On duality for nonsmooth Lipschitz optimization problems
DOI:
https://doi.org/10.2298/YJOR0901041PKeywords:
Nonsmooth Lipschitz vector optimization, Fritz John type necessary optimization conditions, duality theoremsAbstract
We present some duality theorems for a non-smooth Lipschitz vector optimization problem. Under generalized invexity assumptions on the functions the duality theorems do not require constraint qualifications.References
Clarke, F.H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, NY, 1983.
Giorgi, G., and Guerraggio, A., “Various types of nonsmooth invexity”, Journal of Information and Optimization Sciences, 17 (1996) 137-150.
Giorgi, G., and Guerraggio, A., “The notion of invexity in vector optimization: smooth and nonsmooth case”, J.P. Crouzeix, J.E. Martinez-Legaz, and M. Volle (eds.), Generalized Monotonicity: Recent Results, Kluwer Academic Publishers, Dordrecht, Holland, 389-405, 1998.
Jeyakumar, V., and Mond, B., “On generalized convex mathematical programming”, J. Austral. Math. Soc., 34B (1992) 43-53.
Lee, G.M., “Nonsmooth Invexity in Multiobjective Programming”, J. Information & Optimization Sciences, 15 (1994) 127-136.
Minami, M., “Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space”, J. Opt. Theory Appl., 41 (1983) 451-461.
Mishra, S.K., and Mukherjee, R.N., “On generalized convex multiobjective nonsmooth programming”, J. Austral. Math. Soc., 38B (1996) 140-148.
Mond, B., and Weir, T., “Generalized concavity and duality”, in: S. Schaible and W.T. Ziemba, (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, NY, 1981, 263-279.
Downloads
Published
Issue
Section
License
Copyright (c) 2009 YUJOR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.