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Abstract: The behavior of estimations of the optimal inventory level is analyzed. Two 
models are studied. The demands follow unknown probability distribution function. 
The included density functions are estimated and a plug-in rule is suggested for 
computing estimates of the optimal levels.  
Two search algorithms are proposed and compared using Monte Carlo experiments. 
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1. INTRODUCTION 

The inventory problems to be analyzed can be formulated as follows: "given set 
of demands of a certain number of periods, determine the parameters that implement a 
policy that ensures minimum costs at a long run". 

We start with an inventory and at every time period  we examine the 
inventory position. The set-up cost 

t
( )c s  is associated to each placed order. A holding 

cost ( )c h  is incurred per unit-time in the inventory stock. The backordered cost ( )c b  is 
incurred per unit-time per backordered unit of demand. The cost of using a policy is a 
linear combination of set-up, holding and backordered costs. 

We can consider this problem deterministic or we can assume that we face 
probabilistic demands. The later case is more realistic though a percent of the demands 
can be considered non-random. For example, the demands of a large buyer can be 
similar in any period. The level of the product in the firm should be set to reserve 
sufficient inventory in order to meet the deterministic demand. It is known before the 
next replenish. This problem is analyzed in Section 3 following the results of 
Haussmann-Thomas (1972). Section 4 is devoted to the analysis of an inventory model 
where all the demands during the stock out period are backordered or lost. Only a 
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fraction α of the demands can be backordered. We follow the scheme used by  Warrier-
Shah (1997). 

The classical approach is to observe asset of demands and to felicitate the 
needed probability distribution functions. Then an optimal inventory level r  is 

determined. It should minimize the expectation of the overall cost. 
0

Iyer-Schrage (1992) analyzed the bad performance of this approach when the 
assumed distribution is not the real one. In this paper we propose to estimate the 
distribution function. The computed "optimal inventory level" is an estimate of r . We 

point out that its convergence depends on the convergence of the estimator of the 
density function. Non parametric density function estimation theory provides a frame 
for determining practical procedures for obtaining approximate solutions. A point wise 
converge is ensured. The examples worked out by Hausmann-Thomas (1972) and 
Warrier-Shah (1997) are reworked. Search algorithms are proposed. They allow 
determining integer solutions. The classical approach assumes the continuity of the 
random variables and a rounding-off permits to fix integer values of the "optimal 
inventor level". The behavior of two estimation procedures is analyzed in four 
examples. 

0

2. SOME RESULTS ON DENSITY FUNCTION ESTIMATION 

The estimation of a density function has its roots in the research of John 
Grant in 1661. The modern treatment of it is related with the use of nonparametric 
procedures; see Devroye-Gyorfy (1985) for a detailed discussion. A broad class of 
estimators of a density  is given by fixing a sequence of functions { (( )g x , )}δh x u  so that 

:δ ℜ × ℜ → ℜ , which satisfies certain conditions. A class of delta sequence estimators is 
determined by 

ˆ ( ) ( , )δ
=

= ∑
1

1 n

h h
i

g x x X
n i  

where  is the i-th observation of the random variable (rv) . An adequate set  is 

defined by the properties: 
iX X C

(i)  ( , ) , ( , ) , ( )δ ≥ ∀ ∈ℜ = → ∞20h x u x u h n h

(ii) Sup  ( , ) ( )δ −= 1
u h x u O h

(iii)  so that if ||, ξ +∀ ∃ ∈ℜnn || ( , ) ( )ξ δ −− ≤ ⇒ ≥ 1
n hx u x u O h  

(iv) { } ( , )ξ δ
−

− ≥

 
≤ ≥  

 

1
 with  c 1

n hx u c
h

x u
n

Sup  

(v) ξ → ∞nn  and ξ → 0n  

(vi) ( , ) ,δ
ℜ

= ∀∫ 1h x u du h . 

The function h is the bandwidth and it weights the values of  in terms of its 
closeness to 

u
x . The appropriate selection of  plays an important role in achieving h
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good estimators. Bootstrap can be used for choosing  see Faraway-Jhun (1990).  
Assume that 

,h
( , )δh x u  satisfies the above given conditions and that  

−
→

1
0

h
n

( , ) ),−1 ∀x

( ,
ℜ

Ψ∫ h x

{|| || ξ− ≥
∫

nx u c

→ ∞nh

var

= +gX n

=
=

(a)  

(b) { } { | || || || ||}{Sup ( , )} (δ− ≤ −Ψ = ∈h tt x t x u hu x t L h x  

(c)  ) ,
   < ∞ ∀ 
  

u du x  

(d)  
}
( , ) ,δ → ∀0h x u du x  

(e)   and exp{ ( )} ,
∞

=
− < ∞ ∀ >∑

1
0

n
c nh c .  

Then, with the point wise convergence of the corresponding estimator of  
holds almost surely, see Lima (1998) for a detailed discussion. She worked out detailed 
proofs for some well known estimators. 

( )g x

3. DETERMINISTIC RANDOM DEMANDS 

The problem can be characterized by a firm that has a production in order to 
satisfy two types of demands. The deterministic demand of some client is known before 
the next replenish. The demand of the other buyers is unpredictable. Then ( ) > 0c s , 
setup costs are positive.  The demands are placed periodically. In practice the demand 
of some big customers and/or the internal demand of the firm can be considered as 
known. The notation to be used is: 

 
=D  random demand per period with density function  so that its 

expectation is 

( )f d

( ) δ=E d  and its variance is ( ) = ∆2d . 

=P  known process demands (in periods). 
=Q  number of units ordered each time in which an order is placed. 
=R  inventory level at which an order is placed 
=X  random demand over the lead period with a density function  so that 

its expected value is 

( )g x

( ) = gE X X  and  its variance is . var ( ) =X 2V

λ =  mean total demand per period /δ ρ= + P  
Λ =  fixed lead time in periods. 

ρ τ δµ
λ ρ λ

    + − + −   
   
1

2
P

P n P  average total demand over the lead 

time 

=

ρ =  time between process demands in periods 
( )c i  carrying cost rate per  period (percentage) 
( , )c h i  inventory cost per unit backordered of the random demand 



 C.N. Bouza / Convergence of Estimated Optimal Inventory Levels 220

( , ) =c b b  backordered cost per unit of the process demand 
( , ) =c b d  backordered cost per unit of the process demand 

=0n  minimum number of process breakdowns during one leading 

time /τ ρ=    where   z  represents the greatest integer closer to  and z

( ) (>> )c bd c bb . 
 
The total cost per period, using an infinite planning horizon, is: 

( ) ( )( ) ( )λ λµ = + − + + 
 2c

c s Q
T c i r c bb

Q Q
E r

 (3.1) 

( )E r  is the expectation of r and represents the number of units of backorders in one 
ordering cycle.  If the distribution of  is unknown, it should be estimated.   r

We seek for minimizing (3.1). If we differentiate it with respect to  and we 
can have: 

Q

[ ]( ) ( ) ( )
( )

λ +∂
= ⇒ =

∂
2

0c c s c bb E rT
Q

r c i
 (3.2) 

and 

' '' '''∂
= + + =

∂
0cT

D D D
r

 

where 

( )( ( )'

'' ( )( ( ) )

''' ( )

δ ρ
λ

ρ

ξ ξ
ρ

−

Λ − − −
=

= − Λ + − −

= − − −
Λ ∫

-1

1

0

1

1 1
P

n G r nP
D

D n G r n

P
D G r nP d P

)

P  

and 

( ) ( )
−∞

= ∫
t

G t g x dx  

The solution of (3.1) is  

[ ]( ) ( ) ( )
( )

λ +
=0

2 c s c bb E r
Q

c i
 (3.4) 

Two situations may arise with respect to the inventory level.  They are: 
 

1. r is not tripped by a process drawdown, denoted r∝NT. 

Then, see Hausmann-Thomas (1972) 

( | ) ' '' ( )= + = 1E r r NT R R M r∝  
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Defining  

( )
( ( ) ) ( )

'
ρ

∞

− +
−

− − +

=
Λ +

∫
1

1

1
r n P

x r n P g x dx

R
n

 

and  

( )
( ) (

''
ρ

∞

− +
−

− −

=
− Λ +

∫
1

11
r n P

)x r nP g x dx

R
n

 

whenever ( )c bd  is sufficiently large for requiring that  ( ) /≥ −0 1r n P

1

 
2. r is tripped by a process drawdown, denoted r∝T. 

Hence, there are  additional process draw downs during Λ and there are 

 units in the inventory and on order. 

n
*<r r

As a result each  is equally probable. That is 1* * *{ ,..., }∈ = − + −1r R r P r /P  

is the probability of observing a .  Then *∈r R

( ) ( )
ξ

ξ ξ
∞

− −

− − −
∝ = =∫ ∫

0

2
0

P

r nP

x r nP
E r r T g x dxd M r

P
( )  (3.6) 

We should consider the incidence of each situation.  
Taking [ , ]α ∈ 0 1  as the fraction of untripped inventory levels we have that the 

expectation of  is r

( ) ( ) ( ) ( )α α= + −1 21E r M r M r   (3.7) 

If α  is known (3.7) is fixed. When it is unknown, a solution is to accept that 
/π ρ− = P  and to represent 

δα πλ
δρ δ

= = =
+ −

1 1

1 1
P

 (3.8) 

δ  is unknown and the estimator of α  can be derived by plugging-in its estimator.  
Then we have 

ˆ
ˆ

ˆ

δα πλ
δ

= =
−

1

1
 (3.9) 

The Taylor's formula permits to expand this expression and  
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ˆ ˆ
ˆ π δ δ δ δα

δ δ δ

    − − ≈ − + +           

2

1  

If the terms of order larger than 2 are considered as negligible  

ˆ( )ˆ( ) π π δα α
δ δ δ α

  ∆
≈ + = + 

  

2

2 2
Var

E
m

 

Therefore, a robust estimate of δ , see Jureckov˘-Sen (1996), is a mean based 
estimator as  

δ̂ ==
∑

1

m

t
t

d

m
 (3.10) 

where td  is the demand in the observed period .  As m  is granted that (3.10) 

tends to 

t → ∞

δ  and there exists a  so that for any 0m ε > 0  

α̂ α ε− <  

A solution to (3.3) is obtained by using numerical methods because closed 
forms of the solution are not available for most densities . If G t  is known, it is 
possible to use a treatment-error procedure or a heuristic method. 

( )g x ( )

The use of an inadequate distribution to represent the data has a poor 
performance, see Iyer-Schrage (1992). If we estimate  and no serious distribution 
assumptions are made, the errors depend on the statistical procedure which can be 
characterized theoretically. Say, that the adequateness of the computed optimal 
inventory level is sustained by the properties of the density function estimator used. If 
the estimator satisfies (i)-(iv) and (a)-(e) we have that 

( )G t

( )ˆ( ) ( ) ( , ) ( )δ
∞

∞ →∞

=
= = →∑∫ ∫0

10

1 m
Em r

m h i
i

E r rg r dr r r r dr E r
m

 

Then we can plug-in this estimation in (3.4).  Similarly 

( )ˆ ( ) ( ) ( )→∞

−∞

= →∫
z

Gm z
mG z g t dt G z  

Then ', ''D D  and '''D  can be estimated using consistent estimators obtained 

by plugging-in the estimation of the distribution function. 
The use of the easy computing estimator as the Rectangular Kernel 

| |
( , )δ

 <= 


1
 if 1

2
0 otherwise

h i
r

r r  

or the Gaussian Kernel 
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exp
( , ) ,δ

π

 
−  

 = ∀

2

2

2
h i

r

r r r ∈ℜ  

They satisfy the hypothesis that sustains the point wise convergence, see Lima (1998). 
The solution of the optimization problem may be computed by using the 

following Simulated Annealing algorithm. 
 

Algorithm 1. Computation of an optimal inventory level 

Step 1 Evaluate T r  *( )0c

          Step 2 Input , , ,= 0K K T Temp B  

                       Step 3 For  to  do = 1t T

                                Step 4  * *,= − = +01 0 0 02 0 0R r K R r K  

                                              Step 5 Evaluate T R . * *( ), ,=0 1 2c i i

                                              If * * *( ) ( )− = ≤0 0 0c i cT r HT R  then * =0 0r r  

                                              Else if exp( / ) random( , )− > 0 1H Temp  then * =0 0r r  

                        Step 6 While ,> =0 0 00 1−K K K  

                        Tem  go to Step 3 /=p Temp B

Step 7   * =0 0r r

END 
 

At the second step of the algorithms the parameters needed for running the 
algorithm are given. The parameter B  is larger than one; hence the temperature is 
decreased at the end of each transition. The convergence of this algorithm follows 
because its construction fits with the hypothesis that sustains the equivalence with a 
sequence of inhomogeneous Markov Chain, see Aarts-Korsts (1989). The starting point 
is the solution computed by plugging in the density function estimates in the estimate 
of r0 . 

A simulation experiment was conducted for evaluating  of the proposed 
approach. 100 samples of size m were generated. Three values of 

g
α  were analyzed: 

0.05, 0.5 and 0.95. We generated the random demands using the normal distributions 
' ( ,= 9 100)N N , " ( ,= 100 9)N N  and two exponentials: ' =E exp(9) and exp(100). 

The Gaussian Kernel and the Rectangular Kernel were utilized for estimating g. 
Sample sizes 

" =E

,= 100m  1000 and 5000 were used. The optimal values of cT . 

 Each sample was computed and compared with the estimations. The behavior 
of each distribution p  was evaluated by performing 100 runs for each combination. 

ˆ( ) ( )

( )
=

−
∆ =

∑
100

0 0
1

0

m

c c kk
p

c

T r T r

mT r
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Table 3.1: Results for ∆ when the Gaussian Kernel was used 
 

 .α = 0 05  
.α

=
=

100
0 5

m
 .α = 0 95 .α = 0 05

.α
=
=
1000
0 5

m
.α = 0 95 .α = 0 05

.α
=
=
5000
0 5

m
 .α = 0 95  

 11,2 8.3 3.4 9.3 9.5 8.8 5.4 6.2 1.6 
"N 25.4 16.9 7.1 7.6 7.4 7.3 5.3 4.6 2.5 
'E  34.0 45.3 20.3 28.9 56.4 78.1 59.2 57.1 83.6 
"E  89.3 71.2 89.6 23.5 95.2 67.2 85.3 73.9 53.0 

'N

 
The Gaussian kernel exhibits a good performance when the normal 

distributions generated the demands. The increase of the sample size ensures gains in 
accuracy. Similarly occurs with respect to α . Therefore it works better when the 
sample size and the fraction of untripped inventory level is large. When the distribution 
is exponential the results do no exhibit a regular pattern 

 
 Table 3.2: Results for ∆ when the Rectangular Kernel was used 

 

 
 
.α = 0 05  .α

=
=

100
0 5

m
 .α = 0 95 .α = 0 05

.α
=
=
1000
0 5

m
.α = 0 95 .α = 0 05

.α
=
=
5000
0 5

m
 .α = 0 95  

 33.4 28.7 12.7 29.6 29.5 28.5 25.9 23.9 21.8 
"N  67.7 54.8 18.1 30.2 28.6 27.5 28.3 21.0 18.7 
'E  55.8 59.3 59.3 67.4 70.1 73.9 77.8 78.5 78.1 
"E  64.0 70.6 75.4 69.2 74.9 69.6 71.6 68.0 70.2 

'N

 
The results of Table 3.2 suggest that the Rectangular Kernel is better than the 

Gaussian for the exponentials. The accuracy is very similar for the different values ofα. 
and m.  When the distribution is normal, the use of a larger sample size and a larger α 
is the best option. 

Therefore we can argue that the Gaussian Kernel with large sample size is 
recommended when we expect that g to be normal and the rectangular exponential. 

4. MIXTURE OF BACKORDERS AND LOST SALES 

Another common problem is to consider the inventory model as a mixture of 
backorders and lost sales. All the demands are completely backordered during the stock 
out periods, or t is lost forever. Warrier-Shah (1997) studied probabilistic order level 
systems. The fraction of backordered demands [ ]α ∈ 0 1  is known. They considered 

 and that the scheduling period Λ = 0 [ , ]Π ∈ 0 1  is fixed.  The existing inventory for 
 is  for the demand ∈ Πt ( | )Q t x x  during Π  and ( | ) / /= −dt x TdQ t x  with .  

The solution to the differential equation that describes the instantaneous state of the 
existing inventory is . 

( | ) =0Q x r

( | ) / ,= −Q t x r t T ∈ Πtx

Two situations may arise with the demands: 
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1. Shortages do not occur during .Π [x ≤ r]. 

Then  
*
[ | ]= ∫1

0

1
2

t
= −

x
I Q t x dt r

T
 (4.1) 

2. Shortages occur during [x>r]. .Π

In this case shortages occur after a * <t T

x

 because  satisfies the demand in 

. As  we have that t r . The counter part of (4.1) is 

r
*[ , ]0 t *( | ) = 0Q t x * /= T

*
( | )= =∫

2

12
0

1
2

t r
I Q t x dt

T x
 

as shortages are observed during  we obtain *] , ]t T ( | )−Q t x . 

A fraction αm of shortages is backlogged. Hence 

( )αα
  −

= + − =  
 

2 2

21 2 2 2
r x r x

I r
x x

 

and the lost sales per unit during Π  is  
*( ) ( )α− −

=
2

22
1 x T t

I
T

 

The expected total cost of the system depends on the random demands. Then 
the density function  should be known for calculating it. We have three cost sources: g

 
1. Inventory cost during Π  .

The total cost per unit time given the density function  is: g

( , | ) ( ) ( ) ( )
∞  = − +  

   
∫ ∫

2

0 2 2

r

r

x r
c h r g c h r g x dx g x dx

x
 

2. Backlogging cost during  .Π

( ) ( ), ( ) ( )α
∞ −

=  
  

∫
2

0 2
r x

c b b g c bb g x dx
x

 

represents the total expected cost due to backorders 
 

3. Lost sales during Π  .

( )( , , | ) ( ) ( ) ( )α ∞ −
= − 

  
∫

1

r

c b d r g c bd x r g x dx
T

 

measures the expectation of the corresponding total cost per unit. Then the optimal 
inventory level  is obtained by minimizing: 0r
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( | ) ( , | ) ( , | ) ( , , |= + +cT r g c h r g c b d g c b d r g)  (4.2) 

By differentiating it we have 

( | ) ' " '" ( | ) ( | )∂
= + + = = =

∂ 1 0 1 1 0cT r g
S S S T r g T r g

r
 

where 

' ( ) ( )

" ( ( ) ( )) ( )

( ) ( )''' ( ) ( )

α

αα

∞

∞

=

= +

− = +  

∫

∫

∫

0

0

0

0

0

1

r

r

r

S c h g x dx

r
S c h c bb g x dx

x

c bd
S c bb g x d

T
x

 

Then, T r  is an estimating equation. ( | )1 g

We have that  is a minimum therefore:  0r

[ ]( | ) ( ) ( ) ( )( ) ( ) ( ) ( | )αα
∞∂ − = + + = ≥  ∂
∫
0

2

0 2 02
1

0c

r

T r g g x c bd
c h c bb dx g r T r g

x Tr
. 

The use of an estimator of  permits to compute estimates using the 
functional obtained by plugging in the estimator .  Then consistent estimates of 

 and  may be computed. 

g

hg

', ''S S '''S

Note that T g  and ( | )∞ >1 0 ( | )<2 0T g 0 . taking ( ) ≅0 hr g r0  when a sufficiently 

large sample is observed. Then it is an adequate starting point in any search procedure. 
The following algorithm permits to obtain a good approximation to  in a small 
number of iterations. 

r

 
Algorithm 4.1.  Search of an optimal inventory level or a mixture of 

backorders and lost sales. 

Step 1. Evaluate  ( ( ))0 hT r g

= 1t . 
If T r  then go to Step 4 ( ( )) =1 0 0hg

                          Step 2. If ( ( )) <1 0 0hT r g  then −= +1 1t tr r  else −= −1 1t tr r  

                                        Step 3 Compute ( ( )) =1 0t hgT r  

                                       If  ( ( ))− <1 1 0tr hT t g  and  then  ( ( )) ≥1 0t hT r g ( ) =0 h tr g r

                                       If T t  and ( ( ))− ≥1 1 0tr hg ( ( )) <1 0t hgT r  then ( ) +=0 1h tr g r  else 

                                        = + 1t t
ž                                      Go to step 2 
                          Step 4.  ( ) =0 h tr g r

END 
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A Monte Carlo experiment was performed. It followed the same lines of the 
experiment of Section 3. The results appear in Tables 4.1 and 4.2. The average of  

| ( | ) ( | ) |*
( | )=

−
∆ = ∑

1

1 m
c c h

ct

T r g T r g
m T r g

t  

Table 4.1: Results for ∆* when the Gaussian Kernel was used 
 

 
.α = 0 05  

.α
=
=

100
0 5

m
 .α = 0 95 .α = 0 05

.α
=
=
1000
0 5

m
.α = 0 95 .α = 0 05

.α
=
=
5000
0 5

m
 .α = 0 95  

 21.7 18.9 18.8 19.3 18.2 17.3 18.2 18.3 15.7 
"N  29.5 27.4 16.4 18.5 17.4 17.0 16.3 16.2 15.9 
'E  1.0 1.1 1.1 1.1 0.7 0.7 0.9 0.7 0.8 
"E  0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.6 0.6 

'N

 
Tables 4.1 and 4.2 establish that the exponentials are better approximated than the 
normal 

 

Table 4.2: Results for ∆* when the Rectangular Kernel was used 
 

 
.α = 0 05  

.α
=
=

100
0 5

m
 .α = 0 95  .α = 0 05

.α
=
=
1000
0 5

m
.α = 0 95 .α = 0 05

.α
=
=
5000
0 5

m
 .α = 0 95  

 42.3 42.5 40.5 43.2 42.1 39.6 38.2 37.7 33.8 
"N  56.1 55.8 53.1 55.3 53.8 47.5 44.5 40.2 38.5 
'E  2.3 2.1 2.2 3.4 3.2 3.5 3.1 2.9 2.7 
"E  4.7 4.5 3.8 4.1 3.7 3.2 3.5 3.2 3.0 

'N
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