
Yugoslav Journal of Operations Research
 13 (2003), Number 2, 139-151

A TIME-PREDEFINED APPROACH TO COURSE
TIMETABLING*

Edmund BURKE+, Yuri BYKOV+,
James NEWALL‡, Sanja PETROVI]+
+Automated Scheduling and Planning Group

School of Computer Science and Information Technology
University of Nottingham, Nottingham, UK

{ekb,yxb,sxp}@cs.nott.ac.uk
‡EventMAP Limited, Belfast, N. Ireland

Jim.Newall@eventmaponline.com

Communicated by Byron Papathanassiou

Abstract: A common weakness of local search metaheuristics, such as Simulated
Annealing, in solving combinatorial optimisation problems, is the necessity of setting a
certain number of parameters. This tends to generate a significant increase in the total
amount of time required to solve the problem and often requires a high level of
experience from the user. This paper is motivated by the goal of overcoming this
drawback by employing "parameter-free" techniques in the context of automatically
solving course timetabling problems.
We employ local search techniques with "straightforward" parameters, i.e. ones that an
inexperienced user can easily understand. In particular, we present an extended
variant of the "Great Deluge" algorithm, which requires only two parameters (which
can be interpreted as search time and an estimation of the required level of solution
quality). These parameters affect the performance of the algorithm so that a longer
search provides a better result - as long as we can intelligently stop the approach from
converging too early. Hence, a user can choose a balance between processing time and
the quality of the solution. The proposed method has been tested on a range of
university course timetabling problems and the results were evaluated within an
International Timetabling Competition. The effectiveness of the proposed technique
has been confirmed by a high level of quality of results. These results represented the
third overall average rating among 21 participants and the best solutions on 8 of the 23
test problems.

Keywords: Combinatorial optimisation, metaheuristic, local search, timetabling.

* Presented at 6th Balkan Conference on Operational Research

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 140

1. INTRODUCTION

Local search metaheuristics have been among the most successful approaches
to solving combinatorial optimisation problems over the last few years. Local search is
the common name for the group of methods which (on the whole) iteratively repeat the

replacement of a current solution s by a new one *s , until some stopping condition has
been satisfied. The new solution is selected from a neighbourhood ()N s (the set of
candidate solutions into which the current one can be transformed), usually by a single
move. The quality of the solution is characterised by its fitness (cost function) .
The goal of the search process is to minimise the cost function.

()f s

Variants of this typical basic local search approach differ by their mechanisms
of accepting or rejecting the candidate solution from the neighbourhood, definitions of
neighbourhood and stopping conditions. A description of the local search methods and
their applications to different combinatorial optimisation problems can be found in [1].

1.1. Hill-Climbing

The simplest local search algorithm is Hill-Climbing. This method was used
for the timetabling problem as early as 1960 by Appleby et al. [4]. A candidate solution
is accepted only if it has better or equivalent fitness than the current one. Hill-
Climbing does not require the definition of any parameters and its behaviour is quite
stable. It aims to converge very fast but often has a final solution of relatively poor
quality as it tends to get trapped in local optima.

1.2. Simulated Annealing

Different extensions of Hill-Climbing allow the acceptance of worse solutions
in order to eventually get better ones. These approaches widen the search space and
can improve the quality of the result. One of the most widely studied local search
metaheuristics is Simulated Annealing. It was proposed as a general optimisation
technique in 1983 by Kirkpatrick et al. [19] and has been repeatedly applied to solve a
wide range of problems. An overview of its different applications is given in [20].

Simulated Annealing is similar to Hill-Climbing but accepts worse solutions

with a probability: , where and the parameter T denotes the
temperature (which is analogous to the temperature in the process of annealing).
Originally it was suggested to start the search from a high temperature and reduce it to
the end of a process by progression formula:

/δ−= TP e *() ()δ = −f s f s

β+ = − ∗1i i iT T T (geometric cooling

schedule). However, the cooling rate β and initial value of T are usually different for
different problems and are often selected empirically. This uncertainty causes problems
with the practical use of Simulated Annealing. This has been indicated in an early
application of Simulated Annealing to the timetabling problem by Davis and Ritter in
1987 [11]. They reported that the manual enumeration of parameters took two weeks
and therefore they developed a genetic algorithm especially for determination of the
best values for the parameters.

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 141

Different improvements of the basic Simulated Annealing algorithm have been
suggested, such as: an adaptive cooling technique where the temperature is reduced or
increased depending on the success of the move [12], running the algorithm several
times starting from a random seed [2], cooling schedules with a variable cooling rate
and reheating [3], making the temperature dependent on the absolute value of the cost
function [22], and the "mean field annealing" technique, where the search space is
approximated by the system of thermodynamical differential equations [15]. However,
the question about the best values of the parameters still has no definitive answer.
Moreover some of the proposed improvements introduce new parameters.

1.3. The Threshold Acceptance Algorithm

A deterministic variant of the Simulated Annealing, known as the Threshold
Acceptance method, accepts every worse solution, when δ does not exceed some
threshold . It was introduced by Dueck and Scheuer in 1989 [13]. They applied the
algorithm to a Travelling Salesman Problem and claimed that their algorithm is
superior to classical Simulated Annealing. Originally the authors suggested that the
threshold should be decreased when the algorithm does not improve the solution for a
long time. However, it is not clear when to do this and how much to decrease it by.
Although the acceptance procedure was refined, it still involves a few parameters whose
values are deduced empirically. The adaptive cooling scheme was introduced for the
Threshold Acceptance method [18], but as in the previous case, it did not yield sensible
practical benefits and this technique is not widely applied.

T

1.4. Contribution

In [6] we developed a new variant of local search metaheuristic for exam
timetabling problems with parameters which are easily understandable to the user. In
this paper we extend these ideas to course timetabling. The description of this
technique is given in Section 2. In Section 3 we define a problem instance and present
the investigation of the algorithm's properties and its comparison with other
techniques. Section 4 includes a summary of our study and an outline of some future
work.

2. THE GREAT DELUGE ALGORITHM

In [14] Dueck introduced an algorithm, which accepts every solution whose
objective function is less than or equal to the upper limit (level) B . This method was
called the "Great Deluge algorithm". The value of B is monotonically decreased during
the search and bounds the feasible region of the search space. Usually this algorithm
converges when the level "outruns" a current solution. In order to prevent a premature
convergence (encourage current solutions to return into the feasible region) and thus,
to improve the performance of this method we propose to extend it by accepting all the
candidate solutions which are better than the current one. The pseudocode of this
extended algorithm is given in Figure 2.1.

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 142

Set the initial solution s
Calculate initial cost function
Initial level

()f s
()=0B f s

Specify input parameter ?∆ =B
While not some stopping condition do
 Define neighbourhood ()N s

 Randomly select the candidate solution * ()∈s N s

 If or

 Then accept

*(()f s ())≤ f s
*

*) ≤f s(()B

s
 Lower the level = − ∆B B B

Figure 2.1: The extended Great Deluge algorithm

The initial value of level 0B is equal to the initial cost function. This forestalls

sharp descents and idle steps in the beginning of the search. Hence, only one input
parameter ∆B , the decay rate at each step has to be specified. Although this parameter
is not clearly understandable (straightforward) we show below in Section 3.2 that it can
be interpreted as a function of expected search time and expected solution quality,
which are relatively easy to specify.

3. AN EVALUATION OF THE GREAT DELUGE ALGORITHM
FOR COURSE TIMETABLING

University course timetabling problems are known to be difficult real world
problems that have been studied in some depth over the last few decades or so. The
interested reader can see a more detailed description of the various approaches that
have appeared over the years in the following recent survey/review papers: [7], [25].
Some research directions and some new approaches are discussed in [5].

3.1. Course Timetabling Problems

University course timetabling involves the scheduling of lectures (courses)
within a given number of timeslots (periods) and their allocation into available rooms
(usually on a weekly basis) while satisfying certain constraints. Generally, the
constraints are classified as either hard or soft. Satisfaction of the hard constraints is a
strict requirement, i.e. in a feasible timetable they should not be violated under any
circumstances. Soft constraints can be violated, but it is important to minimise those
violations. Thus the cost function of every solution indicates the number of violated
soft constraints under the assumption that all the hard ones are satisfied or
alternatively it introduces a very high cost for the violation of a hard constraint.

The prime hard constraint is caused by an obvious requirement that no one
person can attend two lectures simultaneously. Therefore any two courses which clash

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 143

(have common students) must not be placed into the same timeslot. Another usual hard
constraint reflects a situation where not all of the rooms are suitable for particular
courses. Therefore in a feasible solution, courses should be allocated into appropriate
rooms, i.e. the facilities required for certain courses have to be available and the size of
the room has to be big enough to accommodate all the students registered for the
course. Course timetabling problems are often solved by different kinds of heuristic
constructive techniques (e.g. [10], [21]) or constraint logic programming methods (e.g.
[8], [16]). A description of a number of approaches is presented in [7].

Soft constraints usually differ from university to university. In our study we
address the set of soft constraints which are described in the rules of the International
Timetabling Competition organized by the EU Metaheuristics Network and sponsored
by the Practice and Theory of Automated Timetabling IV (PATAT IV) conference in
2003. These constraints generate a penalty when:

� a student has only one lecture in a day,
� a student has more than three consecutive lectures in a day,
� a student has a lecture in the last timeslot of a day.

The objective function is calculated as the sum of the number of violations of

these constraints. In addition to Simulated Annealing, various other metaheuristics
have been applied to university course timetabling: tabu search (e.g. [16], [23]), genetic
algorithms (e.g. [9], [26]) and their hybrids with Hill-Climbing (memetic algorithms)
(e.g. [23]).

3.2. Progress Diagrams

As mentioned above, in our experiments we used the course timetabling data
given in the International Timetabling Competition. It is located at [27], and comprises
23 problem instances. Each problem instance consists of 350-440 courses, 10-11 rooms
and 200-350 students. The number of timeslots is the same for all the problems and is
equal to 45. We have carried out experiments on all these problems and our method
showed a similar behaviour on all of them.

The investigation of the properties of the Great Deluge algorithm was started
by generating progress diagrams such as that presented in Figure 3.1. The algorithm
was implemented in Delphi 7 and run on a PC Celeron 2.2 GHz with OS Windows 98.

The decay rate ∆B was defined as −⋅ 55 10 . Every 50 000 moves, the current cost

and the number of moves
CF

movN were depicted as a point in the "time-cost" space. An

example of a resulting diagram for the 1st problem instance is presented in Figure 3.1.

This diagram shows two main properties of the Great Deluge algorithm:

1. The profile of the process is explicit. The search rigidly follows the

degrading of the level. Fluctuations are visible only at the beginning but later on, all
intermediate solutions lie close to the line = − ∆ ∗0C mF B B N ov .

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 144

2. The point of convergence is quite recognisable. When a current solution
reaches the value, where any further improvement is impossible, the search rapidly
converges and the diagram becomes level. This moment can be easily detected in order
to terminate the search procedure.

Figure 3.1: The progress of Great Deluge algorithm

However, the point of convergence is uncertain and problem-dependent.
Therefore if some information about the range of possible results is available, we
suggest using it for reducing the number of idle steps. If we estimate the cost function
of a desired result as we can calculate (')f s ∆B by formula (3.1).

(')−
∆ = 0

mov

B f s
B

N
 (3.1)

Usually such an approximation is quite possible. For example, in our following
experiments we approximated by employing the results of a simple Hill-Climbing
algorithm. Obviously, the correct specification of a processing time and an expected
value of the cost function can be provided by a timetabling officer (in contrast to
temperatures and a cooling rate in the Simulated Annealing).

(')f s

3.3. Time-Cost Diagrams

The influence of processing time on the performance of the method was
investigated while running the algorithm several times for a different predefined
number of moves. The results are presented as "time-cost" diagrams where every point
corresponds to the final cost function and processing time of a separate solution. The
example of such a diagram for 2nd problem instance is shown in Figure 3.2.

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 145

Figure 3.2: Time-cost diagram of Great Deluge algorithm

Even though the results are relatively scattered (which is not surprising), the
clear tendency in this diagram can be observed: a longer search produces better results.
The algorithm allows a user to improve the quality of the solution but he/she should
pay a price for it with an increase in the amount of processing time. This is not valid for
certain other metaheuristic approaches where the search can be stuck in a local
optimum and no additional time can enable it to move out.

The reasonable balance between time and cost depends on the user's
opportunities and preferences. In some cases the user requires results quickly but in
other situations it is more preferable to spend much more time to search for a high
quality solution. In the case of timetabling, very fast but relatively poor results cannot
be considered as a best choice. In most situations the calculation of the solution is just
part of the process, which includes the preparation of input data and the administering
of the results of the software. Commonly it takes several days (if not weeks). The
renewing of data is infrequent (because a course timetable is normally produced once or
twice a year). However, the high quality of the solution is very important as the
timetable affects a high number of people. In this environment a searching procedure,
which can last several hours, seems to be quite acceptable.

3.4. Comparison with Other Techniques

A comparison of our method with Simulated Annealing for the 3rd problem
instance is shown in Figure 3.3 where the diagram for Simulated Annealing is marked
by "SA" and the diagram for Great Deluge is marked by "GD". The Simulated Annealing
algorithm was run several times with variations of the initial temperature from 10-2 to

 (our results confirmed that this is an appropriate interval). In order to get
approximately the same execution time in both algorithms, the cooling rate

⋅ 42 10
β was

varied from 5 1 to 2 1 . −⋅ 80 −⋅ 50

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 146

Figure 3.3: Comparison of Simulated Annealing and Great Deluge algorithms

The Simulated Annealing diagram shows a substantially higher scatter of
results than the Great Deluge algorithm. A greater number of poor quality solutions
are generated though the use of inappropriate parameter values. The superiority of the
Great Deluge algorithm is obvious from these diagrams. Although both methods have
approximately the same values of the cost function for the best results (in the given
execution time), Simulated Annealing can reach it only with properly defined
parameters, while Great Deluge does it always.

The employment of "straightforward" parameters significantly improves the
effectiveness of the search. The deriving of the best cooling schedule requires several
runs of the Simulated Annealing algorithm. Therefore its total processing time (from
input to output) is several times longer than the processing time of a single run. With
the Great Deluge approach all this time is spent in a single run (and it gets better
results). Hence, with respect to the total time of the solving process, the performance of
the Great Deluge is substantially better. Similar results are evident from the time-cost
diagrams for the other problem instances.

Figure 3.4: Comparison of Threshold Acceptance and Great Deluge algorithms

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 147

The same comparison was carried out with the Threshold Acceptance
algorithm. For the 8th problem instance the initial threshold was varied in the interval:

1-1000 and the rate of its decreasing was − −−8 10 310 . The resulting diagrams are
presented on Figure 3.4, which shows the same behaviour as for Simulated Annealing
(the diagram for Threshold Acceptance method is marked by "TA").

In the experiments on Hill-Climbing the time-cost diagrams were produced
with a very short search time. The search time of Hill-Climbing depends on the
stopping condition. We used the given number of idle steps as the stopping condition
and it was varied in the range of 1-50000. The results for the 6th problem instance are
presented in Figure 3.5 (the diagram for Hill-Climbing is marked by "HC").

Figure 3.5: Comparison of Hill-Climbing and Great Deluge algorithms

Both diagrams have the same distribution of points at the beginning.
However, the behaviour of those techniques in the right hand sides of the diagrams
became different. If the chosen number of idle steps is too high − Hill-Climbing wastes
this additional time, but Great Deluge uses it for improving the solution.

3.5. Evaluation of the Proposed Approach within an International
Timetabling Competition

The participants in the competition submitted results without any information
about the other participants. Also, all the solutions had to be obtained within the same
time interval. In order to synchronise the time intervals on different hardware, a
special test program was provided by the organising committee. In particular, on a PC
Celeron 2.2GHz the processing time was limited to 726 seconds. Besides this, all
submitted results were verified by the organising committee. In total, 21 participants
(individual researchers and research teams) submitted solutions to all 20 problem
instances. A comparison of the results of the 7 leading participants (including our
results) is presented in Table 3.1. The best submitted results are shown in bold.

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 148

Table 3.1: The results, of the International Timetabling Competition

 1 2 3 4 5 6 7
Instance P.Kostuch B.Jaumard

et al.
Our

results
L.Di Gaspero
and A.Shaerf

H.Arntzen and
A.Lokketangen

A.Dubourg
et al.

G.Toro and
V.Parada

1 45 61 85 63 132 148 178
2 25 39 42 46 92 101 103
3 65 77 84 96 170 162 156
4 115 160 119 166 265 350 399
5 102 161 77 203 257 412 336
6 13 42 6 92 133 246 246
7 44 52 12 118 177 228 225
8 29 54 32 66 134 125 210
9 17 50 184 51 139 126 154

10 61 72 90 81 148 147 153
11 44 53 73 65 135 144 169
12 107 110 79 119 290 182 219
13 78 109 91 160 251 192 248
14 52 93 36 197 230 316 267
15 24 62 27 114 140 209 235
16 22 34 300 38 114 121 132
17 86 114 79 212 186 327 313
18 31 38 39 40 87 98 107
19 44 128 86 185 256 325 309
20 7 26 0 17 94 185 185

In addition to the submitted results, the organising committee checked the

performance of participantsÊ algorithms on three unseen problem instances. For one
of these instances our algorithm produced the best solution among all the other
participantÊs algorithms. The results on unseen instances are given in Table 3.2 where
again the best ones are shown in bold.

Table 3.2: The results, produced on unseen instances

Unseen
instance

P.Kostuch B.Jaumard
et al.

Our
results

L.Di Gaspero
and A.Shaerf

H.Arntzen and
A.Lokketangen

A.Dubourg
et al.

G.Toro and
V.Parada

1 100 86 329 97 145 132 161

2 6 8 3 9 23 51 22

3 72 105 84 103 94 159 173

Among the given participants P. Kostuch used Simulated Annealing with a

variation of the neighbourhood. All other participants used different variations of tabu
search. The detailed descriptions of the applied techniques can be found in [27].

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 149

Although the processing time was relatively short (with longer available time
our algorithm reached results with an even better cost value), our results were the best
among all participants in 8 from the 23 problems. Moreover, among all the registered
participants only our algorithm has provided a solution with a zero value of the
objective function for problem instance 20 and hence has reached the global optimum
of the problem. The competition procedures ranked the participants according to an
average value. It is interesting to note that although our algorithm performed the best
on 8 of the 23 problems it performed the worst on two of the problems (among the
leading 7 participants). Indeed, it performed particularly poorly on problem 16. The
reason why our algorithm fluctuated from the best to the worst is an area that is
currently under investigation. We note that, in terms of the number of best solutions
achieved, our algorithm comes second rather than third in the competition. Taking into
account that our approach does not require additional time for tuning algorithmic
parameters the results in Tables 3.1 and 3.2 confirm the high effectiveness of the
presented technique.

4. CONCLUSIONS AND FUTURE WORK

This paper introduced an extended variant of the Great Deluge local search
algorithm for course timetabling. The advantage of this method is that it requires the
definition of only two parameters that correspond to search time and an estimation of
desired solution quality. These parameters have an obvious "real-world" meaning (thus
they can be considered to be easily understood by university administration).

Our algorithm shows the clear trade-off between search time and the quality
of the overall result, namely a longer search produces better solutions. This property
allows the user to choose an acceptable processing time for each particular problem.
The experiments with benchmark course timetabling problem instances confirm the
effectiveness of the presented technique. For 8 out of 23 datasets, the Great Deluge
algorithm achieved the best results among 21 compared algorithms.

Our future work will include evaluation of the algorithm in other domains.
Additional issues will be investigated: how to choose good initial solutions, how to
define non-linear level functions, hybridisation of the Great Deluge with other
metaheuristics, etc. We should notice that the first and second place participants paid
more attention to neighbourhood structures. Indeed, this is one of the most promising
ways of improving the performance of timetabling algorithms and can be considered as
an important direction of our future research.

REFERENCES

[1] Aarts, E., and Lenstra, J.K., Local Search in Combinatorial Optimization, Wiley-Interscience
Series in Discrete Mathematics and Optimization, John Wiley & Sons, Chichester, 1997.

[2] Abramson, D., "Constructing school timetables using simulated annealing: Sequential and
parallel algorithms", Management Science, 37(1) (1991) 98-113.

[3] Abramson, D., Krishnamoorthy, M., and Dang, H., "Simulated annealing cooling schedules
for the school timetabling problem", Asia-Pacific J. of Operational Research, 16 (1999) 1-22.

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 150

[4] Appleby, J.S., Blake, D.V., and Newman, E.A., "Techniques for producing school timetables
on a computer and their application to other scheduling problems", The Computer Journal, 3
(1960) 237-245.

[5] Burke, E.K., and Petrovic, S., "Recent research directions in automated timetabling",
European Journal of Operational Research, 140 (2) (2002) 266-280.

[6] Burke, E.K., Bykov, Y., Newall, J., and Petrovic, S., "A time pre-defined local search approach
to exam timetabling problems", accepted for publication in IIE Transaction on Operations
Engineering (2004).

[7] Carter, M.W., and Laporte, G., "Recent developments in practical examination timetabling",
in: E. Burke, M. Carter (eds.), The Practice and Theory of Automated Timetabling II: Selected
Papers (PATAT'97). Lecture Notes in Computer Science, Vol. 1408, Springer-Verlag, Berlin,
Heidelberg, New York, 1998, 3-19.

[8] Cheng, C., Kang, L., Leung, N., and White G.M., "Investigations of a constraint logic
programming approach to university tametabling", in: E. Burke, P. Ross (eds.), The Practice
and Theory of Automated Timetabling: Selected Papers (ICPTAT'95). Lecture Notes in
Computer Science, Vol. 1153, Springer-Verlag, Berlin, Heidelberg, New York, 1996, 112-129.

[9] Colorni, A., Dorgio, M., and Maniezzo, V., "Genetic algorithms and highly constrained
problems: The time-table case", in: G. Goos, J. Hartmanis (eds.), Parallel Problem Solving
from Nature, Springer-Verlag, 1990, 55-59.

[10] Cooper, T.B., and Kingston, J.H., "The solution of real instances of the timetabling problem",
The Computer Journal, 36 (7) (1993) 645-653.

[11] Davis, L., and Rutter, L., "Schedule optimization with probabilistic search", Proceedings of the
3rd IEEE Conference on Artificial Intelligence Applications (Orlando, Florida, USA, Feb.
1987), IEEE1987, 1987, 231-236.

[12] Dowsland, K., "Simulated Annealing", in: C.R. Reeves (ed.), Modern Heuristic Techniques for
Combinatorial Problems, Blackwell, 1993, 20-69.

[13] Dueck, G., and Scheuer, T., "Threshold accepting: A general purpose optimization algorithm
appearing superior to Simulated Annealing", Journal of Computational Physics, 90 (1990)
161-175.

[14] Dueck, G., "New optimization heuristics. The Great Deluge algorithm and the record-to-
record travel", Journal of Computational Physics, 104 (1993) 86-92.

[15] Elmohamed, M.A.S., Coddington, P., and Fox, G., "A Comparison of annealing techniques for
academic course scheduling", in: E. Burke, M. Carter (eds.), The Practice and Theory of
Automated Timetabling: Selected Papers (PATAT '97). Lecture Notes in Computer Science,
Vol. 1408, Springer-Verlag, Berlin Heidelberg, New York, 1998, 92-112.

[16] Gueret, G., Jussien, N., Boizumault, P., and Prins, C., "Building university timetables using
constraint logic programming", in: E. Burke, P. Ross (eds.): The Practice and Theory of
Automated Timetabling: Selected Papers (ICPTAT '95). Lecture Notes in Computer Science,
Vol. 1153. Springer-Verlag, Berlin Heidelberg, New York, 1996, 130-145.

[17] Hertz, A., "Tabu search for large scale timetabling problems", European Journal of
Operational Research, 54 (1991) 39-47.

[18] Hu, T.C., Kahng, A.B., and Tsao, C.W., "Old bachelor acceptance: A new class of non-
monotone threshold accepting methods", ORSA Journal on Computing, 7(4) (1995) 417-425.

[19] Kirkpatrick, S., Gellat, J.C.D., and Vecci, M.P., "Optimization by simulated annealing",
Science, 220 (1983) 671-680.

[20] Koulmas, C., Antony, S.R., and Jaen, R., "A survey of simulated annealing applications to
operations research problems", Omega International Journal of Management Science, 22
(1994) 41-56.

[21] Laporte, G., and Desroches, S., "The problem of assigning students to course sections in a
large engineering school", Computers and Operations Research, 13 (4) (1986) 387-394.

 E. Burke, Y. Bykov, J. Newall, S. Petrovi} / A Time-Predefined Approach to Course Timetabling 151

[22] Melicio, F., Caldeira, P., and Rosa, A., "Solving the timetabling problem with simulated
annealing", Proceedings of the First International Conference on Enterprise Information
Systems (ICEIS'99), 1999, 272-279.

[23] Paechter, B., Cumming, A., Norman, M.G., and Lucian, H., "Extensions to a memetic
timetabling system", in: E. Burke, P. Ross (eds.), The Practice and Theory of Automated
Timetabling: Selected Papers (ICPTAT '95). Lecture Notes in Computer Science, Vol. 1153,
Springer-Verlag, Berlin Heidelberg, New York, 1996, 251-265.

[24] Schaerf, A., "Tabu search techniques for large high-school timetabling problems", Proceedings
of the 13th American Conference on Artificial Intelligence (AAAI-96), Portland, Oregon, USA
August 1996, 363-368.

[25] Schaerf A., "A survey of automated timetabling", Artificial Intelligent Review, 13 (1999) 87-
127.

[26] Ueda, H., Ouchi, D., Takahashi, K., and Miyahara, T., "A co-evolving timeslot/room
assignment genetic algorithm technique for university timetabling", in: E. Burke, W. Erben
(eds.), The Practice and Theory of Automated Timetabling III: Selected Papers (PATAT 2000).
Lecture Notes in Computer Science, Vol. 2079, Springer-Verlag, Berlin, Heidelberg, New York,
2001, 48-63.

[27] International Timetabling Competition home page: http://www.idsia.ch/Files/ttcomp2002/

