On sufficiency in multiobjective programming involving generalized (G,C,ρ)-type I functions
DOI:
https://doi.org/10.2298/YJOR130108025SKeywords:
multiobjective programming, (G,C,ρ)-convexity, efficient solution, type I functions, generalized convexityAbstract
In this paper, a new class of (G,C,ρ)-type I function is introduced so as their generalizations.’ should be replaced by ’functions and their generalizations are introduced. We consider a class of differentiable multiobjective optimization problems and establish sufficient optimality conditions. The results of the paper are more general than those existing in the literature.References
Aghezzaf, B., and Hachimi, M., “Generalized invexity and duality in multiobjective programming problems”, J. Global Optim., 18 (2000) 91-101.
Aghezzaf, B., and Hachimi, M., “Sufficiency and duality in multiobjective programming involving generalized (F)-convexity”, J. Math. Anal. Appl., 258 (2001) 617-628.
Antczak, T., “(pr)-Invex sets and functions”, J. Math. Anal. Appl., 80 (2001) 545-550.
Antczak, T., “New optimality conditions and duality results of G-type in differentiable mathematical programming”, Nonlinear Anal., 66 (2007) 1617-1632.
Antczak, T., “On G-invex multiobjective programming Part I Optimality”, J. Glob. Optim., 43(1) (2009) 97-109.
Antczak, T., “On G-invex multiobjective programming. Part II Optim. Duality”, J. Glob. Optim, 43(1) (2009) 111-140.
Ben-Israel, A., and Mond, B., “What is invexity”, J. Aust. Math. Soc. Ser. B, 28 (1986) 1-9.
Bhatia, D., and Jain, P., “Generalized (F)-convexity and duality for nonsmooth multiobjective programs”, Optimization, 31 (1994) 153-164.
Craven, B. D., and Glover, B. M., “Invex functions and duality”, J. Aust. Math. Soc. Ser. A, 39 (1985) 1-20.
Chinchulumm, A., Yuan, D. H., and Pardalos, P. M., “Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity”, Ann. Oper. Res., 154 (2007) 133-147.
Hanson, M. A., “On Sufficiency of the Kuhn-Tuncker conditions”, J. Math. Anal. Appl., 80 (1981) 545-550.
Hanson, M. A., and Mond, B., “Necessary and sufficient conditions in constrained optimization”, Math. Program., 37 (1987) 51-58.
Jeyakumar, V., and Mond, B., “On generalized convex mathematical programming”, J. Aust. Math. Soc. Ser. B, 34 (1992) 43-53.
Kaul, R. N., and Kaur, S., “Optimality criteria in nonlinear programming involving nonconvex functions”, J. Math. Anal. Appl., 105 (1987) 104-112.
Kaul, R. N., Suneja, S. K., and Srivastava, M. K., “Optimality criteria in nonlinear programming and duality in multiobjective optimization involving generalized invexity”, J. Optim. Theory Appl., 80 (1994) 465-482.
Kuk, H., Lee, G. M., and Kim, D.S., “Nonsmooth multiobjective programs with (V)-invexity”, Indian J. Pure Appl. Math., 29 (1998) 405-412.
Liag, Z. A., Huang, H. X., and Pardalos, P. M., “Optimality and duality for a class of nonlinear fractional programming problems”, J. Optim. Theory Appl., 110 (2001) 611-619.
Liag, Z. A., Huang, H. X., and Pardalos, P. M., “Efficiency conditions and duality for a class of nonlinear fractional programming problems”, J. Glob. Optim., 27 (2003) 447-471.
Long, X., “Optimality conditions and duality for differentiable multiobjective fractional programming problems with (C d)-convexity”, J. Optim. Theory Appl., 148(1) (2011) 197-208.
Mangasarian, O. L., Nonlinear Programming, McGraw-Hill, New York, 1969.
Martin, D. H., “The essence of invexity”, J. Optim. Theory Appl., 47 (1985) 65-76.
Preda, V., “On sufficiency and duality for multiobjective programs”, J. Math. Anal. Appl., 166 (1992) 365-377.
Rueda, N. G., and Hanson, M. A., “Optimality criteria in mathematical programming involving generalized invexity”, J. Math. Anal. Appl., 130 (1988) 375-385.
Mishra, S. K., “On multiple objective optimization with generalized univexity”, J. Math. Anal. Appl., 224 (1998) 131-148.
Suneja, S. K., and Srivastava, M. K., “Optimality and duality in nondifferentiable multiobjective optimization involving d-type-I and related functions”, J. Math. Anal. Appl., 206 (1997) 465-479.
Mishra, S. K., Giorgi, G., and Wang, S.Y., “Duality in vector optimization in Banach spaces with generalized convexity”, J. Global Optim., 29 (2004) 415-424.
Mishra, S. K., Wang, S. Y., and Lai, K. K., “Complex minimax programming under generalized convexity”, J. Comput. Appl. Math., 167 (2004) 59-71.
Mishra, S. K., Wang, S. Y., and Lai, K. K., “Optimality and duality in nondifferentiable and multiobjective programming under generalized d-invexity”, J. Global Optim., 29 (2004) 425-438.
Mishra, S. K., Wang, S. Y., and Lai, K. K., “Optimality and duality for multiple objective optimization under generalized type-I univexity”, J. Math. Anal. Appl., 303 (2005) 315-326.
Mishra, S. K., Wang, S. Y., and Lai, K. K., “Multiple objective fractional programming involving semilocally type-I preinvex and related functions”, J. Math. Anal. Appl., 310 (2005) 626-640.
Xu, Z., “Mixed type duality in multiobjective programming problems”, J. Math. Anal. Appl., 198 (1996) 621-635.
Yuan, D. H., Liu, X. L., Chinchuluun, A., and Pardalos, P.M., “Nondifferentiable minimax fractional programming problems with (C, α, p, d)-convexity”, J. Optim. Theory Appl., 129 (1) (2006) 185-199.
Yuan, D., Liu, X., Yang, S., and Lai, G., “Multiobjective programming problems with (GC)-convexity”, J. Appl. Math. Comput., 40 (2012) 383-397.
Dehui, Y., Chinchuluun, A., Xiaoling L., and Pardalos, P. M., “Optimality Conditions and Duality for Multiobjective Programming Involving (C, α, p, d) type-I Functions, in: Generalized Convexity and Related Topics”, Lecture Notes in Economics and Mathematical Systems, 583 (2006) 73-87.
Ye, Y. L., “d-invexity and optimality conditions”, J. Math. Anal. Appl., 162 (1991) 242-249.
Downloads
Published
Issue
Section
License
Copyright (c) 2013 YUJOR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.