A dual exterior point simplex type algorithm for the minimum cost network flow problem

Authors

  • George Geranis Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
  • Konstantinos Paparizzos Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
  • Angelo Sifaleras Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

DOI:

https://doi.org/10.2298/YJOR0901157G

Keywords:

Operations research, combinatorial optimization, minimum cost network flow problem

Abstract

A new dual simplex type algorithm for the Minimum Cost Network Flow Problem (MCNFP) is presented. The proposed algorithm belongs to a special 'exterior- point simplex type' category. Similarly to the classical network dual simplex algorithm (NDSA), this algorithm starts with a dual feasible tree-solution and reduces the primal infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm does not always maintain a dual feasible solution. Instead, the new algorithm might reach a basic point (tree-solution) outside the dual feasible area (exterior point - dual infeasible tree).

References

Ahuja, R., Magnanti, T., Orlin, J., and Reddy, M., “Applications of network optimization”, Handbooks of Operations Research and Management Science, (1995) 1-83.

Ahuja, R., and Orlin, J., “Improved primal simplex algorithms for shortest path, assignment and minimum cost flow problems”, Massachusetts Institute of Technology, Operations Research Center, Working Paper OR 189-88, (1988).

Ali, A.I., Helgason, R.V., Kennington, J.L., and Lall, H.S., “Primal simplex network codes: State-of-the-art implementation technology”, Networks, 8 (4) (1978) 315-339.

Bertsekas, D. P., and Tseng, P., “RELAX-IV: A Faster version of the RELAX code for solving minimum cost flow problems”, Technical Report, Massachusetts Institute of Technology, Laboratory for Information and Decision Systems, 1994.

Eppstein, D., “Clustering for faster network simplex pivots”, Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, 1994.

Fredman, M., and Tarjan, R., “Fibonacci heaps and their uses in improved network optimization algorithms”, Journal of the ACM, 34 (3) (1987) 596-615.

Glover, F., Karney, D., and Klingman, D., “Implementation and computational comparisons of primal, dual and primal-dual computer codes for minimum cost network flow problems”, Networks, 4 (3) (1974) 191-212.

Glover, F., Klingman, D., and Napier, A., “Basic dual feasible solutions for a class of generalized networks”, Operations Research, 20 (1) (1972) 126-136.

Glover, F., Klingman, D., and Phillips, N., Network Models in Optimization and Their Applications in Practice, Wiley Publications, 1992.

Goldberg, A., Grigoriadis, M., and Tarjan, R., “Use of dynamic trees in a network simplex algorithm for the maximum flow problem”, Mathematical Programming, 50 (3) (1991) 277-290.

Hultz, J., and Klingman, D., “An advanced dual basic feasible solution for a class of capacitated generalized networks”, Operations Research, 24 (2) (1976).

Karagiannis, P., Markelis, I., Paparrizos, K., Samaras, N., and Sifaleras, A., "E-learning technologies: employing matlab web server to facilitate the education of mathematical programming", International Journal of Mathematical Education in Science and Technology, Taylor & Francis Publications, 37 (7) (2006) 765-782.

Karagiannis, P., Paparrizos, K., Samaras, N., and Sifaleras, A., “A new simplex type algorithm for the minimum cost network flow problem”, Proceedings of the 7th Balkan Conference on Operational Research, 2005, 133-139.

Kennington, J.L., and Helgason, R.V., Algorithms for Network Programming, Wiley Publications, 1980.

Orlin, J., “Genuinely polynomial simplex and non-simplex algorithms for the minimum cost flow problem”, Sloan School of Management, M.I.T., Cambridge, MA, Technical Report No. 1615-84, 1984.

Tarjan, R. E., “Dynamic trees as search trees via Euler tours, applied to the network simplex algorithm”, Mathematical Programming, 78(2) (1997) 169-177.

Downloads

Published

2009-03-01

Issue

Section

Research Articles