On duality for nonsmooth Lipschitz optimization problems

Authors

  • Vasile Preda University of Bucharest, Bucharest, Romania
  • Miruna Beldiman Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Bucharest, Romania
  • Antoan Bătătorescu University of Bucharest, Bucharest, Romania

DOI:

https://doi.org/10.2298/YJOR0901041P

Keywords:

Nonsmooth Lipschitz vector optimization, Fritz John type necessary optimization conditions, duality theorems

Abstract

We present some duality theorems for a non-smooth Lipschitz vector optimization problem. Under generalized invexity assumptions on the functions the duality theorems do not require constraint qualifications.

References

Clarke, F.H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, NY, 1983.

Giorgi, G., and Guerraggio, A., “Various types of nonsmooth invexity”, Journal of Information and Optimization Sciences, 17 (1996) 137-150.

Giorgi, G., and Guerraggio, A., “The notion of invexity in vector optimization: smooth and nonsmooth case”, J.P. Crouzeix, J.E. Martinez-Legaz, and M. Volle (eds.), Generalized Monotonicity: Recent Results, Kluwer Academic Publishers, Dordrecht, Holland, 389-405, 1998.

Jeyakumar, V., and Mond, B., “On generalized convex mathematical programming”, J. Austral. Math. Soc., 34B (1992) 43-53.

Lee, G.M., “Nonsmooth Invexity in Multiobjective Programming”, J. Information & Optimization Sciences, 15 (1994) 127-136.

Minami, M., “Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space”, J. Opt. Theory Appl., 41 (1983) 451-461.

Mishra, S.K., and Mukherjee, R.N., “On generalized convex multiobjective nonsmooth programming”, J. Austral. Math. Soc., 38B (1996) 140-148.

Mond, B., and Weir, T., “Generalized concavity and duality”, in: S. Schaible and W.T. Ziemba, (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, NY, 1981, 263-279.

Downloads

Published

2009-03-01

Issue

Section

Research Articles