Laguerre-like methods for the simultaneous approximation of polynomial multiple zeros
DOI:
https://doi.org/10.2298/YJOR0601031PKeywords:
polynomial multiple zeros, simultaneous methods, inclusion of zeros, convergenceAbstract
Two new methods of the fourth order for the simultaneous determination of multiple zeros of a polynomial are proposed. The presented methods are based on the fixed point relation of Laguerre's type and realized in ordinary complex arithmetic as well as circular complex interval arithmetic. The derived iterative formulas are suitable for the construction of modified methods with improved convergence rate with negligible additional operations. Very fast convergence of the considered methods is illustrated by two numerical examples.References
Aberth, O., "Iteration methods for finding all zeros of a polynomial simultaneously", Math. Comp., 27 (1973) 339-344.
Alefeld, G., and Herzberger, J., "On the convergence speed of some algorithms for the simultaneous approximation of polynomial zeros", SIAM J. Numer. Anal., 11 (1974) 237-243.
Alefeld, G., and Herzberger, J., Introduction to Interval Computations, Academic Press, New York, 1983.
Bodewig, E., "Sur la méthode Laguerre pour l'approximation des racines de certaines équations algébriques et sur la critique d'Hermite", Indag. Math., 8 (1946) 570-580.
Du, Q., Jin, M., Li, T.Y., and Zeng, Z., "Quasi-Laguerre iteration", Math. Comp., 66 (1997) 345-361.
Foster, L., "Generalizations of Laguerre's method: higher order methods", SIAM J. Numer. Anal., 18 (1981) 1004-1018.
Gargantini, I., "Parallel Laguerre iterations: The complex case", Numer. Math., 26 (1976) 317-323.
Hansen, E., and Patrick, M., "A family of root finding methods", Numer. Math., 27 (1977) 257-269.
Hansen, E., Patrick, M, and Rusnak, J., "Some modifications of Laguerre's method", BIT, 17 (1977) 409-417.
King, R.F., "Improving the Van de Vel root-finding method", Computing, 30 (1983) 373-378.
Kravanja, P., "On computing zeros of analytic functions and related problems in structured numerical linear algebra", Ph. D. Thesis, Katholieke Universiteit Leuven, Lueven, 1999.
Kravanja, P., "A modification of Newton's method for analytic mappings having multiple zeros", Computing, 62 (1999) 129-145.
Milošević, D., "Iterative methods for the simultaneous inclusion of polynomial zeros", Ph. D. Thesis, University of Niš, Niš, 2005. (in Serbian)
Niu, X.M., and Sakurai, T., "A method for finding the zeros of polynomials using a companion matrix", Japan J. Idustr. Appl. Math., 20 (2003) 239-256.
Ostrowski, A.M., Solution of Equations in Euclidean and Banach Space, Academic Press, New York, 1973.
Parlett, B., "Laguerre's method applied to the matrix eigenvalue problem", Math. Comp., 18 (1964) 464-485.
Petković, M.S., Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Springer Verlag, Berlin-Heidelberg-New York, 1989.
Petković, M.S., "Laguerre-like inclusion method for polynomial zeros", J. Comput. Appl. Math., 152 (2003) 451-465.
Petković, M.S., and Milošević, D., "Laguerre-like method for the simultaneous inclusion of multiple zeros of a polynomial", Comm. Appl. Analysis (to appear).
Petković, M.S., and Milošević., "A higher order family for the simultaneous inclusion of multiple zeros of polynomials", Numerical Algorithms, 39 (2005) 415-435.
Petković, M.S., and Petković, Lj.D., Complex Interval Arithmetic and Its Applications, Wiley VCH, Berlin-Weinheim-New York, 1998.
Petković, M.S., Petković, Lj.D., and Živković, D., "Laguerre-like methods for the simultaneous approximation of polynomial zeros", In: G. Alefeld, X. Chen (eds.), Topics in Numerical Analysis with Special Emphasis on Nonlinear Problems, Springer Verlag, Wien, New York 2001, pp. 189-210.
Petković, M.S., Petković, Lj.D., and Ilić, S., "On the guaranteed convergence of Laguerre-like method", Comput. Math. with Appls., 46 (2003) 239-251.
Rančić, L., and Petković, M.S., "Square-root families for the simultaneous approximations of polynomial multiple zeros", Novi Sad J. Math. (to appear).
Rančić, L., "Simultaneous methods for solving algebraic equations", Ph. D. Thesis, University of Niš, Niš, 2005. (in Serbian)
Rump, S.M., "Ten methods to bound multiple roots of polynomials", J. Comput. Appl. Math., 156 (2003) 403-432.
Zeng, Z., "Computing multiple roots of inexact polynomials", Math. Comp. 74 (2005), 869-903.
Downloads
Published
Issue
Section
License
Copyright (c) 2006 YUJOR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.