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Abstract: We address an important problem of a manufacturing system. The system 
procures raw materials from outside suppliers in a lot and processes them to produce 
finished goods. It proposes an ordering policy for raw materials to meet the 
requirements of a production facility. In return, this facility has to deliver finished 
products demanded by external buyers at fixed time intervals. First, a general cost 
model is developed considering both raw materials and finished products. Then this 
model is used to develop a simulated annealing approach to determining an optimal 
ordering policy for procurement of raw materials and also for the manufacturing batch 
size to minimize the total cost for meeting customer demands in time. The solutions 
obtained were compared with those of traditional approaches. Numerical examples are 
presented. 
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1. INTRODUCTION 

We discuss a manufacturing system where the manufacturer uses raw 
material, received from an outside supplier, so to produce a finished product. 
Traditionally the economic lot size for raw material purchase and manufacturing batch 
size are determined separately. However, when the raw material is used in production, 
its ordering quantities are dependent on the batch quantity of the product. Therefore, 
it is undesirable to separate the problem of economic purchase of raw materials from 
economic batch quantity. As a result, one should determine the optimum production 
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batch size of a product and the ordering quantities of associated raw materials 
together. This could be done by treating production and purchasing as components of 
an integrated system, minimizing the total cost of the system. 

Consider the raw material inventory system of an organization. Since the 
amount of raw material used for a product is given, the amount of raw material to be 
used in a batch of known quantity is also known. The raw materials are consumed at a 
given rate only during the production up-time, and not throughout the whole cycle 
time. The ordering policy of a raw material can either be based on its economic 
ordering quantity (EOQ) or on the requirement of raw material in a lot of economic 
production quantity (EPQ). The latter reflects the dependent relationship between raw 
material requirement and production quantity. The relationship between a product and 
its raw material has been the basic consideration for the model developed in this paper. 
The problem is also considered from the point of view of the benefit to the 
manufacturing firm. The proposed systematic approach supports the fact that the 
optimum purchasing-production policy should be determined by considering an 
integrated system, rather than by considering several independent systems [1, 2, 3].  

It would be possible to consider either a continuous or periodic product supply 
policy. In this research we consider a fixed, known quantity supply at a fixed interval of 
time. However, the supply of raw material will be taken in a lot where the lot size is a 
decision variable. 

The problem considered in this paper has the following attributes: 
• 

• 

• 

• 

a finite production-rate environment uses raw materials from outside 
suppliers, 
only the product lot sizing and its associated raw material supply quantities 
are under consideration, 
the supply policy for the product is to deliver an equal quantity at fixed 
intervals, and 
the product cannot be delivered until the whole lot is finished and quality 
certification is complete. 
The above situation exists in many industries. The objective is to determine 

the optimum batch size of the product and the ordering quantities of raw materials 
minimizing the overall system cost. To simplify the model, we consider that a single 
raw material purchase provides stock for several production runs. 

In the literature, there are different models for dependent lot sizing. The 
supply patterns of raw material considered in those models are (a) Lot for lot and (b) 
Multiple lot for lot. The multiple lot for lot is further classified into (i) single raw 
material purchase for several production runs and (ii) several raw material purchases 
for a single production run. The delivery policy of the finished product is classified into 
(a) continuous and (b) periodic supply. In periodic supply, a lot can either be supplied in 
a single shipment or in several equal shipments.  

Sarker et al. [1, 2 , 3] developed a model operating under continuous supply at 
a constant rate for both raw material delivery policies. In the lot-for-lot system, the 
ordering quantity of raw material is assumed to be equal to the raw material required 
for one production run. The raw material that is replenished at the beginning of a 
finished product inventory cycle will be fully consumed at the end of the production run. 
It is assumed that the length of a production run is always less than the finished 
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product inventory cycle time. In multiple lot for lot, it is assumed that the ordering 
quantity of raw material is n times the quantity required for one production run, where 
n is an integer. 

An ordering policy for raw materials to meet the requirements of a production 
facility under a fixed quantity, periodic delivery policy has been developed by Sarker 
and Parija [4], Jamal and Sarker [5], Golhar and Sarker [6] and Sarker and Golhar [7]. 
They considered that the manufacturer is allowed to place only one order for raw 
material per finished product inventory cycle. In this case, a fixed quantity of finished 
goods (say x units) is to be delivered to the customer at the end of every L units of time 
(fixed interval). This delivery pattern forces inventory build-up in a saw-tooth fashion 
during the production up-time. The on-hand inventory depletes sharply at regular 
intervals during the production down time until the end of the cycle. The latter one 
forms a stair case pattern. Recently, Sarker and Parija [8] developed another model of 
several purchases of raw material for a single production run under a periodic delivery 
policy.  

In this paper, we consider a problem for determining the ordering policy for 
raw materials to meet the requirements of a production facility under a fixed quantity, 
periodic delivery policy. In this case the product cannot be delivered until the whole lot 
is produced because of the quality assurance requirement. We analyze a system where a 
single raw material purchase is utilized for several production runs. This system is 
economic when the ordering cost of raw material purchase is much higher than the 
setup cost of a production run. Figure 1 shows the finished product inventory system. 
The product is produced at a constant rate during the production up-time period t . 
The delivery of finished product starts as soon as the level of accumulated finish 
product inventory reaches the manufacturing batch quantity, pQ . A fixed quantity of 

finished product ( )x  is delivered to the customers at the end of every L units of time. 
This forms a staircase pattern during the production down time of the cycle. To fulfill 
the demand on time, there may be an overlapping of two consecutive finished product 
inventory cycles. The duration or amount of overlapping depends on the production 
rate, demand rate and other relevant cost data. The shaded area in Figure 1 shows the 
overlapping of inventory depletion of a finished product inventory cycle with the 
inventory accumulation of the next cycle. Figure 2 presents the raw material inventory 
level of the system. At the beginning, the raw material of quantity 

 

pnrQ  is replenished 

for the purpose of providing stock for  production runs. The raw material is depleted 
at a constant rate during the production up-time of the finished product inventory cycle. 
The level of raw material inventory remains constant during the production down-time.  

n

In this paper, the cost factors considered are ordering/setup, holding and 
material costs. We have the total cost equation of the system with respect to the 
production quantity and the equation as an unconstrained optimization problem. Two 
heuristics have been proposed in this paper to solve this optimization problem. The 
first is a simple heuristic, which is much simpler than other existing methods. The 
solution obtained using this approach may be suboptimal because of the dependent 
relationship and the nature of the solution method. The second method is based on 
simulated annealing (SA) [9,10,11], which is a powerful stochastic search algorithm 
that can be applied to complex and nonconvex optimization problems.  The purposes of 
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designing simulated annealing are (i) to explore its use in solving batch-sizing problems 
and (ii) to compare its solution to those obtained by other methods.  

Following this general introduction, the paper presents a brief exposition of 
simulated annealing. Then the mathematical formulation of the coordinated policies is 
developed. In the following section, the solution approaches are provided.  
Subsequently, numerical examples and analysis are given. The conclusions are provided 
in the final section. 
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Figure 1: Finished product inventory level 
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Figure 2: Raw material inventory system 
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2. SIMULATED ANNEALING 

Simulated annealing (SA) [9,10,11] is a powerful stochastic search method 
applicable to a wide range of problems for which little prior knowledge is available. It 
can produce high-quality solutions for hard combinatorial optimization [12].  

The basic idea of SA comes from condensed matter physics. It is well-known 
that in condensed matter physics a good way to find minimum energy states, called 
ground states, of complex systems, such as solids, is to use the annealing technique, in 
which the system (solid) is first heated to some high temperature and then slowly 
cooled down. The system (solid) will reach a ground state if the cooling rate around the 
freezing point of the system is sufficiently slow. This process can be simulated on 
computers via abstract models, such as systems of interacting particles with many 
degrees of freedom.  

At each step of the simulation, a new state of the system is generated from the 
current state by giving a random displacement to a randomly selected particle. The new 
state will be accepted as the current one if the energy of the new state is no greater 
than that of the current state; otherwise, it will only be accepted with probability 

_ _−
− new state current stateE E

Te  

where E stands for the energy of the system and  is the temperature. This step can 
be repeated as many times as necessary with a slow decrease of temperature in order to 
find a minimum energy state. Of course, only finite steps are taken in practical 
simulations. This simulation procedure was proposed by N. Metropolis et al. [9] and is 
called the Metropolis procedure [10]. 

T

SA has been applied to numerous problems in operations research and 
industrial engineering [18-25], such as cell formation [18], scheduling with resource 
constraints [19], machine conditioning [20], scheduling with multi-level product 
structure [21], lot sizing [23-24], and guillotine cutting [25]. A good survey of SA 
applications can be found in [22]. However, none of these papers discusses the problem 
considered in this paper. It is well-known that SA works well for some problems, but 
not for all. It is interesting to investigate whether SA can be applied effectively to the 
manufacturing batch-sizing problem described in this paper and whether SA is robust 
(i.e., not sensitive to different parameter settings) for this problem. 

3. MATHEMATICAL FORMULATION 

A general cost model is developed considering the major points of both the 
supplier of raw materials and the buyer of finished products. This model will be used to 
determine an optimal ordering policy for the procurement of raw materials, and the 
manufacturing batch size by minimizing the total cost for meeting equal shipments of 
the finished product, at fixed intervals, to the buyers. 

In order to find an economic order quantity (EOQ) for the raw materials and 
an economic production quantity (EPQ) for the production run, it is customary to 
consider the cost components: (i) raw material inventory carrying cost; (ii) finished 



 R. Sarker, X. Yao / Simulated Annealing and Joint Manufacturing Batch-Sizing 250

goods inventory carrying cost; (iii) raw material ordering cost; and (iv) manufacturing 
setup cost.  

To develop the model, the assumptions have been made: (i) the production rate 
is finite and constant; (ii) the production capacity is greater than the demand; (iii) no 
shortages are permitted; (iv) the time horizon is infinite; and (v) a fixed quantity of the 
product is delivered after a fixed interval of time. 

The notation used in developing the cost functions is shown below: 
 

=iA  ordering cost of raw material   

 =pA  setup cost for a product ($/setup)  

 =iD  demand of raw material for the product in a year, =i pD rD  

 =pD  demand rate of a product, units per year 

 =iH  annual inventory holding cost for raw material, $/unit/year  

 =pH  annual inventory holding cost, $/unit/year 

  time between successive shipments  =L /= px D  

  number of full shipments during the cycle time =m / /= = pT L Q x  

   number of production run to use one lot of raw material =n
 =pP  production rate, units per year (here, >p pP D ) 

 =iPR  price of raw material  

  ordering quantity of raw material =iQ = pnrQ  

  optimum ordering quantity of raw material  * =iQ

 =pQ  production lot size 

=r  amount/quantity of raw material required in producing one unit of a 
product 

=t   production up-time in years in a cycle of length  T
  cycle time measured in years =T /= p pQ D , where  >T t

 =x  shipment quantity to customer at a regular interval (units/shipment) 
 

 

3.1. Finished Product Inventory 

Since the product cannot be delivered to the customers until the whole lot is 
completed and quality certification is ready, there is a continuous build-up of finished 
product inventory, at the rate equal to production, during the production up-time of a 
given lot (Figure 1: line ef ). The delivery of the finished product is permitted during 
the production down time of that lot only. In order to fulfill the demand in time, the 
production of a new lot may be started before finishing the delivery of the previous lot.  

From  Figure 1, We can write:  

/= p pt Q P   and  / =p p mLQ D ,  

and the finished product inventory in a cycle Area ( )= +efg ijk  
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( - )Area ( ) ( ) ( )= − + − + + + =
1

1 2 2
2

m m
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So, the finished product inventory in a cycle 
( - )

= +
1 1
2 2p

m
Q t x mL  

 
Hence, the average finished product inventory in a cycle 
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3.2. Raw Material Inventory 

The raw material inventory is shown in Figure 2. In this case, the inventory 
for raw material in a cycle of  periods is nT

[ (= + + + + + + − +
1 1 1 1 1

2 1
2 2 2i i i i i i it T t T t n TQ Q Q Q Q Q Q

n
) ]

2
t  

( )−
= +

1 1
2 2i i

n
t TQ Q  

For raw material the average inventory per cycle 

( )− +  =

1 1
2 2i i

n
t TQ Q

nT
 

 
= +  

 

1
1

2
p

p
p

D
r nQ

P
−   (2) 

Then the total Cost Function for a year can be represented as follows: 
Total cost of the system,    

( ) = + + − 
 

1 2 2
p pi

pp
p

QAD
TC A kk

x
H

nQ
 (3) 
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where, 
   

= + + + − = +      
   

1 1p p
p i i

p p

D D
kk rH n CC nr HH

P P
, 

where,  
  

= + + −    
  

1 1p p
p i

p p

D D
CC H rH

P P





x

 

Since, , then TC  can be rearranged as follows: =pQ m 1

( ) = + + − 
 

2 2 2
p i

p p
mx xD ATC A kk H

mx n
 (4) 

2TC  is a nonlinear function with integer variable  and n .  The behavior of this 

function is discussed in the next section. Our objective is to determine the optimal m 
and n while minimizing the total cost. 

m

4. SOLUTION APPROACH 

The total cost of the system can be expressed either as a function of continuous 
variable pQ

m

 and an integer variable n (equation 3) or as a function of the integer 

variables  and  (equation 4). TC  and  aren 1 2TC  no differentiable since they contain 

integer variables.  As such, a closed form solution for pQ  cannot be obtained. However, 

it can be shown that  is a piecewise convex function of 1TC pQ . Sarker and Parija [4] 

examined and plotted a similar function. Efficient algorithms may be applied to solve 
this problem by using a discrete optimization technique. An algorithm has been 
proposed by Moinzadeh and Aggarwal [13] to obtain a global minimum for such a 
function. Although it may not be efficient, a simple procedure is developed here to 
obtain an optimal or near-optimal solution in this paper.  

We consider TC  to determine the optimal solutions. The reasons for choosing 

, instead of TC , are:  
2

2TC 1

(i) the range of pQ  is too large as compared to m ,  

(ii) pQ  is a dependent variable of ,  m

(iii) the solution may not guarantee an integer value of , and  m
(iv) in reality, pQ  is integer too. 

With a search algorithm, the number of iterations will be much lower with a 
function of m  and  than that of n pQ  and . The function  can be plotted 

connecting the values of TC  for integer  and . For any given value of , the 

connected function of  looks like a convex function. This similarity to a convex 
function is also true for the connected function of , for any given value of .  

n 2TC

2 n m

m

m

n
n

In the following section, we develop two approaches to optimizing the function 
.  2TC

 



 R. Sarker, X. Yao / Simulated Annealing and Joint Manufacturing Batch-Sizing 253

4.1. Heuristic Based on Traditional Optimization 

The properties of the function motivated us to develop a conventional 
optimization based approach. This approach is well accepted in the OR/MS literature in 
regard to finding the near optimal solution (Silver, Pyke and Peterson [14]  and  
Joglekar and Tharthare [15]). Relaxing the requirement that  and  are integer and 
allowing them to be continuous, and then differentiating  with respect to m and 

equating to zero, we get 

m

2TC
n

*
)

( )

 
+ 

=
2

2 i
p p

i

AD A
nm

kkx
   (5) 

Substituting  in Equation  (4) we get the annual total cost as *m

( )) ( )
( )

 +    = + + ⋅     + 
 

2

2 2

2

2 22

i
p p

p i
p p

i
p p

AD AD kk x xnxATC A kk H
x n kkA xD A

n

 

[( ) ] = + + − 
 

2
2

i
p p i

xA
pD A CC nr H

n
H  (6) 

 
Differentiating the modified  (equation 6) with respect to  and equating to zero, 

we get 
2TC n

* ( )
= i

p i

CCAn
A rH

 (7)  

Both  and  should be integers. However the values obtained from equation (5) and 
(7) may not be integer, as we solved the relaxed function. In such a case, the 
neighbouring integer point (values of  and ) is sorted which incurs the minimum 
cost. The complete heuristic algorithm is presented below:  

m n

m n

  

Algorithm: finding batch size. 
 
Step 0.  Initialize and store , , , , , ,p p p i p iD P A A H H r  and x . 

Step 1.  Compute  using (equation 5). *m

Step 2.  Compute  and  using (7) and (6) respectively.  *n 2TC

If both  and  are integers, then calculate *m *n *
pQ  and go to Step 6. 

Otherwise go to Step 3. 
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Step 3. If m  is integer and  is not, then compute  using * *n 2TC * =  n n  and . 

Choose the  that gives minimum TC . Calculate 

* 
 n

n 2
*
pQ  and go to Step 6. 

Otherwise go to Step 4. 

Step 4. If n  is integer and  is not, then compute  using * *m 2TC * =  m m

*

 and . 

Choose the  that gives minimum . Calculate 

* 
 m

m 2TC pQ  and go to Step 6. 

Otherwise go to Step 5. 

Step 5. If both n  and  are non-integers, then compute  for all four 

combinations of  and :  

* *m
*

2TC

n *m
 

Option 1:  Option 2: *  
  m n 


*   

   m n  

Option 3:  Option 4: *  
  m n 


*   

   m n  

 

Choose  and  that gives the minimum . Calculate n m 2TC *
pQ  and go to Step 6.  

Step 6. Stop 
 

 
Numerical Example 

A numerical example is provided to show the applicability of the model 
developed in this research. The data for the example are as follows: 

 

= × 64 10pD  units  

= × 65 10pP  units  

$ .= 50 000pA  per setup  

$ ,= 3 000iA  per order  

$ .= 1 20pH  per unit per year  

$ .= 1 00iH  per unit per year  

,= 1 000x  units. 
 
Solution: using traditional optimization based heuristic 
 
Let  .= 1 00r
From Equation (5), the number of full shipments during the cycle time m  .= 14 11
From Equation (7), the number of lot size .= 10 84n  
From Equation (6), the total cost $ , .= 182 914 30TC  

To find the integer value of m  and , we try for n = 14m  and 15 and = 10n  and 11 
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m  n  Total Cost ($) Remarks 
14 
 

10 
11  

183,120.00 
182,327.80 

Highest 
Lowest total cost 

15 10 
11 

182,433.30 
182,660.60 

In between 
In between 

 
So the number of full shipments during the cycle time is = 14m , the number of lots is 

 and the lot size  units. = 11n ,= 14 000
 

4.2. Simulated Annealing Approach 

The classical SA (CSA) [10] starts with an initial configuration generated at 
random. At each step, it selects the next solution  from the neighbourhood Y XN  of 

the current solution . The next solution will be accepted as the current one if its cost 
is no greater than that of the current solution; otherwise, it will only be accepted with 
probability 

X

−
− Y XC C

Te  

Where  represents the cost (to be minimized) of solution Y  and  is the cost of 

solution .  This procedure is repeated with a slow decrease of the control parameter 
, called temperature, until a sufficiently good solution has been found. CSA can be 

summarized by the following algorithm: 

YC

X
XC

T

 
select initial solution  at random; X
select initial temperature ; T
REPEAT 
    REPEAT 
        randomly select  from Y XN  with uniform distribution;  

        IF  ≤Y XC C

           THEN accept Y  as the new solution  

           ELSE accept  as the new solution with probability Y
−

− Y XC C
Te  

    UNTIL Âinner-loop stop criterion' is satisfied 
    decrease temperature   T
UNTIL Âouter-loop stop criterion' is satisfied 
 

One of the major tasks in developing an SA-based approach is to define a 
suitable neighborhood function, i.e., to define a suitable generation function that 
guarantees every feasible solution in the search space can be reached. In this paper, the 
neighbors of a given solution ( , )=X m n  are {( , ) | , , }+ + = −1 1m i n j i j  in our algorithm. 
The acceptance probability used in our algorithm is the same as that defined in the 
above CSA.  
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The initial solution was generated uniformly at random within a user-specified 
range, e.g., for  and  between 1 and 1000. The initial temperature was generated 
using the following procedure: (1) Generate 100 solutions at random; (2) Find the 
solutions with the minimum cost and with the maximum cost; (3) The initial 
temperature was set at twice the difference between the maximum and minimum cost. 
The program we developed allows its user to adjust the initial temperature for each run 
as well. 

m n

Two cooling schedules were tested in our algorithms. Both performed well, i.e., 
enabled the algorithm to find the global optimum consistently. The first cooling 
schedule is *ρ=T , where T ρ  is a parameter that can be adjusted by the user. The 
optimal setting of ρ  is highly problem-dependent. Different problems require different 
values. The common practice to find a near-optimal ρ  is to start with a relatively 
smaller value, such as 0.85, and than gradually increase it to a large value close to 1.0, 
such as 0.99. This trial-and-error process can be very tedious. A better alternative is to 
design a robust SA algorithm which is not sensitive to the parameter setting. In other 
words, the performance of the SA algorithm changes little when a different value of ρ  
is used. The SA algorithm used in this paper is very robust in this sense. There is no 
need to tune ρ  as long as it is within a reasonable range, i.e., 0.85 to 0.99, which is the 
range used by many SA users and researcher. To show the robustness of the SA 
algorithm, we ran the SA algorithm for .ρ = 0 85  to 0.99 and obtained the global 
optimum in all cases using the given numerical example.  

The second cooling schedule used in our algorithm is 
β

=
+1
T

T
T

, where β  is 

a parameter that can be adjusted by the user. Similar to the case of ρ , the optimal 
value of β  depends on the problem. There is no universally optimal β  which is best 
for all problems. A trial-and-error process for finding a good β  value has to be used in 
practice. However, if an SA algorithm is robust, there will be little need for a lengthy 
trial-and-error process. Robustness is one of the criteria in designing our SA algorithm. 
To test how robust our algorithm is, we ran it with β = 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 
and 4.0 in our experimental studies. Thirty runs were conducted for each parameter 
setting. The SA algorithm was able to find the global optimum at  

consistently for all runs. None of our runs took more than a few seconds. These 
experiments have shown that our SA algorithm worked well with a wide range of 
parameter settings. There is no need to have a time-consuming parameter-tuning 
process. A default value of 

,14 1m = = 1n

.β = 1 0  can be used for our problem. 
The inner loop stop criterion used in our algorithm was determined by the 

number of iterations for which the temperature T  was kept the same. It can be set by 
the user easily. The outer loop stop criterion was determined by two factors. One was 
the maximum number of iterations set by the user. The other was the lowest 
temperature. That is, the SA algorithm stops when its temperature is below this value. 

Further improvement to our SA algorithm was made after the above success. 
We modified the range of i  and j  in the neighbourhood definition. The neighbourhood 
of  now becomes {(( , )=X m n , ) | , [ , ]}+ + − +in range n j i j range rangem i , where  and i
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j  are generated uniformly at random within [ , ]− +range range
m

n

, and range is a user-
defined parameter that depends on the initial ranges of  and . This improvement 
enables our algorithm to converge much faster, since larger jumps are made possible 
through this neighbourhood. Our previous work has shown the benefit of having a 
large neighbourhood size [16]. The optimal solution can be found in less than a second. 

n

5. ANALYSIS AND DISCUSSION 

It is clear from previous studies that the joint product batch size and raw 
material ordering policy is more cost-effective than the separate policy [1, 2, 3, 17]. In 
the joint batch sizing problem, we consider that the raw material of a single purchase 
will provide stock to several production runs. This is true when an ordering cost of raw 
material purchase is much higher compared to the setup cost of a production run. In 
the example problem, if the ordering cost is $25 or less, it is not economic to use single 
raw material purchase for more than one production run. 

The behavior of the function encouraged us to develop a simple, calculus-
based, heuristic to solve the problem. This approach is generally well accepted in the 
OR/MS literature.  However, there is no guarantee that such a heuristic will produce a 
global optimum. So we designed an SA algorithm. Although there is no guarantee that 
SA will find an exact global optimum in finite time, the solution obtained by our SA 
algorithm for the example problem has been found consistently excellent. In order to 
evaluate the quality of solutions, an enumeration algorithm was used to search for the 
exact global optimum (several hours on a PC) for the example problem. This result 
confirmed that the solution found consistently by SA and the simple heuristic method 
is indeed the global optimal solution.  

6. CONCLUSIONS 

A model for a two-stage batch environment has been proposed in this paper. 
This model takes a finite-rate of production into account and jointly determines batch-
sizes for the product and order-sizes for the associated raw materials. To avoid 
complexity in formulation, the variable  and  are assumed to be integers for all 
cases. However, these are relaxed in the solution approach that is performed. As a 
result, it is not expected that the solution will be globally optimal. This method can be 
considered as a simple heuristic to solve the stated problem with little computational 
effort and an acceptable level of solution quality. To improve the quality of the solution, 
we developed an SA algorithm, which can produce high-quality solutions reliably and 
efficiently.  The SA algorithm does not require the cost function to be differentiable or 
even continuous. It can deal with functions with multiple local optima. A distinct 
feature of our SA algorithm is its robustness against different parameter settings. The 
algorithm worked very well under a wide range of parameter values. There was no need 
to tune parameters such as 

m

ρ  and β  using a lengthy trial-and-error process.  The 
experimental results using an example problem show that the SA algorithm would be a 
very useful tool in attacking other batch-sizing problems. 
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The model developed in this paper can be applied in real life situations where 
(i) a finite production-rate environment uses raw materials taken from outside 
suppliers, (ii) the supply policy is to deliver equal quantities at fixed intervals, and (iii) 
the product cannot be delivered until the whole lot is finished and quality certification 
is ready. This situation may arise in the chemical and pharmaceutical industries under 
certain conditions. 
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