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Abstract: A common weakness of local search metaheuristics, such as Simulated 
Annealing, in solving combinatorial optimisation problems, is the necessity of setting a 
certain number of parameters. This tends to generate a significant increase in the total 
amount of time required to solve the problem and often requires a high level of 
experience from the user. This paper is motivated by the goal of overcoming this 
drawback by employing "parameter-free" techniques in the context of automatically 
solving course timetabling problems. 
We employ local search techniques with "straightforward" parameters, i.e. ones that an 
inexperienced user can easily understand. In particular, we present an extended 
variant of the "Great Deluge" algorithm, which requires only two parameters (which 
can be interpreted as search time and an estimation of the required level of solution 
quality). These parameters affect the performance of the algorithm so that a longer 
search provides a better result - as long as we can intelligently stop the approach from 
converging too early. Hence, a user can choose a balance between processing time and 
the quality of the solution. The proposed method has been tested on a range of 
university course timetabling problems and the results were evaluated within an 
International Timetabling Competition. The effectiveness of the proposed technique 
has been confirmed by a high level of quality of results. These results represented the 
third overall average rating among 21 participants and the best solutions on 8 of the 23 
test problems. 
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1. INTRODUCTION 

Local search metaheuristics have been among the most successful approaches 
to solving combinatorial optimisation problems over the last few years. Local search is 
the common name for the group of methods which (on the whole) iteratively repeat the 

replacement of a current solution s  by a new one *s , until some stopping condition has 
been satisfied. The new solution is selected from a neighbourhood ( )N s (the set of 
candidate solutions into which the current one can be transformed), usually by a single 
move. The quality of the solution is characterised by its fitness (cost function) . 
The goal of the search process is to minimise the cost function. 

( )f s

Variants of this typical basic local search approach differ by their mechanisms 
of accepting or rejecting the candidate solution from the neighbourhood, definitions of 
neighbourhood and stopping conditions. A description of the local search methods and 
their applications to different combinatorial optimisation problems can be found in [1]. 

1.1. Hill-Climbing 

The simplest local search algorithm is Hill-Climbing. This method was used 
for the timetabling problem as early as 1960 by Appleby et al. [4]. A candidate solution 
is accepted only if it has better or equivalent fitness than the current one. Hill-
Climbing does not require the definition of any parameters and its behaviour is quite 
stable. It aims to converge very fast but often has a final solution of relatively poor 
quality as it tends to get trapped in local optima. 

 
1.2. Simulated Annealing 

Different extensions of Hill-Climbing allow the acceptance of worse solutions 
in order to eventually get better ones. These approaches widen the search space and 
can improve the quality of the result. One of the most widely studied local search 
metaheuristics is Simulated Annealing. It was proposed as a general optimisation 
technique in 1983 by Kirkpatrick et al. [19] and has been repeatedly applied to solve a 
wide range of problems. An overview of its different applications is given in [20].  

Simulated Annealing is similar to Hill-Climbing but accepts worse solutions 

with a probability: , where  and the parameter T  denotes the 
temperature (which is analogous to the temperature in the process of annealing). 
Originally it was suggested to start the search from a high temperature and reduce it to 
the end of a process by progression formula: 

/δ−= TP e *( ) ( )δ = −f s f s

β+ = − ∗1i i iT T T  (geometric cooling 

schedule). However, the cooling rate β  and initial value of T  are usually different for 
different problems and are often selected empirically. This uncertainty causes problems 
with the practical use of Simulated Annealing. This has been indicated in an early 
application of Simulated Annealing to the timetabling problem by Davis and Ritter in 
1987 [11]. They reported that the manual enumeration of parameters took two weeks 
and therefore they developed a genetic algorithm especially for determination of the 
best values for the parameters. 
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Different improvements of the basic Simulated Annealing algorithm have been 
suggested, such as: an adaptive cooling technique where the temperature is reduced or 
increased depending on the success of the move [12], running the algorithm several 
times starting from a random seed [2], cooling schedules with a variable cooling rate 
and reheating [3], making the temperature dependent on the absolute value of the cost 
function [22], and the "mean field annealing" technique, where the search space is 
approximated by the system of thermodynamical differential equations [15]. However, 
the question about the best values of the parameters still has no definitive answer. 
Moreover some of the proposed improvements introduce new parameters. 

 
1.3. The Threshold Acceptance Algorithm 

A deterministic variant of the Simulated Annealing, known as the Threshold 
Acceptance method, accepts every worse solution, when δ  does not exceed some 
threshold . It was introduced by Dueck and Scheuer in 1989 [13]. They applied the 
algorithm to a Travelling Salesman Problem and claimed that their algorithm is 
superior to classical Simulated Annealing. Originally the authors suggested that the 
threshold should be decreased when the algorithm does not improve the solution for a 
long time. However, it is not clear when to do this and how much to decrease it by. 
Although the acceptance procedure was refined, it still involves a few parameters whose 
values are deduced empirically. The adaptive cooling scheme was introduced for the 
Threshold Acceptance method [18], but as in the previous case, it did not yield sensible 
practical benefits and this technique is not widely applied. 

T

 
1.4. Contribution 

In [6] we developed a new variant of local search metaheuristic for exam 
timetabling problems with parameters which are easily understandable to the user. In 
this paper we extend these ideas to course timetabling. The description of this 
technique is given in Section 2. In Section 3 we define a problem instance and present 
the investigation of the algorithm's properties and its comparison with other 
techniques. Section 4 includes a summary of our study and an outline of some future 
work. 

2. THE GREAT DELUGE ALGORITHM 

In [14] Dueck introduced an algorithm, which accepts every solution whose 
objective function is less than or equal to the upper limit (level) B . This method was 
called the "Great Deluge algorithm". The value of B  is monotonically decreased during 
the search and bounds the feasible region of the search space. Usually this algorithm 
converges when the level "outruns" a current solution. In order to prevent a premature 
convergence (encourage current solutions to return into the feasible region) and thus, 
to improve the performance of this method we propose to extend it by accepting all the 
candidate solutions which are better than the current one. The pseudocode of this 
extended algorithm is given in Figure 2.1. 
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Set the initial solution s 
Calculate initial cost function  
Initial level 

( )f s
( )=0B f s  

Specify input parameter ?∆ =B  
While not some stopping condition do 
    Define neighbourhood ( )N s  

    Randomly select the candidate solution  * ( )∈s N s  

    If  or  

    Then accept 

*( ( )f s ( ))≤ f s
*

*) ≤f s( ( )B

s  
    Lower the level = − ∆B B B  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: The extended Great Deluge algorithm 

The initial value of level 0B  is equal to the initial cost function. This forestalls 

sharp descents and idle steps in the beginning of the search. Hence, only one input 
parameter ∆B , the decay rate at each step has to be specified. Although this parameter 
is not clearly understandable (straightforward) we show below in Section 3.2 that it can 
be interpreted as a function of expected search time and expected solution quality, 
which are relatively easy to specify. 

3. AN EVALUATION OF THE GREAT DELUGE ALGORITHM 
FOR COURSE TIMETABLING 

University course timetabling problems are known to be difficult real world 
problems that have been studied in some depth over the last few decades or so. The 
interested reader can see a more detailed description of the various approaches that 
have appeared over the years in the following recent survey/review papers: [7], [25]. 
Some research directions and some new approaches are discussed in [5]. 

 
3.1. Course Timetabling Problems 

University course timetabling involves the scheduling of lectures (courses) 
within a given number of timeslots (periods) and their allocation into available rooms 
(usually on a weekly basis) while satisfying certain constraints. Generally, the 
constraints are classified as either hard or soft. Satisfaction of the hard constraints is a 
strict requirement, i.e. in a feasible timetable they should not be violated under any 
circumstances. Soft constraints can be violated, but it is important to minimise those 
violations. Thus the cost function of every solution indicates the number of violated 
soft constraints under the assumption that all the hard ones are satisfied or 
alternatively it introduces a very high cost for the violation of a hard constraint. 

The prime hard constraint is caused by an obvious requirement that no one 
person can attend two lectures simultaneously. Therefore any two courses which clash 
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(have common students) must not be placed into the same timeslot. Another usual hard 
constraint reflects a situation where not all of the rooms are suitable for particular 
courses. Therefore in a feasible solution, courses should be allocated into appropriate 
rooms, i.e. the facilities required for certain courses have to be available and the size of 
the room has to be big enough to accommodate all the students registered for the 
course. Course timetabling problems are often solved by different kinds of heuristic 
constructive techniques (e.g. [10], [21]) or constraint logic programming methods (e.g. 
[8], [16]). A description of a number of approaches is presented in [7]. 

Soft constraints usually differ from university to university. In our study we 
address the set of soft constraints which are described in the rules of the International 
Timetabling Competition organized by the EU Metaheuristics Network and sponsored 
by the Practice and Theory of Automated Timetabling IV (PATAT IV) conference in 
2003. These constraints generate a penalty when: 

 
� a student has only one lecture in a day, 
� a student has more than three consecutive lectures in a day, 
� a student has a lecture in the last timeslot of a day. 
 
The objective function is calculated as the sum of the number of violations of 

these constraints. In addition to Simulated Annealing, various other metaheuristics 
have been applied to university course timetabling: tabu search (e.g. [16], [23]), genetic 
algorithms (e.g. [9], [26]) and their hybrids with Hill-Climbing (memetic algorithms) 
(e.g. [23]). 

 
3.2. Progress Diagrams 

As mentioned above, in our experiments we used the course timetabling data 
given in the International Timetabling Competition. It is located at [27], and comprises 
23 problem instances. Each problem instance consists of 350-440 courses, 10-11 rooms 
and 200-350 students. The number of timeslots is the same for all the problems and is 
equal to 45. We have carried out experiments on all these problems and our method 
showed a similar behaviour on all of them. 

The investigation of the properties of the Great Deluge algorithm was started 
by generating progress diagrams such as that presented in Figure 3.1. The algorithm 
was implemented in Delphi 7 and run on a PC Celeron 2.2 GHz with OS Windows 98. 

The decay rate ∆B  was defined as −⋅ 55 10 . Every 50 000 moves, the current cost  

and the number of moves 
CF

movN  were depicted as a point in the "time-cost" space. An 

example of a resulting diagram for the 1st problem instance is presented in Figure 3.1. 
 
This diagram shows two main properties of the Great Deluge algorithm: 
 
1. The profile of the process is explicit. The search rigidly follows the 

degrading of the level. Fluctuations are visible only at the beginning but later on, all 
intermediate solutions lie close to the line = − ∆ ∗0C mF B B N ov . 
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2. The point of convergence is quite recognisable. When a current solution 
reaches the value, where any further improvement is impossible, the search rapidly 
converges and the diagram becomes level. This moment can be easily detected in order 
to terminate the search procedure. 

 

  

Figure 3.1: The progress of Great Deluge algorithm 

However, the point of convergence is uncertain and problem-dependent. 
Therefore if some information about the range of possible results is available, we 
suggest using it for reducing the number of idle steps. If we estimate the cost function 
of a desired result as  we can calculate ( ')f s ∆B  by formula (3.1). 

( ')−
∆ = 0

mov

B f s
B

N
 (3.1) 

Usually such an approximation is quite possible. For example, in our following 
experiments we approximated  by employing the results of a simple Hill-Climbing 
algorithm. Obviously, the correct specification of a processing time and an expected 
value of the cost function can be provided by a timetabling officer (in contrast to 
temperatures and a cooling rate in the Simulated Annealing). 

( ')f s

 
3.3. Time-Cost Diagrams 

The influence of processing time on the performance of the method was 
investigated while running the algorithm several times for a different predefined 
number of moves. The results are presented as "time-cost" diagrams where every point 
corresponds to the final cost function and processing time of a separate solution. The 
example of such a diagram for 2nd problem instance is shown in Figure 3.2. 
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Figure 3.2: Time-cost diagram of Great Deluge algorithm 

Even though the results are relatively scattered (which is not surprising), the 
clear tendency in this diagram can be observed: a longer search produces better results. 
The algorithm allows a user to improve the quality of the solution but he/she should 
pay a price for it with an increase in the amount of processing time. This is not valid for 
certain other metaheuristic approaches where the search can be stuck in a local 
optimum and no additional time can enable it to move out. 

The reasonable balance between time and cost depends on the user's 
opportunities and preferences. In some cases the user requires results quickly but in 
other situations it is more preferable to spend much more time to search for a high 
quality solution. In the case of timetabling, very fast but relatively poor results cannot 
be considered as a best choice. In most situations the calculation of the solution is just 
part of the process, which includes the preparation of input data and the administering 
of the results of the software. Commonly it takes several days (if not weeks). The 
renewing of data is infrequent (because a course timetable is normally produced once or 
twice a year). However, the high quality of the solution is very important as the 
timetable affects a high number of people. In this environment a searching procedure, 
which can last several hours, seems to be quite acceptable. 

 
3.4. Comparison with Other Techniques 

A comparison of our method with Simulated Annealing for the 3rd problem 
instance is shown in Figure 3.3 where the diagram for Simulated Annealing is marked 
by "SA" and the diagram for Great Deluge is marked by "GD". The Simulated Annealing 
algorithm was run several times with variations of the initial temperature from 10-2 to 

 (our results confirmed that this is an appropriate interval). In order to get 
approximately the same execution time in both algorithms, the cooling rate 

⋅ 42 10
β  was 

varied from 5 1  to 2 1 . −⋅ 80 −⋅ 50
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Figure 3.3: Comparison of Simulated Annealing and Great Deluge algorithms 

The Simulated Annealing diagram shows a substantially higher scatter of 
results than the Great Deluge algorithm. A greater number of poor quality solutions 
are generated though the use of inappropriate parameter values. The superiority of the 
Great Deluge algorithm is obvious from these diagrams. Although both methods have 
approximately the same values of the cost function for the best results (in the given 
execution time), Simulated Annealing can reach it only with properly defined 
parameters, while Great Deluge does it always. 

The employment of "straightforward" parameters significantly improves the 
effectiveness of the search. The deriving of the best cooling schedule requires several 
runs of the Simulated Annealing algorithm. Therefore its total processing time (from 
input to output) is several times longer than the processing time of a single run. With 
the Great Deluge approach all this time is spent in a single run (and it gets better 
results). Hence, with respect to the total time of the solving process, the performance of 
the Great Deluge is substantially better. Similar results are evident from the time-cost 
diagrams for the other problem instances. 

 

 

Figure 3.4: Comparison of Threshold Acceptance and Great Deluge algorithms 
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The same comparison was carried out with the Threshold Acceptance 
algorithm. For the 8th problem instance the initial threshold was varied in the interval: 

1-1000 and the rate of its decreasing was − −−8 10 310 . The resulting diagrams are 
presented on Figure 3.4, which shows the same behaviour as for Simulated Annealing 
(the diagram for Threshold Acceptance method is marked by "TA"). 

In the experiments on Hill-Climbing the time-cost diagrams were produced 
with a very short search time. The search time of Hill-Climbing depends on the 
stopping condition. We used the given number of idle steps as the stopping condition 
and it was varied in the range of 1-50000. The results for the 6th problem instance are 
presented in Figure 3.5 (the diagram for Hill-Climbing is marked by "HC"). 

 

 

Figure 3.5: Comparison of Hill-Climbing and Great Deluge algorithms 

Both diagrams have the same distribution of points at the beginning. 
However, the behaviour of those techniques in the right hand sides of the diagrams 
became different. If the chosen number of idle steps is too high − Hill-Climbing wastes 
this additional time, but Great Deluge uses it for improving the solution. 

 
 

3.5. Evaluation of the Proposed Approach within an International 
Timetabling Competition 

The participants in the competition submitted results without any information 
about the other participants. Also, all the solutions had to be obtained within the same 
time interval. In order to synchronise the time intervals on different hardware, a 
special test program was provided by the organising committee. In particular, on a PC 
Celeron 2.2GHz the processing time was limited to 726 seconds. Besides this, all 
submitted results were verified by the organising committee. In total, 21 participants 
(individual researchers and research teams) submitted solutions to all 20 problem 
instances. A comparison of the results of the 7 leading participants (including our 
results) is presented in Table 3.1. The best submitted results are shown in bold. 
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Table 3.1: The results, of the International Timetabling Competition 
 

 1 2 3 4 5 6 7 
Instance P.Kostuch B.Jaumard 

et al. 
Our 

results
L.Di Gaspero 
and A.Shaerf 

H.Arntzen and 
A.Lokketangen 

A.Dubourg 
et al. 

G.Toro and 
V.Parada 

1 45 61 85 63 132 148 178 
2 25 39 42 46 92 101 103 
3 65 77 84 96 170 162 156 
4 115 160 119 166 265 350 399 
5 102 161 77 203 257 412 336 
6 13 42 6 92 133 246 246 
7 44 52 12 118 177 228 225 
8 29 54 32 66 134 125 210 
9 17 50 184 51 139 126 154 

10 61 72 90 81 148 147 153 
11 44 53 73 65 135 144 169 
12 107 110 79 119 290 182 219 
13 78 109 91 160 251 192 248 
14 52 93 36 197 230 316 267 
15 24 62 27 114 140 209 235 
16 22 34 300 38 114 121 132 
17 86 114 79 212 186 327 313 
18 31 38 39 40 87 98 107 
19 44 128 86 185 256 325 309 
20 7 26 0 17 94 185 185 

 
 
In addition to the submitted results, the organising committee checked the 

performance of participantsÊ algorithms on three unseen problem instances. For one 
of these instances our algorithm produced the best solution among all the other 
participantÊs algorithms. The results on unseen instances are given in Table 3.2 where 
again the best ones are shown in bold. 

 
Table 3.2: The results, produced on unseen instances 

 

Unseen 
instance 

P.Kostuch B.Jaumard 
et al. 

Our 
results

L.Di Gaspero 
and A.Shaerf 

H.Arntzen and 
A.Lokketangen 

A.Dubourg 
et al. 

G.Toro and 
V.Parada 

1 100 86 329 97 145 132 161 

2 6 8 3 9 23 51 22 

3 72 105 84 103 94 159 173 
 
Among the given participants P. Kostuch used Simulated Annealing with a 

variation of the neighbourhood. All other participants used different variations of tabu 
search. The detailed descriptions of the applied techniques can be found in [27]. 
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Although the processing time was relatively short (with longer available time 
our algorithm reached results with an even better cost value), our results were the best 
among all participants in 8 from the 23 problems. Moreover, among all the registered 
participants only our algorithm has provided a solution with a zero value of the 
objective function for problem instance 20 and hence has reached the global optimum 
of the problem. The competition procedures ranked the participants according to an 
average value. It is interesting to note that although our algorithm performed the best 
on 8 of the 23 problems it performed the worst on two of the problems (among the 
leading 7 participants). Indeed, it performed particularly poorly on problem 16. The 
reason why our algorithm fluctuated from the best to the worst is an area that is 
currently under investigation. We note that, in terms of the number of best solutions 
achieved, our algorithm comes second rather than third in the competition. Taking into 
account that our approach does not require additional time for tuning algorithmic 
parameters the results in Tables 3.1 and 3.2 confirm the high effectiveness of the 
presented technique. 

4. CONCLUSIONS AND FUTURE WORK 

This paper introduced an extended variant of the Great Deluge local search 
algorithm for course timetabling. The advantage of this method is that it requires the 
definition of only two parameters that correspond to search time and an estimation of 
desired solution quality. These parameters have an obvious "real-world" meaning (thus 
they can be considered to be easily understood by university administration). 

Our algorithm shows the clear trade-off between search time and the quality 
of the overall result, namely a longer search produces better solutions. This property 
allows the user to choose an acceptable processing time for each particular problem. 
The experiments with benchmark course timetabling problem instances confirm the 
effectiveness of the presented technique. For 8 out of 23 datasets, the Great Deluge 
algorithm achieved the best results among 21 compared algorithms. 

Our future work will include evaluation of the algorithm in other domains. 
Additional issues will be investigated: how to choose good initial solutions, how to 
define non-linear level functions, hybridisation of the Great Deluge with other 
metaheuristics, etc. We should notice that the first and second place participants paid 
more attention to neighbourhood structures. Indeed, this is one of the most promising 
ways of improving the performance of timetabling algorithms and can be considered as 
an important direction of our future research. 
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