Duality for multiobjective fractional programming problems involving d -type-I n-set functions

Authors

  • I.M. Stancu-Minasian The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics, Romania
  • Gheorghe Dogaru 'Mircea cel Bătrân', Naval Academy, Romania
  • Mădălina Andreea Stancu The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics, Romania

DOI:

https://doi.org/10.2298/YJOR0901063S

Keywords:

d-type-I set functions, multiobjective programming, duality results

Abstract

We establish duality results under generalized convexity assumptions for a multiobjective nonlinear fractional programming problem involving d -type-I n -set functions. Our results generalize the results obtained by Preda and Stancu-Minasian [24], [25].

References

Bector, C.R., Bhatia, D., and Pandey, S., “Duality for multiobjective fractional programming involving n-set functions”, J. Math. Anal. Appl. 186 (3) (1994) 747-768.

Bector, C.R., Bhatia, D., and Pandey, S., “Duality in nondifferentiable generalized fractional programming involving n-set functions”, Utilitas Math. 45 (1994) 91-96.

Begis, D., and Glowinski, R., “Application de la méthode des éléments finis à l’approximation d’une probléme de domaine optimal: Méthodes de résolution de problémes approaches”, Appl. Math. Optim., 2 (2) (1975) 130-169.

Bhatia, D., and Kumar, P., “Pseudolinear vector optimization problems containing n-set functions”, Indian J. Pure Appl. Math. 28 (4) (1997) 439-453.

Bhatia, D., and Mehra, A., “Lagrange duality in multiobjective fractional programming problems with n-set functions”, J. Math. Anal. Appl. 236 (1999) 300-311.

Bhatia, D., and Mehra, A., “Theorem of alternative for a class of quasiconvex n-set functions and its applications to multiobjective fractional programming problems”, Indian J. Pure Appl. Math. 32 (6) (2001) 949-960.

Bhatia, D., and Tewari, S., “Multiobjective fractional duality for n-set functions”, J. Inform. Optim. Sci. 14 (3) (1993) 321-334.

Cea, J., Gioan, A., and Michel, J., “Quelques résultats sur l’identification de domaines”, Calcolo, 10 (3-4) (1973) 207-232.

Corley, H.W., “Optimization theory for n-set functions”, J. Math. Anal. Appl., 127 (1) (1987) 193-205.

Corley, H.W., and Roberts, S.D., “A partitioning problem with applications in regional design”, Oper. Res., 20 (1982) 1010-1019.

Dantzig, G., and Wald, A., “On the fundamental lemma of Neyman and Pearson”, Ann. Math. Statistics, 22 (1951) 87-93.

Jeyakumar, V., and Mond, B., “On generalised convex mathematical programming”, J. Austral. Math. Soc., Ser. B, 34 (1) (1992) 43-53.

Jo, C.L., Kim, D.S., and Lee, G.M., “Duality for multiobjective fractional programming involving n-set functions”, Optimization 29 (3) (1994) 205-213.

Kim, D.S., Lee, G.M., and Jo, C.L., “Duality theorems for multiobjective fractional minimization problems involving set functions”, Southeast Asian Bull. Math. 20 (2) (1996) 65-72.

Kim, D.S., Jo, C.L., and Lee, G.M., “Optimality and duality for multiobjective fractional programming involving n-set functions”, J. Math. Anal. Appl., 224 (1) (1998) 1-13.

Kumar, N., Budharaja, R.K., and Mehra, A., “Approximated efficiency for n-set multiobjective fractional programming”, Asia-Pacific J. Oper. Res. 21 (2) (2004) 197-206.

Mishra, S.K., “Duality for multiple objective fractional subset programming with generalized ρσθ-V-type-I functions”, J. Global Optim. 36 (4) (2006) 499-516.

Mishra, S.K., Wang, S.Y., and Lai, K.K., “Optimality and duality for a multi-objective programming problem involving generalized d-type-I and related n-set functions”, European J. Oper. Res., 173 (2) (2006) 405-418.

Mangasarian, O.L., Nonlinear Programming, McGraw-Hill, New York, 1969.

Morris, R.J.T., “Optimal constrained selection of a measurable subset”, J. Math. Anal. Appl., 70 (2) (1979) 546-562.

Neymann, J., and Pearson, E.S., “On the problem of the most efficient tests of statistical hypotheses”, Philos. Trans. Roy. Soc. London, Ser. A, 231 (1933) 289-337.

Preda, V., “On duality of multiobjective fractional measurable subset selection problems”, J. Math. Anal. Appl., 196 (1995) 514-525.

Preda, V., “Duality for multiobjective fractional programming problems involving n-set functions”, in: C. Andreian Cazacu, O. Lehto, and Th. M. Rassias (eds.), Analysis and Topology, World Scientific Publishing Company, 1998, 569-583.

Preda, V., and Stancu-Minasian, I.M., “Optimality and Wolfe duality for multiobjective programming problems involving n-set functions”, in: N. Hadjisavvas, J. E., Martinez-Legaz, and J.-P. Penot (eds.), Generalized Convexity and Generalized Monotonicity, Proceedings of the 6th International Symposium on Generalized Convexity/Monotonicity, Karlovassi, Samos, Greece, 25 Aug.-3 Sep. 1999. Lecture Notes in Economics and Mathematical Systems 502, Springer-Verlag, Berlin, 2001, 349-361.

Preda, V., and Stancu-Minasian, I.M., “Mond-Weir duality for multiobjective programming problems involving d-type-I n-set functions”, Rev. Roumaine Math. Pures Appl. 47 (4) (2002) 499-508.

Preda, V., Stancu-Minasian, I.M., and Koller, E., “On optimality and duality for multiobjective programming problems involving generalized d-type-I and related n-set functions”, J. Math. Anal. Appl., 283 (1) (2003) 114-128.

Stancu-Minasian, I.M., Fractional Programming: Theory, Methods and Applications, Dordrecht, The Netherlands, Kluwer Academic Publishers, 1997, viii + 418.

Stancu-Minasian, I.M., and Preda, V., “Optimality conditions and duality for programming problems involving set and n-set functions: a survey”, J. Statist. Manag. Systems, 5 (1-3) (2002) 175-207.

Suneja, S.K., and Srivastava, M.K., “Optimality and duality in nondifferentiable multiobjective optimization involving d-type I and related functions”, J. Math. Anal. Appl., 206 (2) (1997) 465-479.

Wang, P.K.C., “On a class of optimization problems involving domain variations”, Lecture Notes in Control and Information Sciences, Vol. 2, Springer-Verlag, Berlin, 1977, 49-60.

Ye, Y.L., “D-invexity and optimality conditions”, J. Math. Anal. Appl., 162 (1991) 242-249.

Zalmai, G.J., “Optimality conditions and duality for multiobjective measurable subset selection problems”, Optimization, 22 (2) (1991) 221-238.

Zalmai, G.J., “Semiparametric sufficient efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (F, ρ, θ)-convex functions”, Southeast Asian Bull. Math., 25 (2) (2001) 529-563.

Zalmai, G.J., “Efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (F, ρ, σ, θ)-V-convex functions”, Computers and Math. Appl., 43 (2002) 1489-1520.

Zalmai, G.J., “Parametric sufficient efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized (F, ρ, θ)-convex functions”, J. Stat. Manag. Syst., 6 (2) (2003) 331-370.

Downloads

Published

2009-03-01

Issue

Section

Research Articles