0.6118 0.7104 0.5847 0.4928 0.3667 0.8373 1 0.5637 0.6726 

 

Table 11: Grey correlation coefficient matrix for the negative-ideal-solution 

CSPs/Atts At1 At2 At3 At4 At5 At6 At7 At8 At9 

CSP1 0.7729 0.8416 0.5331 0.8138 0.7333 0.8365 0.9193 1 0.9211 

CSP2 0.5713 0.9300 0.7534 0.8460 0.4782 0.7278 1 0.6639 0.9382 

CSP3 0.6795 0.9038 0.9120 0.7184 1 0.6977 0.8596 0.8109 0.8982 

CSP4 0.8299 0.6743 0.8887 0.8716 0.3333 0.6628 0.8069 0.7422 0.8659 

CSP5 0.7729 1 0.6538 0.4304 0.6664 0.6835 0.8944 0.8540 0.6250 

CSP6 1 0.8634 0.7534 0.5456 0.5789 1 0.8596 0.7476 0.7484 

CSP7 0.8683 0.9482 1 1 0.7333 0.7095 0.8069 0.5254 1 

CSP8 0.8962 0.9300 0.8579 0.7727 0.7856 0.7608 0.5960 0.8856 0.8982 

 

Table 12: Overall results of Grey-TOPSIS.  

CSPs                   
            

        Ranks 

CSP1 0.6547 0.8191 0.8784 0.9710 0.9256 0.4859 0.5251 0.9301 0.4647 5 

CSP2 0.6880 0.7677 0.9231 0.9101 0.7271 0.6941 0.7170 0.7454 0.5024 3 

CSP3 0.6426 0.8311 0.8622 0.9853 1 0.3770 0.4255 0.9985 0.4519 8 

CSP4 0.7453 0.7417 1 0.8793 0.6653 1 1 0.6867 0.5382 1 

CSP5 0.7421 0.7312 0.9956 0.8668 0.7420 0.7909 0.8114 0.7545 0.5330 2 

CSP6 0.6485 0.7885 0.8701 0.9348 0.7501 0.5806 0.6095 0.7686 0.4786 4 

CSP7 0.6554 0.8435 0.8793 1 0.9733 0.5012 0.5390 0.9760 0.4576 7 

CSP8 0.6489 0.8203 0.8706 0.9725 0.9490 0.4082 0.4544 0.9513 0.4594 6 

According to the data presented in Table 12, CSP4 achieved the highest ranking with 

a score of 0.5382. Subsequently, CSP5, CSP2, CSP6, and CSP1 were ranked with score 

values of 0.5330, 0.5024, 0.4786, and 0.4647, respectively. The CSP8, CSP7, and CSP3 

received the lowest ranks, with score values of 0.4594, 0.4576, and 0.4519, respectively.  
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6. EVALUATION AND VALIDATION 

6.1. Sensitivity Analysis 

This section focuses on measuring the sensitivity of the proposed framework for 

ranking CSPs. This is achieved by (i) altering the α and β values, and (ii) adjusting the 

weights assigned to the attributes. Firstly, the combination of the Euclidean distance and 

grey correlation degree, as defined in Equation (20), are iterated four more times using 

different values of   (0.3, 0.5, 0.7, 0.9) and   (0.7, 0.5, 0.3, 0.1). Figure 4 shows that the 

ranking results of the eight CSPs are slightly changed with the alteration of the α and β 

values.  

 
Figure 4: Impacts of altering the α and β values on the CSPs ranking results. 

The ranking positions of CSP1-CSP6 remained consistent across all   and   values in 

comparison to the original ranking, specifically when       and      .  The 

positions of CSP7 and CSP8 were reversed across all   and   values in comparison to the 

original ranking.  

Secondly, the effect of adjusting the weight coefficients of attributes on the ranking of 

CSPs. The weighting coefficients for the attributes are adjusted in 9 different scenarios 

(S1-S9) to evaluate the sensitivity of the proposed framework, as stated in references [15], 

[25]. Table 13 provides the adjusted weights and elasticity weight coefficient    values 

for each of the aforementioned scenarios. 

In addition, the degree of alteration ( ) is found to be within the range of -0.2459 and 

0.7541. The impact of the new implemented weights on the ranking of the CSPs is 

depicted in Figure 5. Subsequently, the revised rankings of CSPs are compared to their 

initial rankings. 

Based on the recent ranking results of CSPs displayed in Figure 5, the top-ranked 

alternative, namely CSP4, maintained its position in seven scenarios but slipped to second 

place in S1 and S2. CSP5, the alternative ranked second, maintained its position in S3 and 

S4. However, it rose to the top rank in S1 and S2, and dropped to the third and fourth 

positions in S5 and S6, and S7-S9, respectively. CSP2, the alternative placed third, 

maintained its position in four scenarios (S1-S4) but moved to second place in scenarios 

S5-S9. CSP6, the alternative ranked fourth, maintained its position in five scenarios (S2-

S6), but fell to fifth place in S1 and rose to third place in S7-S9. CSP1, the alternative 

ranked fifth, maintained its position across eight scenarios (S2-S9) but fell to sixth place 

in S1. CSP8, which placed sixth, maintained its position in S2 and S3 but fell to seventh 
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place in the remaining scenarios. The alternative ranked seventh, named CSP7, 

maintained its position in only one scenario (S3), but fell to eighth place in S1 and S2, and 

rose to sixth place in S4-S9. CSP3, the eighth-ranked alternative, maintained its position in 

seven scenarios (S3-S9) but rose to the fourth and seventh places in S1 and S2, 

respectively. 

Table 13: Adjusted weights and    values of each scenario 

Attributes At1 At2 At3 At4 At5 At6 At7 At8 At9 

Original Weights 0.0980 0.0566 0.1112 0.1585 0.2459 0.0634 0.0799 0.1154 0.0711 

S1 0.1299 0.0751 0.1474 0.2102 0.0000 0.0840 0.1059 0.1531 0.0943 

S2 0.1137 0.0657 0.1290 0.1840 0.1250 0.0735 0.0927 0.1339 0.0825 

S3 0.0974 0.0563 0.1106 0.1577 0.2500 0.0630 0.0794 0.1148 0.0708 

S4 0.0812 0.0469 0.0921 0.1314 0.3750 0.0525 0.0662 0.0957 0.0590 

S5 0.0650 0.0375 0.0737 0.1051 0.5000 0.0420 0.0529 0.0765 0.0472 

S6 0.0487 0.0281 0.0553 0.0788 0.6250 0.0315 0.0397 0.0574 0.0354 

S7 0.0325 0.0188 0.0369 0.0526 0.7500 0.0210 0.0265 0.0383 0.0236 

S8 0.0162 0.0094 0.0184 0.0263 0.8750 0.0105 0.0132 0.0191 0.0118 

S9 0.0000 0.0000 0.0000 0.0000 0.9999 0.0000 0.0000 0.0000 0.0000 

   0.1299 0.0751 0.1474 0.2102 0.3261 0.0840 0.1059 0.1531 0.0943 

 

 
Figure 5: New ranking results of CSPs across nine scenarios.  

At this point, the correlation coefficients are calculated between the new ranking 

orders and the original ranking orders. Spearman's rho correlation is used to analyse the 

overall results of sensitivity analysis and measure the strength and direction 

(positive/negative) of the correlation between the original and new rankings. Figure 6 

displays the correlation of CSPs ranks in 9 different scenarios. 

The correlation between the initial and new ranks in eight scenarios (S2‒S9) ranged 

from 0.9 to 1.0, indicating a strong and positive relationship (Figure 6). The correlation 

coefficient between the initial and new ranks in S1 was 0.7, indicating a moderate and 

positive relationship. The correlation coefficient produced an average value of 0.9, 

indicating a strong and positive relationship. 
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Figure 6: Correlation of CSPs ranks in 9 different scenarios.  

 

6.2. Systematic Ranking Test  

Many academics performed a systematic ranking test to evaluate the efficacy of their 

MADM techniques in the current literature [61]. Validation includes categorising the 

chosen alternatives/CSPs into groups and then confirming the ranking results. Each group 

comprised several CSPs. The number of CSPs in each group varies based on the total 

number of CSPs. The validation results were not affected by the number of groups or 

alternatives used in the assessment, as reported by [61], [92]. The validity of the ranking 

results can be verified by the following steps: In order to verify that the CSPs were 

arranged in a systematic manner, the following steps are taken: (i) the values within the 

weighted normalised matrix are aggregated for each CSP; (ii) the aggregated values and 

their corresponding CSPs are ordered based on the ranking outcomes; (iii) the CSPs are 

categorised into distinct groups; and (iv) the average value of each group is computed. 

The comparisons were based on the average value of each group. If Group1 achieves 

the highest average value, it confirms that the ranking results are systematically ranked. 

The average of Group2 must fall between the averages of Group3 and Group1. It is 

important for the subsequent groups to follow the same process, making sure that each 

group's average value is more than or equal to the next group's average and less than or 

equal to the preceding group's average. The assessment findings are reported in Table 14. 

Table 14: Systematic ranking results.  

Groups  CSPs Mean Values 

Group1 CSP4 and CSP5 0.0407 

Group2 CSP2 and CSP6 0.0372 

Group3 CSP1 and CSP8 0.0276 

Group4 CSP7 and CSP3 0.0228 

The CSPs are classified into four distinct groups, with two CSPs in each group. The 

average of Group1 (0.0407) exceeds that of Group2, Group3, and Group4. The average of 

Group2 (0.0372) is higher than that of Group3 (0.0276) and Group4 (0.0228). Group3's 

average value exceeds Group4's average value. The finding shows that the ranking results 

of the CSPs are accurate and consistent. 
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6.3. Comparative Analysis  

This section compares the proposed method (Grey-TOPSIS technique with the FFS-

FUCOM based distance measuring) to the study reported by [11]. The authors of [11] 

utilised TOPSIS and BWM to evaluate and rank the CSPs according to nine QoS criteria. 

The present study and the study of [11] both provided the ranking orders of the 8 CSPs as 

shown in Table 15. Five out of eight CSPs, accounting for 62.5%, had similar ranking 

orders. Three out of the eight CSPs, representing 37.5%, had different ranking orders.     

Table 15: Comparing the ranking orders of the two studies 

Studies Ranking orders Similarities Differences 

Present study CSP4> CSP5> CSP2> CSP6> CSP1> CSP8> CSP7> CSP3 5 CSPs of 8 

(62.5%) 

3 CSPs of 8 

(37.5) Study of [11] CSP4> CSP5> CSP2> CSP6> CSP1> CSP7> CSP3> CSP8 

 

The present study utilised the Grey-TOPSIS technique to rank the selected CSPs, 

addressing the shortcomings of the traditional TOPSIS technique mentioned in Section 

1.2.1. The problem of rank reversal in TOPSIS [11] and other MADM techniques is 

solved by implementing the Grey-TOPSIS technique [40]. Furthermore, employing 

Grey-relational-analysis technique with TOPSIS may manage complex decision-making 

situations involving uncertain, imprecise, and insufficient data [46]. 

In the same context, FFS-FUCOM based distance measurement has been utilised to 

determine the weight values of assessment attributes within the same context. The 

inconsistency of the results rises as the number of comparisons required rises, as stated in 

Section 1.2.2. The FUCOM consistently requires fewer pairwise comparisons than the 

BWM technique to calculate attributes' weight. Therefore, the FUCOM requires less 

processing effort and is hence more efficient than BWM [11]. Furthermore, combining 

FFS with FUCOM based distance measurement aims to tackle uncertainty found in 

previous methods. Overall, the proposed framework for ranking CSPs based on multiple 

QoS attributes demonstrates better performance compared to the prior study. 
 

7. CONCLUSION 

This paper proposed a hybrid decision-making framework for ranking CSPs based on 

multiple QoS attributes. The FFS-FUCOM based distance measurement is formulated to 

obtain the final weights of the QoS attributes and determine their importance level. This 

method is utilised as a means to address the issues of inconsistency and uncertainty that are 

present in earlier techniques. Then, Grey-TOPSIS technique is adopted for ranking CSPs as 

a solution to address the issue of rank reversal that is associated with earlier MADM 

techniques based on the attributes’ weight derived by FFS-FUCOM based distance 

measurement.  

The proposed method can be generalised to rank another CSPs such as IBM Cloud, 

Oracle Cloud, Alibaba Cloud, DigitalOcean, VMware Cloud, Salesforce Cloud, Red Hat 

OpenShift, CenturyLink Cloud, SAP Cloud Platform, and Tencent Cloud based on the 

same QoS attributes. In addition, another QoS attributes can be included in the ranking of 

CSPs. The ranking and selecting CSPs promotes better decision, competition, and 

development in the cloud computing sector. In addition, it has numerous implications for 

both service providers and clients. It can aid clients in making well-informed decisions 

when choosing services that are in line with their particular requirements. Service providers 

are motivated to consistently develop and innovate in order to improve their QoS.  
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Although the proposed framework has apparent advantages, it also has certain limits. 

Initially, the FFS-FUCOM solely employed Euclidean distance in its formulation. 

Furthermore, all decision-makers were given equal treatment, irrespective of their level 

of knowledge. Furthermore, the FUCOM technique has not been extended with more 

sophisticated fuzzy set.  

This study can serve as a foundation for future research endeavours. Firstly, the FFS-

FUCOM can be explored with additional distance metrics. Furthermore, experts can be 

rated and assigned values according to their level of knowledge. Finally, the FUCOM can 

be extended with new fuzzy sets such as spherical fuzzy sets or epistemic random fuzzy 

sets. 
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