A trust region method using subgradient for minimizing a nondifferentiable function
DOI:
https://doi.org/10.2298/YJOR0902249GKeywords:
Trust region method, non-smooth convex optimizationAbstract
The minimization of a particular nondifferentiable function is considered. The first and second order necessary conditions are given. A trust region method for minimization of this form of the objective function is presented. The algorithm uses the subgradient instead of the gradient. It is proved that the sequence of points generated by the algorithm has an accumulation point which satisfies the first and second order necessary conditions.References
Алексеев, В.М., Тихомиров, В.М., Фомин, С.В., Оптимальное управление, Наука, Москва, 1979.
Browien, J., and Lewis, A., Convex Analysis and Nonlinear Optimization, Canada, 1999.
Gertz, E.M., and Gill, P.E., “A primal-dual trust-region algorithm for nonlinear optimization”, Math. Program, Ser B, 100 (2004) 49-94.
Fletcher, R., Practical Methods of Optimization, Vol. 1, J. Wiley, New York, 1980.
Fletcher, R., Practical Methods of Optimization, Vol. 2, J. Wiley, New York, 1981.
Fuduli, A., “Metodi numerici per la minimizzazione di funzioni convesse nondifferenziabili”, PhD Thesis, Departimento di Electronica Informatica e Sistemistica, Univerzita della Calabria, 1998.
Кусарев, А.Г., Кутателадзе, С.С., Субдифференциальное исчисление, Издательство Наука, Новосибирск, 1987.
Пшеничный, Б. Н., Метод линеаризации, Наука, Москва, 1983.
Downloads
Published
Issue
Section
License
Copyright (c) 2009 YUJOR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.