
Yugoslav Journal of Operations Research
 13 (2003), Number 1, 61-67

A NON-RECURSIVE ALGORITHM FOR POLYGON
TRIANGULATION

Predrag S. STANIMIROVI], Predrag V. KRTOLICA,
Rade STANOJEVI]

Faculty of Science and Mathematics,
University of Ni{, Ni{, Serbia

pecko@pmf.pmf.ni.ac.yu, krca@pmf.pmf.ni.ac.yu, rrr@eunet.yu

Abstract: In this paper an algorithm for the convex polygon triangulation based on the
reverse Polish notation is proposed. The formal grammar method is used as the
starting point in the investigation. This idea is "translated" to the arithmetic expression
field enabling application of the reverse Polish notation method.

Keywords: Reverse Polish notation, convex polygon triangulation, contex-free grammar.

1. INTRODUCTION AND PRELIMINARIES

The triangulation of the convex polygon is the following problem. For the
given polygon find the number of the possible splitting on triangles by its diagonals
without gaps and overlaps of these splitting. This is the classical problem solved so far
in a few ways.

One solution from [4] uses the context-free grammar with productions:

,→S aSS S → b , (1)

where and are terminals, and a non-terminal symbol. a b S
The triangulation of polygon is based on the following principles:
(a) The non-terminal S represents an oriented topological segment. This

segment is named potential.
(b) The chain aS corresponds to the oriented topological triangle with one

real edge and two potential edges and .
S

a S S
(c) The production S a means the replacement of the potential

segment by the triangle , consisting of its real edge defined
orientation and potential edges , being the edge with defined

→ SS
S aSS a

S a

mailto:pecko@pmf.pmf.ni.ac.yu
mailto:krca@pmf.pmf.ni.ac.yu

 P.S. Stanimirovi}, P.V. Krtolica, R. Stanojevi} / A Non-Recursive Algorithm 62

orientation and potential edges , being the edge of the polygon which is
about to be defined.

S

i

p

ostfix

(d) The replacement S means replacing the potential edge with the
real edge .

→ b S
b

If we apply times the first production in (1) (in other words, if we
produce a word with s in it) and then we apply, the corresponding number of
times, the second production in (1), we get one triangulation of the polygon with
edges.

− 2n
− 2n 'a

n

In [4] it is shown that the number of all possible triangulations of the n -edges
polygon is given by the recurrent formula ()f n

() () ,

() () ()
−

=

= =

= − +∑
1

2

2 3 1

1
n

i

f f

f n f i f n i

Of course, implementation of this approach (especially if we want to list all
triangles by their nodes) is an additional problem.

Being inspired by the method described above, we replace the first grammar
rule in (1) and use the following rules generating the arithmetic expression in the
reverse Polish notation.

→S SS + (1.1)

→S b (1.2)

Before we start with the algorithm construction, let us expose some of the
results concerning the reverse Polish notation method based on the properties
investigated in [5]. Note that the expression in the reverse Polish notation is stored in
the array postfix, where []postfix i , for each , is a string which denotes an
expression element, i.e. a variable, a constant, or an operator.

≥ 0

Definition 1.1. The grasp of the element []ostfix i is the number of its preceding
elements which form operand(s) of the element []postfix i . We denote the grasp of the
element []postfix i by GR ([])postfix i . Integer i is called the index of the
element []postfix i . Index i of the element []p i will be alternatively denoted by
IND ([])postfix i .

Definition 1.2. The grasped elements of the operator []postfix i are the grasp left
preceding elements in the array postfix which form operand(s) of the operator []postfix i .
The index of the most left element among them is called the left grasp bound. The left
grasp bound of the operator []postfix i is denoted by LGB ([])postfix i .

Definition 1.3. The element []postfix i is called the main element or head for the
expression formed by []postfix i and its grasped elements.

 P.S. Stanimirovi}, P.V. Krtolica, R. Stanojevi} / A Non-Recursive Algorithm 63

In the second section we investigate a 1-1 and onto mapping

from a subset of the expressions, made by consecutive application of the rule (1.1)
times and the rule (1.2) times, to the set of an -gon triangulations.

: 6n n nF P T

− 2n
−1n n

In the third section, we construct the algorithms for the polygon triangulation
using the results of the second section.

2. ARITHMETICAL EXPRESSIONS AND TRIANGULATIONS

Since the production means the construction of the triangle
with the real oriented side and two potential oriented sides , one can assume

that the production means the construction of the triangle obtained by
replacing the real side of the triangle by the real side

→S aSS
a

+
aSS S

→S SS
a aSS + , keeping the

orientation. In this way, we replace the terminal by the sign a + which can be
considered as the arithmetic operator, with two 's as its operands. S

Using this correspondence, for every we can consider the
mapping , whose domain is the set of expressions made by the consecutive

application of the rule (1.1) n times and the rule (1.2)

≥ 3n
: 6n n nF R T

− 2 −1n times, and the range is
the set of an n -gon triangulations. But, it is not difficult to verify that the set nR

contains multiple elements. In the following lemma we got unique characterization for
each element in nR .

Using known notations from [6], by V we designate all strings of the length

 on , and by we denote the closure set{ } , where

n

εn V *V ∪ ∪ ∪"2V V ε is the empty

string. Also, by { , *
,}+ p qb we denote the subset of the closure set { , *}+b consisting of p

appearances of the sign and b q appearances of the sign + . It is easy to see

that{ , *
,} { }ε+ =0 0b .

Lemma 2.1. An arbitrary element ∈nr Rn

n

− 2

, corresponding to the particular

triangulation of n-angle polygon, is uniquely determined by the following two
conditions:
(C1) It possesses the form

*
,, { , }α α − −= + ∈ + 3 3n nr bb b ,

(C2) Each initial part of the expression r (the substring of consecutive characters which

start from the first character) must be of the form
n

*
,{ , } , ,..., , ,...,+ > = − =1 1 1p qb p q p n q n .

Proof: We use the induction by . For n = 3n the expression +bb corresponds to the
triangle, and satisfies the conditions (C1) and (C2). An arbitrary -gon
triangulation is derived replacing by triangle an adequate side of a triangle in the
corresponding -gon triangulation. Consider the expressions

(+ 1k)

k

 P.S. Stanimirovi}, P.V. Krtolica, R. Stanojevi} / A Non-Recursive Algorithm 64

* *
, ,

, ,

{ , } , { , } , ,
α α β β α α β β

α β

α β

+ +

∈ + ∈ + + = − + = −4 3p q p q

bb bb b

b b p q n p q n

)

 (2.1)

which satisfy condition (C2) and correspond to any -gon triangulation. Each of these
expression satisfies (C1). Then, corresponding

k
(+ 1k -gon triangulation is determined

by one of the following expressions

, , , , ,α β α β α+ + + + + + + + + +bbb bb b bbb b bb b b bb bb β

n

 (2.2)

which satisfy (C2) and

* *
, ,{ , } , { , } , ,

α α β β α β α βα β∈ + ∈ + + = − + = −4 3p q p qb b p p n q q .

Each of the expressions from (2.2) is uniquely determined. Since the following
transformations are valid

*
,
*
,

* *
, ,

*
,

, { , }

, { , }

{ , , , { , } , { , } ,

, } { , { , } }

α α β β

α β α β

γ γ

δ δ

α β α β α β α β

γ γ − −

+ + = + = + ∈ +

+ + = + = + ∈ +

+ + + + + + ∈ + ∈ +

+ = − + = − = + ∈ +

1 1

1 1

2 24 3

p q p q

n n

bbb bb b b

bb b bb b b

bbb b bb b b bb bb b b

p p n q q n bb b

we conclude that these expressions satisfy the condition (C1), too. Using the same
transformations and the inductive hypothesis we can prove that these expressions also
satisfy the condition (C2). ♦

By nP we denote the set of expressions generated by the grammar rules (1.1),

(1.2) which satisfy conditions (C1) and (C2).

Corollary 2.1. The grasp of the head element in the expression corresponding to the
particular triangulation of n-angle polygon is −2 4n . The head element has n signs

 and signs as its grasped elements, and the initial part of the grasped
elements is of the form

−1
b − 3n +

*
,{ , } , , ,..., , ,...,+ > = − = −1 3 1 3p qbb b p q p n q n .

Proof: From Lemma 2.1 it follows that the length of the expression from nP

corresponding to any triangulation of the polygon with angles isn −2n

bb

3

− 3

, possesses the

form , and each of its initial parts is of the form *
,{ , } − −+ 3 3n nbb b

,..., , ,.= − =1 3
,{ , } ,++ >p qb p ,q

..,1p n q n . Then, the proof is obvious from Definition 1.1 and

Definition 1.3. ♦

Lemma 2.2. The mapping is well defined, one-to-one and onto for

any

: 6n n nF P T

≥ 3n .
Proof: Firstly, we shall prove by the induction that mappings , are well

defined. The claim will be proved using induction by . For

, ≥ 3nF n

, ≥ 3n n = 3n , the unique

 P.S. Stanimirovi}, P.V. Krtolica, R. Stanojevi} / A Non-Recursive Algorithm 65

expression , obtained by one application of the rule (1.1) and two applications of
the rule (1.2), corresponds to the unique and trivial triangulation of the triangle.

+bb

k

R

+n

w

Suppose that the claim is valid for ,= ≥ 3n k k .

In the case , consider an arbitrary expression (2.2) generated by rule
(1.1) applied

= + 1n k
−1 times and by rule (1.2) applied times. If in the expression under

the consideration we replace the appearance of the substring
k

+bb by (using the
opposite directions in the rules (1.2) and (1.1)), then we get the expression of the form
(2.1) generated by applying the rule (1.1)

b

− 2k times and rule (1.2) (times.
According to the inductive hypothesis it corresponds to the unique triangulation of the

-gon. But, returning to the previous place, and transforming it into , we get
the starting expression (2.2) making the additional triangle on the edge of the -gon
which corresponds to the transformed . In this way we get one unique triangulation of

-gon.

)

)

−1

+

k

bbk

k

+bb
k

b
(+ 1

Similarly, we can prove by induction that the mapping is one-to-one. nF

In order to prove that the mapping is onto, we will construct an effective

procedure to get the expression from
nF

nP starting from the given triangulation.

Suppose that we have one triangulation with oriented edges and diagonals. To every
diagonal and to edge AB assign the + sign and to the rest of edges assign the sign.
Observe two edges which define one triangle with edge

b
AB . Denote the incoming edge

sign by and outgoing edge sign byL R . Generally, the needed expression has the
form . If or +L L R is equal to + sign, it should be surrounded by the parenthesis
and the algorithm recursively applied to it. When we complete the recursion, transform
the begotten expression to the reverse Polish form which is obviously the element of
the set nP . ♦

3. THE ALGORITHM

We should generate all postfix expressions corresponding to the particular
triangulations, and then we shall get one triangulation for each of these expressions.

All expressions from the set nR could be generated using the result of Lemma

2.1 and backtracking method. We start from the highest allowed expression in the
lexicographic sense. This is the expression

− −1 2nS .

In every further step we find the first allowed expression lexicographically less than the
previously found expression. In this way we could find all allowed expressions form nR .

We need to generate triangulations corresponding to every allowed word
from nR . Let be an arbitrary word from nR . Hence, w is the postfix notation of the

expression containing n operands . It is clear that there is bijection between −1 ('sS)

nR and the set of binary trees with () /−1 2n n nodes and depth − 2n

n

. We could

observe every node as a set of consecutive operands which are descendants of a given
node. If we numerate the vertices of a given polygon by integers1 , then we could ,...,

 P.S. Stanimirovi}, P.V. Krtolica, R. Stanojevi} / A Non-Recursive Algorithm 66

wee every vertex designed by number for ,..., −1 n 1 as an operand from w . Henceforth,
every tree node in the tree corresponding to some polygon represents the set of
consecutive polygon vertices. This set is defined by the first and the last vertex, i.e. by
its last vertex and by the last vertex of the previous node in the same tree level. So, it is
enough to remember in every tree level the biggest integer numerating some of the
node descendants. Thus, we conclude that accompanying the node with the first
vertex

v
p and the node with the last vertex u q is the separation of the vertices

, + ,...,1p p q from the rest of the vertices. In geometrical sense, it corresponds to

drawing the diagonal (,)1+p q . We are ready to present the algorithm for the -gon
triangulation corresponding to the word w .

n

+

S

S

((() , (1red d

+
(((

pre pred curr

S
pre urrd c
)rr))

n

1. Assign to every from an ordinal number from left to right. w
2. Let the pointer curr be the first element index of word w .
3. If the value of the element pointed by curr is , then curr gets the index

value of the next element and repeat this step. If its value is equal to go
to step 4, or if it is the end of string go to step 5.

S

4. In this moment pointer curr points to a + from word . By Lemma 2.1 it
is assured that to this

w
+ at least two precede (which represents nodes

of the binary tree). Our goal is a transition to the higher level. We achieve
this by joining two nodes which proceed toS + , and printing the diagonal

())))+ +pred p c

)

urr

)

 (the function pred designates

the predecessor of its argument). Further, in this step we eliminate
current and preceding node . The pointer curr gets the index value
of)pred

(
, while we remember the last vertex of the node

pred cu as the last vertex of the node (((pre predd curr . Go to step 3.

1

)
5. At this point, all diagonals corresponding to the word w , making

particular triangulation of the given polygon, are generated and algorithm
is stopped.

In the following table we present behavior of this algorithm.

Table 3.1.

 # of different triangulations Processing time [s]
13 58786 2
14 208012 6
15 742900 22
16 2674440 91
17 9694845 342
18 35357670 1455

 P.S. Stanimirovi}, P.V. Krtolica, R. Stanojevi} / A Non-Recursive Algorithm 67

4. CONCLUSION

As we saw, starting from the triangulation strategy based on the formal
grammar from [4] and using the arithmetic expressions in the reverse Polish notation,
we get the relatively simple algorithm for polygon triangulation. Similar idea could be
found in [3], where an algorithm, based on the matrix multiplication and corresponding
parse trees, is presented. But, this algorithm needs to operate with data structures
which are more complex than in the case of our algorithm.

The reader should be aware that our intention was not to present
revolutionary better algorithms for polygon triangulation. The problem of convex
polygon triangulation is an old one and has been solved so far in many ways (see, for
example, [1, 2]) and it is known that it could be done in linear time. Our main goal is to
show how to successfully apply reverse Polish method for the symbolic computation in
this area.

REFERENCES

[1] Chazelle, B., "Triangulation a simple polygon in linear time", Discrete Comput. Geom., 6
(1991) 485-524.

[2] Chazelle, B., and Palios, L., "Decomposition algorithms in geometry", in: Ch.L. Bajaj (ed.),
Algebraic Geometry and Its Application, Springer-Verlag, New York, Inc., 1994, 419-447.

[3] Corman, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms, MIT Press,
Cambridge, Massachusetts, London, England, 1990.

[4] Kross, M., and Lentin, A., Notions sur les grammaries formelles, Gauthier-Villars, 1967.
[5] Krtolica, P.V., and Stanimirovi}, P.S., "On some properties of reverse Polish notation",

FILOMAT, 13 (1999) 157-172.
[6] Tremblay, J.P., and Sorenson, P.G., The Theory and Practice of Compiler Writing, McGraw-

Hill Book Company, New York, 1985.

