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Abstract: In this paper an algorithm for the convex polygon triangulation based on the 
reverse Polish notation is proposed. The formal grammar method is used as the 
starting point in the investigation. This idea is "translated" to the arithmetic expression 
field enabling application of the reverse Polish notation method. 
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1. INTRODUCTION AND PRELIMINARIES 

The triangulation of the convex polygon is the following problem. For the 
given polygon find the number of the possible splitting on triangles by its diagonals 
without gaps and overlaps of these splitting. This is the classical problem solved so far 
in a few ways. 

One solution from [4] uses the context-free grammar with productions: 

,→S aSS S → b , (1) 

where  and  are terminals, and  a non-terminal symbol. a b S
The triangulation of polygon is based on the following principles: 
(a) The non-terminal S  represents an oriented topological segment. This 

segment is named potential. 
(b) The chain aS  corresponds to the oriented topological triangle with one 

real edge  and two potential edges  and . 
S

a S S
(c) The production S a  means the replacement of the potential 

segment  by the triangle , consisting of its real edge defined 
orientation and potential edges , being the edge  with defined 

→ SS
S aSS a

S a
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orientation and potential edges , being the edge of the polygon which is 
about to be defined. 

S

i

p

ostfix

(d) The replacement S  means replacing the potential edge  with the 
real edge . 

→ b S
b

If we apply  times the first production in (1) (in other words, if we 
produce a word with  s in it) and then we apply, the corresponding number of 
times, the second production in (1), we get one triangulation of the polygon with  
edges. 

− 2n
− 2n 'a

n

In [4] it is shown that the number of all possible triangulations of the n -edges 
polygon  is given by the recurrent formula ( )f n
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Of course, implementation of this approach (especially if we want to list all 
triangles by their nodes) is an additional problem. 

Being inspired by the method described above, we replace the first grammar 
rule in (1) and use the following rules generating the arithmetic expression in the 
reverse Polish notation. 

→S SS +  (1.1) 

→S b  (1.2) 

Before we start with the algorithm construction, let us expose some of the 
results concerning the reverse Polish notation method based on the properties 
investigated in [5]. Note that the expression in the reverse Polish notation is stored in 
the array postfix, where [ ]postfix i , for each , is a string which denotes an 
expression element, i.e. a variable, a constant, or an operator. 

≥ 0

 
Definition 1.1. The grasp of the element [ ]ostfix i  is the number of its preceding 
elements which form operand(s) of the element [ ]postfix i . We denote the grasp of the 
element [ ]postfix i  by GR ( [ ])postfix i . Integer i is called the index of the 
element [ ]postfix i . Index i of the element [ ]p i  will be alternatively denoted by 
IND ( [ ])postfix i . 
 
Definition 1.2. The grasped elements of the operator [ ]postfix i  are the grasp left 
preceding elements in the array postfix which form operand(s) of the operator [ ]postfix i . 
The index of the most left element among them is called the left grasp bound. The left 
grasp bound of the operator [ ]postfix i  is denoted by LGB ( [ ])postfix i . 
 
Definition 1.3. The element [ ]postfix i  is called the main element or head for the 
expression formed by [ ]postfix i  and its grasped elements. 
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In the second section we investigate a 1-1 and onto mapping  

from a subset of the expressions, made by consecutive application of the rule (1.1)  
times and the rule (1.2)  times, to the set of an -gon triangulations. 

: 6n n nF P T

− 2n
−1n n

In the third section, we construct the algorithms for the polygon triangulation 
using the results of the second section. 

2. ARITHMETICAL EXPRESSIONS AND TRIANGULATIONS 

Since the production  means the construction of the triangle 
with the real oriented side  and two potential oriented sides , one can assume 

that the production  means the construction of the triangle obtained by 
replacing the real side  of the triangle  by the real side 

→S aSS
a

+
aSS S

→S SS
a aSS + , keeping the 

orientation. In this way, we replace the terminal  by the sign a +  which can be 
considered as the arithmetic operator, with two 's as its operands. S

Using this correspondence, for every  we can consider the 
mapping , whose domain is the set of expressions made by the consecutive 

application of the rule (1.1) n  times and the rule (1.2) 

≥ 3n
: 6n n nF R T

− 2 −1n  times, and the range is 
the set of an n -gon triangulations. But, it is not difficult to verify that the set nR  

contains multiple elements. In the following lemma we got unique characterization for 
each element in nR . 

Using known notations from [6], by V  we designate all strings of the length 

 on , and by  we denote the closure set{ } , where 

n

εn V *V ∪ ∪ ∪"2V V ε  is the empty 

string. Also, by { , *
,}+ p qb  we denote the subset of the closure set { , *}+b  consisting of p  

appearances of the sign  and b q  appearances of the sign + . It is easy to see 

that{ , *
,} { }ε+ =0 0b . 

 
Lemma 2.1. An arbitrary element ∈nr Rn

n

− 2

, corresponding to the particular 

triangulation of n-angle polygon, is uniquely determined by the following two 
conditions: 
(C1) It possesses the form 

*
,, { , }α α − −= + ∈ + 3 3n nr bb b , 

(C2) Each initial part of the expression r  (the substring of consecutive characters which 

start from the first character) must be of the form 
n

*
,{ , } , ,..., , ,...,+ > = − =1 1 1p qb p q p n q n . 

Proof: We use the induction by . For n = 3n  the expression +bb  corresponds to the 
triangle, and satisfies the conditions (C1) and (C2). An arbitrary -gon 
triangulation is derived replacing by triangle an adequate side of a triangle in the 
corresponding -gon triangulation. Consider the expressions 

( + 1k )

k
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* *
, ,

, ,

{ , } , { , } , ,
α α β β α α β β

α β

α β

+ +

∈ + ∈ + + = − + = −4 3p q p q

bb bb b

b b p q n p q n

)

 (2.1) 

which satisfy condition (C2) and correspond to any -gon triangulation. Each of these 
expression satisfies (C1). Then, corresponding 

k
( + 1k -gon triangulation is determined 

by one of the following expressions 

, , , , ,α β α β α+ + + + + + + + + +bbb bb b bbb b bb b b bb bb β

n

 (2.2) 

which satisfy (C2) and 

* *
, ,{ , } , { , } , ,

α α β β α β α βα β∈ + ∈ + + = − + = −4 3p q p qb b p p n q q . 

Each of the expressions from (2.2) is uniquely determined. Since the following 
transformations are valid 

*
,
*
,

* *
, ,

*
,

, { , }

, { , }

{ , , , { , } , { , } ,

, } { , { , } }

α α β β

α β α β

γ γ

δ δ

α β α β α β α β

γ γ − −

+ + = + = + ∈ +

+ + = + = + ∈ +

+ + + + + + ∈ + ∈ +

+ = − + = − = + ∈ +

1 1

1 1

2 24 3

p q p q

n n

bbb bb b b

bb b bb b b

bbb b bb b b bb bb b b

p p n q q n bb b

 

we conclude that these expressions satisfy the condition (C1), too. Using the same 
transformations and the inductive hypothesis we can prove that these expressions also 
satisfy the condition (C2). ♦ 

 

By nP  we denote the set of expressions generated by the grammar rules (1.1), 

(1.2) which satisfy conditions (C1) and (C2). 
 

Corollary 2.1. The grasp of the head element in the expression corresponding to the 
particular triangulation of n-angle polygon is −2 4n . The head element has n  signs 

 and  signs  as its grasped elements, and the initial part of the grasped 
elements is of the form 

−1
b − 3n +

*
,{ , } , , ,..., , ,...,+ > = − = −1 3 1 3p qbb b p q p n q n . 

Proof: From Lemma 2.1 it follows that the length of the expression from nP  

corresponding to any triangulation of the polygon with  angles isn −2n

bb

3

− 3

, possesses the 

form , and each of its initial parts is of the form  *
,{ , } − −+ 3 3n nbb b

,..., , ,.= − =1 3
,{ , } ,++ >p qb p ,q

..,1p n q n . Then, the proof is obvious from Definition 1.1 and 

Definition 1.3. ♦ 
 

Lemma 2.2. The mapping  is well defined, one-to-one and onto for 

any  

: 6n n nF P T

≥ 3n .
Proof: Firstly, we shall prove by the induction that mappings , are well 

defined. The claim will be proved using induction by . For

, ≥ 3nF n

, ≥ 3n n = 3n , the unique 
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expression , obtained by one application of the rule (1.1) and two applications of 
the rule (1.2), corresponds to the unique and trivial triangulation of the triangle. 

+bb

k

R

+n

w

Suppose that the claim is valid for ,= ≥ 3n k k . 

In the case , consider an arbitrary expression (2.2) generated by rule 
(1.1) applied 

= + 1n k
−1  times and by rule (1.2) applied  times. If in the expression under 

the consideration we replace the appearance of the substring 
k

+bb  by  (using the 
opposite directions in the rules (1.2) and (1.1)), then we get the expression of the form 
(2.1) generated by applying the rule (1.1) 

b

− 2k  times and rule (1.2) (  times. 
According to the inductive hypothesis it corresponds to the unique triangulation of the 

-gon. But, returning  to the previous place, and transforming it into , we get 
the starting expression (2.2) making the additional triangle on the edge of the -gon 
which corresponds to the transformed . In this way we get one unique triangulation of 

-gon.  

)

)

−1

+

k

bbk

k

+bb
k

b
( + 1

Similarly, we can prove by induction that the mapping  is one-to-one. nF

In order to prove that the mapping  is onto, we will construct an effective 

procedure to get the expression from 
nF

nP  starting from the given triangulation. 

Suppose that we have one triangulation with oriented edges and diagonals. To every 
diagonal and to edge AB  assign the +  sign and to the rest of edges assign the  sign. 
Observe two edges which define one triangle with edge

b
AB . Denote the incoming edge 

sign by  and outgoing edge sign byL R . Generally, the needed expression has the 
form . If  or +L L R  is equal to +  sign, it should be surrounded by the parenthesis 
and the algorithm recursively applied to it. When we complete the recursion, transform 
the begotten expression to the reverse Polish form which is obviously the element of 
the set nP . ♦ 

3. THE ALGORITHM 

We should generate all postfix expressions corresponding to the particular 
triangulations, and then we shall get one triangulation for each of these expressions. 

All expressions from the set nR  could be generated using the result of Lemma 

2.1 and backtracking method. We start from the highest allowed expression in the 
lexicographic sense. This is the expression 

− −1 2nS . 

In every further step we find the first allowed expression lexicographically less than the 
previously found expression. In this way we could find all allowed expressions form nR . 

We need to generate triangulations corresponding to every allowed word 
from nR . Let  be an arbitrary word from nR . Hence, w  is the postfix notation of the 

expression containing n  operands . It is clear that there is bijection between −1 ( 'sS )

nR  and the set of binary trees with ( ) /−1 2n n  nodes and depth − 2n

n

. We could 

observe every node as a set of consecutive operands which are descendants of a given 
node. If we numerate the vertices of a given polygon by integers1 , then we could ,...,
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wee every vertex designed by number for ,..., −1 n 1  as an operand from w . Henceforth, 
every tree node in the tree corresponding to some polygon represents the set of 
consecutive polygon vertices. This set is defined by the first and the last vertex, i.e. by 
its last vertex and by the last vertex of the previous node in the same tree level. So, it is 
enough to remember in every tree level the biggest integer numerating some of the 
node descendants. Thus, we conclude that accompanying the node  with the first 
vertex 

v
p  and the node  with the last vertex u q  is the separation of the vertices 

, + ,...,1p p q  from the rest of the vertices. In geometrical sense, it corresponds to 

drawing the diagonal ( , )1+p q . We are ready to present the algorithm for the -gon 
triangulation corresponding to the word w . 

n

+

S

S

( ( ( ) , (1red d

+
( ( (

pre pred curr

S
pre urrd c
)rr ))

n

1. Assign to every  from  an ordinal number from left to right. w
2. Let the pointer curr be the first element index of word w . 
3. If the value of the element pointed by curr is , then curr gets the index 

value of the next element and repeat this step. If its value is equal to  go 
to step 4, or if it is the end of string go to step 5. 

S

4. In this moment pointer curr points to a + from word . By Lemma 2.1 it 
is assured that to this 

w
+  at least two  precede (which represents nodes 

of the binary tree). Our goal is a transition to the higher level. We achieve 
this by joining two  nodes which proceed toS + , and printing the diagonal 

( )) ) )+ +pred p c

)

urr

)

 (the function pred designates 

the predecessor of its argument). Further, in this step we eliminate 
current  and preceding node . The pointer curr gets the index value 
of )pred

(
, while we remember the last vertex of the node 

pred cu  as the last vertex of the node ( ( (pre predd curr . Go to step 3. 

1

)
5. At this point, all diagonals corresponding to the word w , making 

particular triangulation of the given polygon, are generated and algorithm 
is stopped. 

 
In the following table we present behavior of this algorithm. 

 
Table 3.1. 

 

 # of different triangulations Processing time [s] 
13  58786  2 
14  208012  6 
15  742900  22 
16  2674440  91 
17  9694845  342 
18  35357670  1455 
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4. CONCLUSION 

As we saw, starting from the triangulation strategy based on the formal 
grammar from [4] and using the arithmetic expressions in the reverse Polish notation, 
we get the relatively simple algorithm for polygon triangulation. Similar idea could be 
found in [3], where an algorithm, based on the matrix multiplication and corresponding 
parse trees, is presented. But, this algorithm needs to operate with data structures 
which are more complex than in the case of our algorithm. 

The reader should be aware that our intention was not to present 
revolutionary better algorithms for polygon triangulation. The problem of convex 
polygon triangulation is an old one and has been solved so far in many ways (see, for 
example, [1, 2]) and it is known that it could be done in linear time. Our main goal is to 
show how to successfully apply reverse Polish method for the symbolic computation in 
this area. 
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